1
|
Sun J, Li L, Xing F, Yang Y, Gong M, Liu G, Wu S, Luo R, Duan X, Liu M, Zou M, Xiang Z. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Stem Cell Res Ther 2021; 12:591. [PMID: 34863288 PMCID: PMC8642892 DOI: 10.1186/s13287-021-02634-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Background The invasive and complicated procedures involving the use of traditional stem cells limit their application in bone tissue engineering. Cell-free, tissue-engineered bones often have complex scaffold structures and are usually engineered using several growth factors (GFs), thus leading to costly and difficult preparations. Urine-derived stem cells (USCs), a type of autologous stem cell isolated noninvasively and with minimum cost, are expected to solve the typical problems of using traditional stem cells to engineer bones. In this study, a graphene oxide (GO)-modified silk fibroin (SF)/nanohydroxyapatite (nHA) scaffold loaded with USCs was developed for immunomodulation and bone regeneration. Methods The SF/nHA scaffolds were prepared via lyophilization and cross-linked with GO using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy succinimide (NHS). Scaffolds containing various concentrations of GO were characterized using scanning electron microscopy (SEM), the elastic modulus test, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Examinations of cell adhesion, proliferation, viability, morphology, alkaline phosphatase activity, and osteogenesis-related gene expression were performed to compare the osteogenesis-related biological behaviors of USCs cultured on the scaffolds. The effect of USC-laden scaffolds on the differentiation of macrophages was tested using ELISA, qRT-PCR, and immunofluorescence staining. Subcutaneous implantations in rats were performed to evaluate the inflammatory response of the USC-laden scaffolds after implantation. The scaffolds loaded with USCs were implanted into a cranial defect model in rats to repair bone defects. Micro-computed tomography (μCT) analyses and histological evaluation were performed to evaluate the bone repair effects. Results GO modification enhanced the mechanical properties of the scaffolds. Scaffolds containing less than 0.5% GO had good biocompatibility and promoted USC proliferation and osteogenesis. The scaffolds loaded with USCs induced the M2-type differentiation and inhibited the M1-type differentiation of macrophages. The USC-laden scaffolds containing 0.1% GO exhibited the best capacity for promoting the M2-type differentiation of macrophages and accelerating bone regeneration and almost bridged the site of the rat cranial defects at 12 weeks after surgery. Conclusions This composite system has the capacity for immunomodulation and the promotion of bone regeneration and shows promising potential for clinical applications of USC-based, tissue-engineered bones. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02634-w.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Lang Li
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yun Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Guoming Liu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, 266003, Shangdong, People's Republic of China
| | - Shuang Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Rong Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Min Zou
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, People's Republic of China.
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Guoxue Lane 37, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
2
|
Ji J, Wang P, Zhou Q, Zhu L, Zhang H, Zhang Y, Zheng Z, Bhatta AK, Zhang G, Wang X. CCL8 enhances sensitivity of cutaneous squamous cell carcinoma to photodynamic therapy by recruiting M1 macrophages. Photodiagnosis Photodyn Ther 2019; 26:235-243. [DOI: 10.1016/j.pdpdt.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023]
|
4
|
Guo W, Sun C, Jiang G, Xin Y. Recent Developments of Nanoparticles in the Treatment of Photodynamic Therapy for Cervical Cancer. Anticancer Agents Med Chem 2019; 19:1809-1819. [PMID: 30973114 DOI: 10.2174/1871520619666190411121953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023]
Abstract
Photodynamic therapy (PDT) is a photoactivation or photosensitization process, wherein the photosensitizer
(PS) is activated under appropriate wavelengths. Conventional antitumor therapy for cervical cancer
includes surgery, radiotherapy, and chemotherapy. However, these techniques are accompanied by some evident
shortcomings. PDT is considered an emerging minimally invasive treatment for cervical cancer. In recent years,
new PSs have been synthesized because of the long absorption wavelength, good solubility, and high tumor
targeting ability. Studies also showed that the synergistic combination of nanomaterials with PSs resulted in
considerable benefits compared with the use of small-molecule PSs alone. The compounds can act both as a
drug delivery system and PS and enhance the photodynamic effect. This review summarizes the application of
some newly synthesized PSs and PS-combined nanoparticles in cervical cancer treatment to enhance the efficiency
of PDT. The mechanism and influencing factors of PDT are further elaborated.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Radiation, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chao Sun
- Department of Dermatology, Xinyi People's Hospital, Xuzhou 221002, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yong Xin
- Department of Radiation, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
5
|
Arthanareeswaran VKA, Berndt-Paetz M, Ganzer R, Stolzenburg JU, Ravichandran-Chandra A, Glasow A, Neuhaus J. Harnessing macrophages in thermal and non-thermal ablative therapies for urologic cancers – Potential for immunotherapy. LAPAROSCOPIC, ENDOSCOPIC AND ROBOTIC SURGERY 2018. [DOI: 10.1016/j.lers.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Ren G, Sun J, Li MM, Zhang YD, Li RH, Li YM. MicroRNA-23a-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting mitogen-activated protein kinase-13. Mol Med Rep 2018; 17:4554-4560. [PMID: 29344643 DOI: 10.3892/mmr.2018.8452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms of osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) remain to be fully elucidated. MicroRNAs (miRs) serve vital roles in the process of regulating osteogenic differentiation of BMSCs. The present study aimed to investigate the role of miR‑23a‑5p in osteogenic differentiation of human (h)BMSCs, and the underlying molecular mechanism. The results of reverse transcription‑quantitative polymerase chain reaction demonstrated that miR‑23a‑5p was significantly downregulated in the process of osteogenic differentiation. Upregulation of miR‑23a‑5p inhibited osteogenic differentiation of hBMSCs, and down‑regulated expression of miR‑23a‑5p enhanced this process, which was confirmed by alkaline phosphatase (ALP) and Alizarin Red S staining. A dual‑luciferase reporter assay confirmed that mitogen‑activated protein kinase 13 (MAPK13) was a direct target of miR‑23a‑5p. In addition, knockdown of MAPK13 inhibited osteogenic differentiation of hBMSCs, similar to the effect of upregulation of miR‑23a‑5p. Finally, the knockdown of MAPK13 also blocked the effect of miR‑23a‑5p in osteogenic differentiation of hBMSCs, which was also confirmed by ALP and Alizarin Red S staining. These results indicated that by targeting MAPK13, miR‑23a‑5p serves a vital role in osteogenic differentiation of hBMSCs, which may provide novel clinical treatments for bone injury however, further studies are required.
Collapse
Affiliation(s)
- Gang Ren
- Department of Stomatology, Tianjin First Central Hospital, Nankai, Tianjin 300382, P.R. China
| | - Jing Sun
- Department of Stomatology, Tianjin First Central Hospital, Nankai, Tianjin 300382, P.R. China
| | - Meng-Meng Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai, Tianjin 300382, P.R. China
| | - Yong-Dong Zhang
- Department of Stomatology, Tianjin First Central Hospital, Nankai, Tianjin 300382, P.R. China
| | - Rong-Hua Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai, Tianjin 300382, P.R. China
| | - Yu-Ming Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai, Tianjin 300382, P.R. China
| |
Collapse
|
7
|
Yan Z, Guo Y, Wang Y, Li Y, Wang J. MicroRNA profiles of BMSCs induced into osteoblasts with osteoinductive medium. Exp Ther Med 2018; 15:2589-2596. [PMID: 29456662 DOI: 10.3892/etm.2018.5723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in cell differentiation and functions as a regulator. Therefore, miRNA is important in the process of bone marrow mesenchymal stem cells (BMSCs) being induced into osteoblasts. In this study, mouse BMSCs were induced with osteoinductive medium, the indices related to osteoblastic differentiation were assayed, including alkaline phosphatase, the deposit of calcium and protein levels of osteocalcin. Using miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses, differentially expressed miRNAs in the cells, which were induced with osteoinductive medium, were selected and identified. The target genes of the differentially expressed miRNAs were then predicted using bioinformatics analysis. The results revealed that osteoinductive medium promoted osteoblastic differentiation of BMSCs, and let-7c-5p, miR-181c-3p, miR-3092-3p and miR-5132-3p were identified as differentially expressed miRNAs in the cells treated with osteoinductive medium for 14 and 21 days. Certain target genes and signal pathways related to osteoblastic differentiation of the four miRNAs were predicted. These findings indicated the four differently expressed miRNAs may be potential regulators of osteoblastic differentiation, providing a basis for further study on the regulation of miRNAs in the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Zhixiong Yan
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yong Guo
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yang Wang
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanan Li
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Jiahui Wang
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|