1
|
Jiang W, Jiang Y, Zhang X, Mu H, Song Y, Zhao H. Metabolomic analysis reveals the influence of HMBOX1 on RAW264.7 cells proliferation based on UPLC-MS/MS. BMC Genomics 2023; 24:272. [PMID: 37208615 DOI: 10.1186/s12864-023-09361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Macrophages are important effector cells in tumor progression and immune regulation. Previously, we demonstrated that the transcription suppressor homeobox containing 1(HMBOX1) exhibits immunosuppressive activity in LPS-induced acute liver injury by impeding macrophage infiltration and activation. We also observed a lower proliferation in HMBOX1-overexpressed RAW264.7 cells. However, the specific mechanism was unclear. Here, a work was performed to characterize HMBOX1 function related to cell proliferation from a metabolomics standpoint by comparing the metabolic profiles of HMBOX1-overexpressed RAW264.7 cells to those of the controls. Firstly, we assessed HMBOX1 anti-proliferation activity in RAW264.7 cells with CCK8 assay and clone formation. Then, we performed metabolomic analyses by ultra-liquid chromatography coupled with mass spectrometry to explore the potential mechanisms. Our results indicated that HMBOX1 inhibited the macrophage growth curve and clone formation ability. Metabolomic analyses showed significant changes in HMBOX1-overexpressed RAW264.7 metabolites. A total of 1312 metabolites were detected, and 185 differential metabolites were identified based on the criterion of OPLS-DA VIP > 1 and p value < 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the elevated HMBOX1 in RAW264.7 inhibited the pathways of amino acid and nucleotide metabolism. Glutamine concentrations decreased significantly in HMBOX1-overexpressed macrophages, and glutamine-related transporter SLC1A5 was also downregulated. Furthermore, SLC1A5 overexpression reversed HMBOX1 inhibition of macrophage proliferation. This study demonstrated the potential mechanism of the HMBOX1/SLC1A5 pathway in cell proliferation by regulating glutamine transportation. The results may help provide a new direction for therapeutic interventions in macrophage-related inflammatory diseases.
Collapse
Affiliation(s)
- Wen Jiang
- Central Research Laboratory, the Second Hospital of Shandong University, Jinan, 250033, China
| | - Yu Jiang
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Xinghai Zhang
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Hongli Mu
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Yuanming Song
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Hengli Zhao
- Department of Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| |
Collapse
|
2
|
Chen Y, Wu X, Chen X, Guo D, Ma W, Guo Y, Xu K, Ma S, Yuan Y, Zhu Q. LncRNA TGFB2-OT1 Promotes Progression and Angiogenesis in Hepatocellular Carcinoma by Dephosphorylating β-Catenin. J Hepatocell Carcinoma 2023; 10:429-446. [PMID: 36941998 PMCID: PMC10024539 DOI: 10.2147/jhc.s404008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) was the sixth most prevalent cancer worldwide. Long non-coding RNA TGFB2-OT1 has been proven to mediate inflammation and autophagy in vascular endothelial cells. However, its function in HCC is still unknown. Methods We analyzed the relationship between TGFB2-OT1 expression and the clinicopathological features of 202 HCC patients. RT-qPCR was used to analyze the TGFB2-OT1 expression in HCC cell lines and tissues. In vitro and in vivo assays were conducted to verify the effect of TGFB2-OT1 on the phenotype of HCC. RNA pull-down assays were applied to reveal the proteins binding to the TGFB2-OT1. Western-blot assays were conducted to analyze the protein expression in HCC cell lines. Results TGFB2-OT1 was found to be highly expressed in HCC samples and hepatoma cells. TGFB2-OT1 expression was significantly associated with age (P = 0.001), cirrhosis (P = 0.003), tumor size (P < 0.001), tumor encapsulation (P = 0.029), tumor protruding from the liver surface (P = 0.040), and alpha fetoprotein (AFP, P < 0.001) levels. TGFB2-OT1 promoted proliferation, migration, invasion, and angiogenesis in HCC cells, both in vitro and in vivo. TGFB2-OT1 binds to β-catenin and competitively impaired the binding of β-catenin to GSK3β, thus suppressing the phosphorylation of β-catenin at Ser33, Ser37, and Thr41. Conclusion TGFB2-OT1 is overexpressed in HCC and predicts the poor prognosis of HCC patients. TGFB2-OT1 impedes the phosphorylation of β-catenin and acts as an alternative activator of the Wnt/β-catenin pathway to promote the progression and angiogenesis of HCC.
Collapse
Affiliation(s)
- Yiran Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Xiaoling Wu
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Deliang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yonghua Guo
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Shuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Qian Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, 430071, People’s Republic of China
| |
Collapse
|
3
|
Méndez-Barbero N, San Sebastian-Jaraba I, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins and cardiovascular diseases: Beyond membrane trafficking and repair. Front Cell Dev Biol 2022; 10:1000760. [PMID: 36313572 PMCID: PMC9614170 DOI: 10.3389/fcell.2022.1000760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. The main cause underlying CVD is associated with the pathological remodeling of the vascular wall, involving several cell types, including endothelial cells, vascular smooth muscle cells, and leukocytes. Vascular remodeling is often related with the development of atherosclerotic plaques leading to narrowing of the arteries and reduced blood flow. Atherosclerosis is known to be triggered by high blood cholesterol levels, which in the presence of a dysfunctional endothelium, results in the retention of lipoproteins in the artery wall, leading to an immune-inflammatory response. Continued hypercholesterolemia and inflammation aggravate the progression of atherosclerotic plaque over time, which is often complicated by thrombus development, leading to the possibility of CV events such as myocardial infarction or stroke. Annexins are a family of proteins with high structural homology that bind phospholipids in a calcium-dependent manner. These proteins are involved in several biological functions, from cell structural organization to growth regulation and vesicle trafficking. In vitro gain- or loss-of-function experiments have demonstrated the implication of annexins with a wide variety of cellular processes independent of calcium signaling such as immune-inflammatory response, cell proliferation, migration, differentiation, apoptosis, and membrane repair. In the last years, the use of mice deficient for different annexins has provided insight into additional functions of these proteins in vivo, and their involvement in different pathologies. This review will focus in the role of annexins in CVD, highlighting the mechanisms involved and the potential therapeutic effects of these proteins.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | | | - Rafael Blázquez-Serra
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Autonoma University of Madrid, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- *Correspondence: Luis M. Blanco-Colio,
| |
Collapse
|
4
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
5
|
Mendez EF, Wei H, Hu R, Stertz L, Fries GR, Wu X, Najera KE, Monterey MD, Lincoln CM, Kim JW, Moriel K, Meyer TD, Selvaraj S, Teixeira AL, Zhao Z, Xu J, Wu J, Walss-Bass C. Angiogenic gene networks are dysregulated in opioid use disorder: evidence from multi-omics and imaging of postmortem human brain. Mol Psychiatry 2021; 26:7803-7812. [PMID: 34385598 PMCID: PMC8837724 DOI: 10.1038/s41380-021-01259-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Opioid use disorder (OUD) is a public health crisis in the U.S. that causes over 50 thousand deaths annually due to overdose. Using next-generation RNA sequencing and proteomics techniques, we identified 394 differentially expressed (DE) coding and long noncoding (lnc) RNAs as well as 213 DE proteins in Brodmann Area 9 of OUD subjects. The RNA and protein changes converged on pro-angiogenic gene networks and cytokine signaling pathways. Four genes (LGALS3, SLC2A1, PCLD1, and VAMP1) were dysregulated in both RNA and protein. Dissecting these DE genes and networks, we found cell type-specific effects with enrichment in astrocyte, endothelial, and microglia correlated genes. Weighted-genome correlation network analysis (WGCNA) revealed cell-type correlated networks including an astrocytic/endothelial/microglia network involved in angiogenic cytokine signaling as well as a neuronal network involved in synaptic vesicle formation. In addition, using ex vivo magnetic resonance imaging, we identified increased vascularization in postmortem brains from a subset of subjects with OUD. This is the first study integrating dysregulation of angiogenic gene networks in OUD with qualitative imaging evidence of hypervascularization in postmortem brain. Understanding the neurovascular effects of OUD is critical in this time of widespread opioid use.
Collapse
Affiliation(s)
- Emily F Mendez
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Ruifeng Hu
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Katherine E Najera
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael D Monterey
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joo-Won Kim
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Karla Moriel
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Thomas D Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L Teixeira
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junqian Xu
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
- MD Anderson Cancer Center University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
6
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
7
|
Méndez-Barbero N, Gutiérrez-Muñoz C, Blázquez-Serra R, Martín-Ventura JL, Blanco-Colio LM. Annexins: Involvement in cholesterol homeostasis, inflammatory response and atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2021; 33:206-216. [PMID: 33622609 DOI: 10.1016/j.arteri.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
The annexin superfamily consists of 12 proteins with a highly structural homology that binds to phospholipids depending on the availability of Ca2+-dependent. Different studies of overexpression, inhibition, or using recombinant proteins have linked the main function of these proteins to their dynamic and reversible binding to membranes. Annexins are found in multiple cellular compartments, regulating different functions, such as membrane trafficking, anchoring to the cell cytoskeleton, ion channel regulation, as well as pro- or anti-inflammatory and anticoagulant activities. The use of animals deficient in any of these annexins has established their possible functions in vivo, demonstrating that annexins can participate in relevant functions independent of Ca2+ signalling. This review will focus mainly on the role of different annexins in the pathological vascular remodelling that underlies the formation of the atherosclerotic lesion, as well as in the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Nerea Méndez-Barbero
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Carmen Gutiérrez-Muñoz
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | | | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España
| | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, IIS-Fundación Jiménez Díaz, Madrid, España; CIBER de Enfermedades Cardiovasculares (CIBERCV), España.
| |
Collapse
|
8
|
Xi Y, Ju R, Wang Y. Roles of Annexin A protein family in autophagy regulation and therapy. Biomed Pharmacother 2020; 130:110591. [PMID: 32763821 DOI: 10.1016/j.biopha.2020.110591] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Annexin A is a kind of calcium-dependent phospholipid-binding proteins, which contributes to the formation of the cell membranes and cytoskeleton and played a part as a membrane skeleton to stabilize lipid bilayer. Autophagy is one of the most important programmed cell death mechanisms. And recently some reports suggest that annexin A family protein is associated with autophagy for annexin A can regulate the formation of vesicular lipid membranes and promote cell exocytosis. In this review, we summarized the roles of annexin A protein family in autophagy regulation and targeted medical treatment for better diagnoses and therapies.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yujia Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Ma H, Su L, He X, Miao J. Loss of HMBOX1 promotes LPS-induced apoptosis and inhibits LPS-induced autophagy of vascular endothelial cells in mouse. Apoptosis 2020; 24:946-957. [PMID: 31583496 DOI: 10.1007/s10495-019-01572-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our previous study revealed that Homeobox containing 1 (HMBOX1), essential for the survival of vascular endothelial cells (VECs), was involved in the progression of atherosclerosis. Knockdown of HMBOX1 promoted apoptosis and inhibited autophagy through regulating intracellular free zinc level in cultured VECs. In current study, in order to investigate the roles of HMBOX1 in vivo and in endothelium, we generated a knockout (KO) mouse for HMBOX1 by using transcription activator-like effector nucleases (TALENs) technology. Herein, we reported that the protein level of HMBOX1 was gradually increased during mouse development. The HMBOX1 KO mouse was viable and fertile. There existed no differences in apoptosis and autophagy of aortic endothelial cells between wild type and KO mouse. Whereas, loss of HMBOX1 promoted apoptosis and inhibited autophagy of aortic endothelial cells under lipopolysaccharide (LPS) stimulation in mouse. We also demonstrated that HMBOX1 deletion had no influence on the secretion of inflammatory cytokines TNF-α and IL-6. Moreover, overexpression or knockdown of HMBOX1 failed to regulate multiple pro-apoptotic genes expression in vitro. In conclusion, HMBOX1 participated in the functional maintenance of mouse aortic endothelial cells, the aortic endothelial cells of HMBOX1 KO mouse showed increased apoptosis and decreased autophagy with LPS treatment.
Collapse
Affiliation(s)
- HanLin Ma
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China.,Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China
| | - XiaoYing He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, People's Republic of China. .,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, People's Republic of China.
| |
Collapse
|
10
|
Mo HQ, Tian FJ, Li X, Zhang J, Ma XL, Zeng WH, Lin Y, Zhang Y. ANXA7 regulates trophoblast proliferation and apoptosis in preeclampsia. Am J Reprod Immunol 2019; 82:e13183. [PMID: 31446642 DOI: 10.1111/aji.13183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Preeclampsia (PE) is a unique gestational disorder leading to maternal and neonatal morbidity and mortality. AnnexinA7 (ANXA7) is a calcium-dependent phospholipid-binding protein that promotes membrane fusion during exocytosis. However, the function of ANXA7 in placental trophoblast is poorly understood. The present study aimed to investigate a possible association between ANXA7 and human trophoblast apoptosis. METHODS We collected human placental tissues from patients with PE and normal pregnant women to elucidate the expression level of ANXA7. The ANXA7-knockdown and ANXA7-overexpressing HTR8/SVneo cells were utilized for studying the function of ANXA7 in trophoblast. The proliferation and apoptosis levels of trophoblast were examined with Western blot assay, flow cytometry, Cell Counting Kit-8 assay, and immunohistochemistry. RESULTS ANXA7 expression was significantly lower in placentas from patients with PE patients compared with that in from normal pregnant controls. Knockdown of ANXA7 induced cell apoptosis and inhibited cell proliferation in HTR-8 via by downregulating BCL2 protein levels. Overexpression of ANXA7 reduced apoptosis and promoted HTR8 proliferation. Further analyses showed that ANXA7 knockdown inhibited the activation of the JAK1/STAT3 pathway in HTR-8 cells. CONCLUSION Our findings revealed a new regulatory pathway of ANXA7/JAK1/STAT3 in trophoblast apoptosis in preeclampsia, suggesting that ANXA7 is a potential therapeutic target for preeclampsia.
Collapse
Affiliation(s)
- Hui-Qin Mo
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu-Ju Tian
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Ma
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Hong Zeng
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Institute of Shanghai Key Laboratory of Embryo Original Diseases and Shanghai Municipal Key Clinical Specialty Project Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Di Mauro S, Scamporrino A, Petta S, Urbano F, Filippello A, Ragusa M, Di Martino MT, Scionti F, Grimaudo S, Pipitone RM, Privitera G, Di Pino A, Scicali R, Valenti L, Dongiovanni P, Fracanzani A, Rabuazzo AM, Craxì A, Purrello M, Purrello F, Piro S. Serum coding and non-coding RNAs as biomarkers of NAFLD and fibrosis severity. Liver Int 2019; 39:1742-1754. [PMID: 31169972 PMCID: PMC6771597 DOI: 10.1111/liv.14167] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS In patients with non-alcoholic fatty liver disease (NAFLD), liver biopsy is the gold standard to detect non-alcoholic steatohepatitis (NASH) and stage liver fibrosis. We aimed to identify differentially expressed mRNAs and non-coding RNAs in serum samples of biopsy-diagnosed mild and severe NAFLD patients with respect to controls and to each other. METHODS We first performed a whole transcriptome analysis through microarray (n = 12: four Control: CTRL; four mild NAFLD: NAS ≤ 4 F0; four severe NAFLD NAS ≥ 5 F3), followed by validation of selected transcripts through real-time PCRs in an independent internal cohort of 88 subjects (63 NAFLD, 25 CTRL) and in an external cohort of 50 NAFLD patients. A similar analysis was also performed on liver biopsies and HepG2 cells exposed to oleate:palmitate or only palmitate (cellular model of NAFL/NASH) at intracellular/extracellular levels. Transcript correlation with histological/clinical data was also analysed. RESULTS We identified several differentially expressed coding/non-coding RNAs in each group of the study cohort. We validated the up-regulation of UBE2V1, BNIP3L mRNAs, RP11-128N14.5 lncRNA, TGFB2/TGFB2-OT1 coding/lncRNA in patients with NAS ≥ 5 (vs NAS ≤ 4) and the up-regulation of HBA2 mRNA, TGFB2/TGFB2-OT1 coding/lncRNA in patients with Fibrosis stages = 3-4 (vs F = 0-2). In in vitro models: UBE2V1, RP11-128N14.5 and TGFB2/TGFB2-OT1 had an increasing expression trend ranging from CTRL to oleate:palmitate or only palmitate-treated cells both at intracellular and extracellular level, while BNIP3L was up-regulated only at extracellular level. UBE2V1, RP11-128N14.5, TGFB2/TGFB2-OT1 and HBA2 up-regulation was also observed at histological level. UBE2V1, RP11-128N14.5, BNIP3L and TGFB2/TGFB2-OT1 correlated with histological/biochemical data. Combinations of TGFB2/TGFB2-OT1 + Fibrosis Index based on the four factors (FIB-4) showed an Area Under the Curve (AUC) of 0.891 (P = 3.00E-06) or TGFB2/TGFB2-OT1 + Fibroscan (AUC = 0.892, P = 2.00E-06) improved the detection of F = 3-4 with respect to F = 0-2 fibrosis stages. CONCLUSIONS We identified specific serum coding/non-coding RNA profiles in severe and mild NAFLD patients that possibly mirror the molecular mechanisms underlying NAFLD progression towards NASH/fibrosis. TGFB2/TGFB2-OT1 detection improves FIB-4/Fibroscan diagnostic performance for advanced fibrosis discrimination.
Collapse
Affiliation(s)
- Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Salvatore Petta
- Section of Gastroenterology, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Marco Ragusa
- Department of BioMedical Sciences and BioTechnologySection of Biology and Genetics Giovanni Sichel, Unit of Molecular, Genome and Complex Systems BioMedicineCataniaItaly,Oasi Research Institute - IRCCSTroina94018Italy
| | - Maria T. Di Martino
- Department of Experimental and Clinical MedicineMagna Graecia UniversityCatanzaroItaly
| | - Francesca Scionti
- Department of Experimental and Clinical MedicineMagna Graecia UniversityCatanzaroItaly
| | - Stefania Grimaudo
- Section of Gastroenterology, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | | | - Graziella Privitera
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Luca Valenti
- Translational MedicineUniversity of Milan, Fondazione IRCCS Ca' Granda Pad MarangoniMilanItaly
| | - Paola Dongiovanni
- Department of Pathophysiology and Transplantation, Section of Internal MedicineUniversity of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore PoliclinicoMilanItaly
| | - Anna Fracanzani
- Department of Pathophysiology and Transplantation, Section of Internal MedicineUniversity of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore PoliclinicoMilanItaly
| | - Agata M. Rabuazzo
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Antonio Craxì
- Section of Gastroenterology, Di.Bi.M.I.SUniversity of PalermoPalermoItaly
| | - Michele Purrello
- Department of BioMedical Sciences and BioTechnologySection of Biology and Genetics Giovanni Sichel, Unit of Molecular, Genome and Complex Systems BioMedicineCataniaItaly
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi‐Nesima HospitalUniversity of CataniaCataniaItaly
| |
Collapse
|
12
|
Wang CY, Ma S, Bi SJ, Su L, Huang SY, Miao JY, Ma CH, Gao CJ, Hou M, Peng J. Enhancing autophagy protects platelets in immune thrombocytopenia patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:134. [PMID: 31157255 DOI: 10.21037/atm.2019.03.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder and involves increased apoptosis of platelets. Autophagy is an essential process for platelets to maintain their life and physiological functions. However, the role of autophagy in ITP platelets was previously unclear. Methods In the present study, the expression of autophagy-related protein and autophagy flux were detected in platelets from ITP patients and healthy controls by immunofluorescence staining and immunoblotting, and the influence of autophagy on the viability and apoptosis of ITP platelets was further explored. Results We found that platelet autophagy was diminished in ITP patients. Platelet autophagy in ITP was regulated by the PI3K/AKT/mTOR pathway, with mTOR (mammalian target of rapamycin) as a negative regulator and class III PtdIns3K playing a crucial role in the process. Importantly, the small-molecule compound ABO (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine) enhanced autophagy in ITP platelets. Enhancing platelet autophagy alleviated platelet destruction by inhibiting apoptosis and improving platelet viability. Conclusions These results suggest a role for autophagy regulation in the pathogenesis of ITP, and offer a novel treatment for these patients.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Department of Geriatric Medicine, Second Hospital of Shandong University, Ji'nan 250033, China.,Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Shao-Jie Bi
- Department of Cardiology, Second Hospital of Shandong University, Ji'nan 250033, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Shu-Ya Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Chun-Hong Ma
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, China
| | - Cheng-Jiang Gao
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, China
| | - Ming Hou
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Ji'nan 250012, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Ji'nan 250012, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| |
Collapse
|
13
|
Yuan HX, Feng XE, Liu EL, Ge R, Zhang YL, Xiao BG, Li QS. 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J Cell Mol Med 2018; 23:453-463. [PMID: 30358079 PMCID: PMC6307801 DOI: 10.1111/jcmm.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.
Collapse
Affiliation(s)
- Hong-Xia Yuan
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Xiu-E Feng
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - En-Li Liu
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Rui Ge
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yuan-Lin Zhang
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Qing-Shan Li
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| |
Collapse
|
14
|
Zhao H, Han Q, Lu N, Xu D, Tian Z, Zhang J. HMBOX1 in hepatocytes attenuates LPS/D-GalN-induced liver injury by inhibiting macrophage infiltration and activation. Mol Immunol 2018; 101:303-311. [PMID: 30032072 DOI: 10.1016/j.molimm.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The HMBOX1 (Homeobox Containing 1) gene was first isolated from the human pancreatic cDNA libraries and is widely expressed in many tissues. Previously, we detected high expression of HMBOX1 in the liver, but its function was unclear. In this study, hepatocyte-specific HMBOX1 knockout mice (Hm△hep mice) were generated and used to characterize the function of HMBOX1 in the LPS/D-GalN-induced acute liver failure model. HMBOX1-knockout exhibits exacerbated liver injury induced by LPS/D-GalN, accompanied with high levels of inflammatory cytokines both in the liver and in circulation. Further investigation demonstrated that HMBOX1 negatively regulates NF-κB signal transduction. Therefore, HMBOX1-knockout in hepatocytes promotes CCL2 expression through the activation of NF-κB signaling, which enhanced the infiltration of macrophages into the liver. In addition, the decrease of HMBOX1 in hepatocytes promotes the activation of macrophages, upregulating CD80 and MHCⅡ, as well as inflammatory factors TNF-α and IL-6. Importantly, overexpression of HMBOX1 rescued liver injury in Hm△hep mice. These findings indicate that HMBOX1 in hepatocytes acts as a key immunosuppressive factor for inflammation and plays a critical protective role in LPS/D-GalN-induced liver injury.
Collapse
Affiliation(s)
- Hengli Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Nan Lu
- Diagnostic Institute, Medical School, Shandong University, China
| | - Dongqing Xu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, China.
| |
Collapse
|
15
|
Wang L, Qu G, Gao Y, Su L, Ye Q, Jiang F, Zhao B, Miao J. A small molecule targeting glutathione activates Nrf2 and inhibits cancer cell growth through promoting Keap-1 S-glutathionylation and inducing apoptosis. RSC Adv 2018; 8:792-804. [PMID: 35538996 PMCID: PMC9076930 DOI: 10.1039/c7ra11935f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
The level of glutathione (GSH) is increased in many cancer cells. Consuming intracellular GSH by chemical small molecules that specifically target GSH is a new strategy to treat cancer. Recently, we synthesized and proved that a new compound 2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)cyclohexa-2,5-diene-1,4-dione (PBQC) could target to and consume intracellular GSH specifically, but, it is not clear if PBQC can affect cancer cell growth and the activity of the nuclear factor-erythroid 2-related factor 2 (Nrf2) which is a key factor involved in regulation of cancer cell growth. In this study, we addressed these questions. We found that PBQC suppressed cancer cell growth through increasing the activity of Nrf2, while it did not inhibit normal vascular endothelial cell growth. Furthermore, we demonstrated that PBQC can cause Keap-1 protein S-glutathionylation and promote Nrf2 nuclear translocation as well as the expression of pro-apoptosis genes. As a result, the cancer cells underwent apoptosis. Here, we provide a new Nrf2 activator, PBQC that can promote the expressions of pro-apoptosis genes downstream Nrf2. The data suggest that PBQC is a potential lead-compound for development of new anti-cancer drugs. The level of glutathione (GSH) is increased in many cancer cells.![]()
Collapse
Affiliation(s)
- LiHong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - GuoJing Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - YuanDi Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Qing Ye
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education
- Chinese Ministry of Health
- Qilu Hospital
- Shandong University
| | - Fan Jiang
- The Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education
- Chinese Ministry of Health
- Qilu Hospital
- Shandong University
| | - BaoXiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| |
Collapse
|