1
|
Liu A, Wang Y, Zheng S, Bao Z, Zhu H, Yin L, Liu C, Zhao X, Zhao Z, Zhu D, Yu H. Endonuclear Circ-calm4 regulates ferroptosis via a circR-Loop of the COMP gene in pulmonary artery smooth muscle cells. Eur J Pharmacol 2024; 982:176944. [PMID: 39187041 DOI: 10.1016/j.ejphar.2024.176944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs). This study aimed to investigate the role of endonuclear circ-calm4 in PH and elucidate its underlying signaling pathway in ferroptosis. Immunoblotting, quantitative real-time polymerase chain reaction (PCR), malondialdehyde (MDA) assay, immunofluorescence, iron assay, dot blot, and chromatin immunoprecipitation (ChIP) were performed to investigate the role of endonuclear circ-calm4 in PASMC ferroptosis. Increased endonuclear circ-calm4 facilitated ferroptosis in PASMCs under hypoxic conditions. We further identified the cartilage oligomeric matrix protein (COMP) as a downstream effector of circ-calm4 that contributed to the occurrence of hypoxia-induced ferroptosis in PASMCs. Importantly, we confirmed that endonuclear circ-calm4 formed circR-loops with the promoter region of the COMP gene and negatively regulated its expression. Inhibition of COMP restored the phenotypes related to ferroptosis under hypoxia stimulation combined with antisense oligonucleotide (ASO)-circ-calm4 treatment. We conclude that the circ-calm4/COMP axis contributed to hypoxia-induced ferroptosis in PASMCs and that circ-calm4 formed circR-loops with the COMP promoter in the nucleus and negatively regulated its expression. The circ-calm4/COMP axis may be useful for the design of therapeutic strategies for protecting cellular functionality against ferroptosis and pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Cartilage Oligomeric Matrix Protein/genetics
- Cartilage Oligomeric Matrix Protein/metabolism
- Cell Hypoxia/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Ferroptosis/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Aijing Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Yingqi Wang
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Shuang Zheng
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Zhitu Bao
- Department of Chest Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - He Zhu
- Department of Oncology, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Lulu Yin
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Chunmiao Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Xiaoxu Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Ziru Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), China; College of Pharmacy, Harbin Medical University, China.
| | - Hang Yu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China.
| |
Collapse
|
2
|
Cai X, Li M, Zhong Y, Yang W, Liang Z. COMP Improves Ang-II-Induced Atrial Fibrillation via TGF-β Signaling Pathway. Cardiovasc Toxicol 2023; 23:305-316. [PMID: 37584842 DOI: 10.1007/s12012-023-09799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) regulates transforming growth factor-β (TGF-β) signaling pathway, which has been proved to be associated with skin fibrosis and pulmonary fibrosis. Atrial fibrosis is a major factor of atrial fibrillation (AF). Nevertheless, the interaction between COMP and TGF-β as well as their role in AF remains undefined. The purpose of this study is to clarify the role of COMP in AF and explore its potential mechanism. The hub gene of AF was identified from two datasets using bioinformatics. Furthermore, it was verified by the downregulation of COMP in angiotensin-II (Ang-II)-induced AF in mice. Moreover, the effect on AF was examined using CCK8 assay, ELISA, and western blot. The involvement of TGF-β pathway was further discussed. The expression of COMP was the most significant among all these hub genes. Our experimental results revealed that the protein levels of TGF-β1, phosphorylated Smad2 (P-Smad2), and phosphorylated Smad3 (P-Smad3) were decreased after silencing COMP, which indicated that COMP knockdown could inhibit the activation of TGF-β pathway in AF cells. However, the phenomenon was reversed when the activator SRI was added. COMP acts as a major factor and can improve Ang-II-induced AF via TGF-β signaling pathway. Thus, our research enriches the understanding of the interaction between COMP and TGF-β in AF, and provides reference for the pathogenesis and diagnosis of AF.
Collapse
Affiliation(s)
- XiaoBi Cai
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Mingliang Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Ying Zhong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Wenkun Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Zhu Liang
- Department of Cardiovascular and Thoracic Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China.
| |
Collapse
|
3
|
Yu H, Alruwaili N, Kelly MR, Zhang B, Liu A, Wang Y, Sun D, Wolin MS. Endothelin-1 depletion of cartilage oligomeric matrix protein modulates pulmonary artery superoxide and iron metabolism-associated mitochondrial heme biosynthesis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L400-L409. [PMID: 35943724 PMCID: PMC9484992 DOI: 10.1152/ajplung.00534.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
This study examines if heme biosynthesis-associated iron metabolism is regulated in pulmonary arteries by endothelin-1 (ET1) potentially through modulating cartilage oligomeric matrix protein (COMP) availability. Our studies in organoid-cultured endothelium-rubbed bovine pulmonary arteries (BPAs) observed COMP depletion by siRNA or hypoxia increases NOX2 and superoxide and depletes mitochondrial SOD2. ET1 also increases superoxide in a manner that potentially impairs mitochondrial heme biosynthesis. In this study, organoid culture of BPA with ET1 (10 nM) increases superoxide in the mitochondrial matrix and extramitochondrial regions associated with COMP depletion, and COMP (0.5 μM) inhibited these superoxide increases. As mitochondrial matrix superoxide could impair heme biosynthesis from protoporphyrin IX (PpIX) by decreasing Fe2+ availability and/or ferrochelatase (FECH), we studied ET1, COMP, and COMP siRNA effects on the expression of FECH, transferrin receptor-1 (TfR1, an indicator of iron availability) and soluble guanylate cyclase (sGC, a key heme-dependent protein), and on measurements of PpIX (HPLC) and heme content. ET1 decreased FECH, heme, and sGC, and increased TfR1 and iron. COMP reversed these effects of ET1, and COMP decreased PpIX and increased heme in the absence of ET1. COMP siRNA increased PpIX detection and TfR1 expression and decreased the expression of FECH and sGC. Nitric oxide (spermine NONOate) relaxation of BPA was inhibited by ET1, and this was attenuated by COMP during exposure to ET1. Thus, COMP depletion by ET1 or siRNA modulates pulmonary artery iron metabolism, which results in loss of heme biosynthesis and heme-dependent cGMP mechanisms.
Collapse
Affiliation(s)
- Hang Yu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Melissa R Kelly
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Bin Zhang
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aijing Liu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Yingqi Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
4
|
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23169253. [PMID: 36012514 PMCID: PMC9408827 DOI: 10.3390/ijms23169253] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.
Collapse
|
5
|
Zhu T, Wang X, Zheng Z, Quan J, Liu Y, Wang Y, Liu T, Liu X, Wang M, Zhang Z. ZIP12 Contributes to Hypoxic Pulmonary Hypertension by Driving Phenotypic Switching of Pulmonary Artery Smooth Muscle Cells. J Cardiovasc Pharmacol 2022; 79:235-243. [PMID: 34694243 DOI: 10.1097/fjc.0000000000001156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT ZIP12, a plasmalemmal zinc transporter, reportedly promotes pulmonary vascular remodeling (PVR) by enhancing proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the mechanisms of ZIP12 facilitating PASMCs proliferation remain incompletely appreciated. It has been acknowledged that proliferation-predisposing phenotypic switching of PASMCs can lead to PVR. Given that hypoxia triggers phenotypic switching of PASMCs and ZIP12 mediates PVR, this study aims to explore whether ZIP12-mediated phenotypic switching of PASMCs contributes to hypoxia-induced PVR. Rats were exposed to hypoxia (10% O2) for 3 weeks to induce PVR, and primary rat PASMCs were cultured under hypoxic condition (3% O2) for 48 hours to induce proliferation. Immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and Western blot analysis were performed to detect the expression of target mRNAs and proteins. EdU incorporation and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay were conducted to measure the proliferation of PASMCs. Hypoxia upregulated ZIP12 expression (both mRNA and protein) in pulmonary arteries and PASMCs. Knockdown of ZIP12 inhibited phenotypic switching of PASMCs induced by hypoxia. We propose that HIF-1α/ZIP12/pERK pathway could represent a novel mechanism underlying hypoxia-induced phenotypic switching of PASMCs. Therapeutic targeting of ZIP12 could be exploited to treat PVR.
Collapse
Affiliation(s)
- Tiantian Zhu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuan Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| | - Zijie Zheng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| | - Jinping Quan
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuhao Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuting Wang
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianheng Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Liu
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mi Wang
- The Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China ; and
| |
Collapse
|
6
|
Chen DD, Hu WP, Xie L, Xiang GL, Wu QH, Qu JM, Li SQ, Guan LH, Liu D. Serum cartilage oligomeric matrix protein is decreased in patients with pulmonary hypertension: a potential protective factor. Pulm Circ 2021; 11:0271678X20978861. [PMID: 34603688 PMCID: PMC8481745 DOI: 10.1177/20458940211031111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) was a protective factor in the cardiovascular system. Previous studies showed that hypoxia led to decreased COMP in rat models of pulmonary hypertension. However, the expression pattern of COMP in the pulmonary hypertension population was unclear. A total of 35 patients newly diagnosed with pulmonary hypertension and 70 controls were enrolled in the study. Circulating COMP concentrations of serum samples were measured by enzyme-linked immunosorbent assay and were analyzed the association with multiple clinical variables. Serum COMP concentrations in the pulmonary hypertension group were significantly declined in comparison with age- and sex-matched normal controls, especially in the female subgroup. No significant difference of COMP concentrations was observed in the etiological classification, heart function classification, and risk stratification. Major hemodynamic parameters, six-minute walk distance, N-terminal pro brain natriuretic peptide, and short-term prognosis were not statistically associated with COMP. However, some echocardiography parameters, like tricuspid annular plane systolic excursion and mean right atrial pressure, were found the negative relation to COMP concentrations. In conclusion, serum COMP levels were decreased in the patients with pulmonary hypertension, which was in accordance with its known biological effects. Its association with long-term prognosis was worth further exploring.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Xie
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gui-Ling Xiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Han Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shan-Qun Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Hua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Li X, Hu B, Wang L, Xia Q, Ni X. P2X7 receptor-mediated phenotype switching of pulmonary artery smooth muscle cells in hypoxia. Mol Biol Rep 2021; 48:2133-2142. [PMID: 33650080 DOI: 10.1007/s11033-021-06222-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
P2X7R activation contributes to the pathogenesis of pulmonary hypertension. However, the molecular mechanism through which P2X7R participates in pulmonary vascular remodeling is largely unknown. The rats and pulmonary artery smooth muscle cells (PASMCs) were maintained under hypoxia. P2X7R expression was determined by real-time PCR and western blotting. The pathological changes of lung tissue were evaluated via HE staining after treatment with a P2X7R antagonist, A740003. After treatment with A740003 or silencing P2X7R, proliferating cell nuclear antigen (PCNA), phenotype markers and phospho-c-Jun N-terminal kinase (JNK)/JNK expression were tested by western blotting. P2X7R expression in hypoxia group was significantly higher than that in normoxia group in vivo and in vitro. The pathological changes of lung tissue induced by hypoxia were significantly relieved by treatment with a P2X7R antagonist, A740003. Hypoxia stimulated the proliferation and synthetic phenotype of PASMCs, which were aggravated by a P2X7R agonist treatment and alleviated by a P2X7R antagonist or silencing P2X7R mRNA treatment. Silencing P2X7R mRNA significantly decreased the hypoxia-induced upregulation of phospho-JNK/JNK in PASMCs. The phenotype switching of PASMCs in hypoxia was reversed by treatment with JNK inhibitor. The findings indicate that P2X7R may be involved in the hypoxia-induced proliferation and phenotype switching of PASMCs via JNK signaling pathway, which suggests a new therapeutic strategy targeting P2X7R in vascular remodeling of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Xing Li
- Department of Nephrology, The Fifth Affiliated Hospital, Harbin Medical University, 213 Jianshe Road, Kaifa District, Daqing, 163310, Heilongjiang, China
| | - Bing Hu
- Department of Anatomy, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing, 163319, Heilongjiang, China
- Department of Basic Medicine, Science and Technology Education Pioneer Park, Dongsheng District, Ordos, 017099, Inner Mongolia, China
| | - Li Wang
- Department of Anatomy, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing, 163319, Heilongjiang, China
| | - Qingqing Xia
- Department of Anatomy, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing, 163319, Heilongjiang, China
| | - Xiuqin Ni
- Department of Anatomy, Harbin Medical University-Daqing, 39 Xinyang Road, Gaoxin District, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
8
|
Yu H, Alruwaili N, Hu B, Kelly MR, Zhang B, Sun D, Wolin MS. Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L569-L577. [PMID: 31389735 PMCID: PMC6879907 DOI: 10.1152/ajplung.00080.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/21/2023] Open
Abstract
Changes in reactive oxygen species and extracellular matrix seem to participate in pulmonary hypertension development. Because we recently reported evidence for chronic hypoxia decreasing expression of cartilage oligomeric matrix protein (COMP) and evidence for this controlling loss of pulmonary arterial smooth muscle bone morphogenetic protein receptor-2 (BMPR2) and contractile phenotype proteins, we examined if changes in superoxide metabolism could be an important factor in a bovine pulmonary artery (BPA), organoid cultured under hypoxia for 48 h model. Hypoxia (3% O2) caused a depletion of COMP in BPA, but not in bovine coronary arteries. Knockdown of COMP by small-interfering RNA (siRNA) increased BPA levels of mitochondrial and extra-mitochondrial superoxide detected by MitoSOX and dihydroethidium (DHE) HPLC products. COMP siRNA-treated BPA showed reduced levels of SOD2 and SOD3 and increased levels of NADPH oxidases NOX2 and NOX4. Hypoxia increased BPA levels of MitoSOX-detected superoxide and caused changes in NOX2 and SOD2 expression similar to COMP siRNA, and exogenous COMP (0.5 μM) prevented the effects of hypoxia. In the presence of COMP, BMPR2 siRNA-treated BPA showed increases in superoxide detected by MitoSOX and depletion of SOD2. Superoxide scavengers (0.5 μM TEMPO or mitoTEMPO) maintained the expression of contractile phenotype proteins calponin and SM22α decreased by 48 h hypoxia (1% O2). Adenoviral delivery of BMPR2 to rat pulmonary artery smooth muscle cells prevented the depletion of calponin and SM22α by COMP siRNA. Thus, COMP regulation of BMPR2 appears to have an important role in controlling hypoxia-elicited changes in BPA superoxide and its potential regulation of contractile phenotype proteins.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cartilage Oligomeric Matrix Protein/antagonists & inhibitors
- Cartilage Oligomeric Matrix Protein/genetics
- Cartilage Oligomeric Matrix Protein/metabolism
- Cattle
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Gene Expression Regulation
- Heart/drug effects
- Hypoxia/genetics
- Hypoxia/metabolism
- Lung/drug effects
- Lung/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidase 2/genetics
- NADPH Oxidase 2/metabolism
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- Oxygen/pharmacology
- Primary Cell Culture
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
- Tissue Culture Techniques
- Calponins
Collapse
Affiliation(s)
- Hang Yu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Bing Hu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Melissa R Kelly
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Bin Zhang
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
9
|
Hultman K, Edsfeldt A, Björkbacka H, Dunér P, Sundius L, Nitulescu M, Persson A, Boyle JJ, Nilsson J, Hultgårdh-Nilsson A, Bengtsson E, Gonçalves I. Cartilage Oligomeric Matrix Protein Associates With a Vulnerable Plaque Phenotype in Human Atherosclerotic Plaques. Stroke 2019; 50:3289-3292. [PMID: 31495329 DOI: 10.1161/strokeaha.119.026457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose- Extracellular matrix proteins are important in atherosclerotic disease by influencing plaque stability and cellular behavior but also by regulating inflammation. COMP (cartilage oligomeric matrix protein) is present in healthy human arteries and expressed by smooth muscle cells. A recent study showed that transplantation of COMP-deficient bone marrow to apoE-/- mice increased atherosclerotic plaque formation, indicating a role for COMP also in bone marrow-derived cells. Despite the evidence of a role for COMP in murine atherosclerosis, knowledge is lacking about the role of COMP in human atherosclerotic disease. Methods- In the present study, we investigated if COMP was associated with a stable or a vulnerable human atherosclerotic plaque phenotype by analyzing 211 carotid plaques for COMP expression using immunohistochemistry. Results- Plaque area that stained positive for COMP was significantly larger in atherosclerotic plaques associated with symptoms (n=110) compared with asymptomatic plaques (n=101; 9.7% [4.7-14.3] versus 5.6% [2.8-9.8]; P=0.0002). COMP was positively associated with plaque lipids (r=0.32; P=0.000002) and CD68 cells (r=0.15; P=0.036) but was negatively associated with collagen (r=-0.16; P=0.024), elastin (r=-0.14; P=0.041), and smooth muscle cells (r=-0.25; P=0.0002). COMP was positively associated with CD163 (r=0.37; P=0.00000006), a scavenger receptor for hemoglobin/haptoglobin and a marker of Mhem macrophages, and with intraplaque hemorrhage, measured as glycophorin A staining (r=0.28; P=0.00006). Conclusions- The present study shows that COMP is associated to symptomatic carotid atherosclerosis, CD163-expressing cells, and a vulnerable atherosclerotic plaque phenotype in humans.
Collapse
Affiliation(s)
- Karin Hultman
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Andreas Edsfeldt
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden.,Department of Cardiology, Skåne University Hospital, Sweden (A.E., I.G.)
| | - Harry Björkbacka
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Pontus Dunér
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Lena Sundius
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Mihaela Nitulescu
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Ana Persson
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Joseph J Boyle
- Vascular Sciences, NHLI, Imperial College London, United Kingdom (J.J.B.)
| | - Jan Nilsson
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | | | - Eva Bengtsson
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden
| | - Isabel Gonçalves
- From the Department of Clinical Sciences, Experimental Cardiovascular Research Unit, Malmö (K.H., A.E., H.B., P.D., L.S., M.N., A.P., J.N., E.B., I.G.), Lund University, Sweden.,Department of Cardiology, Skåne University Hospital, Sweden (A.E., I.G.)
| |
Collapse
|
10
|
Zhu TT, Zhang WF, Yin YL, Liu YH, Song P, Xu J, Zhang MX, Li P. MicroRNA-140-5p targeting tumor necrosis factor-α prevents pulmonary arterial hypertension. J Cell Physiol 2018; 234:9535-9550. [PMID: 30367500 DOI: 10.1002/jcp.27642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by the apoptosis resistance and hyperproliferation of pulmonary artery smooth muscle cells (PASMCs). Its pathogenesis has not been revealed. Here, we carried out experiments to investigate the functions of miR-140-5p and tumor necrosis factor-α (TNF-α). METHODS We selected GSE703 from Gene Expression Omnibus (GEO) Database to conduct microarray analysis using R software and Gene Set Enrichment Analysis (GSEA). Combing bioinformatics results, the upregulation of miR-140-5p inhibited PAH progression through targeting TNF-α. RNA expression was measured by quantitative real-time polymerase chain reaction (RT-qPCR) and protein level was measured by western blot analysis and enzyme-linked immunosorbent assays (ELISA). We conducted monocrotaline (MCT) injection to rats to form PAH animal models. The lung tissues were observed by hematoxylin-eosin (HE) staining and Sirius red-picric acid staining. Right ventricular systolic pressure (RVSP) and the ratio of right ventricle (RV)-to-left ventricle (LV) plus septum (S) weight (RV/[LV + S]) were measured in MCT-induced animal models. Overexpression of miR-140-5p and TNF-α were utilized to research the proliferation, migration, and phenotypic variation of hypoxia-mediated PASMCs. The binding between miR-140-5p and TNF-α 3'-untranslated region (3'-UTR) was confirmed via luciferase reporter assay. RESULTS Downregulation of miR-140-5p and upregulation of TNF-α were observed in PAH rat model and hypoxia-mediated PASMCs. And we proved that overexpression of miR-140-5p could suppress the proliferation, migration, and phenotypic variation of PASMCs, therefore inhibiting PAH pathogenesis. Luciferase assay verified that miR-140-5p targeted TNF-α directly. A converse correlation was also shown between miR-140-5p and TNF-α in PASMCs. CONCLUSIONS miR-140-5p and TNF-α are important regulators in PAH pathology and may serve as a therapeutic target for PAH.
Collapse
Affiliation(s)
- Tian-Tian Zhu
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wei-Fang Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ya-Ling Yin
- Teaching and Research Office of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu-Hao Liu
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jian Xu
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ming-Xiang Zhang
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Teaching and Research Office of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|