1
|
Allemailem KS, Rahmani AH, almansour NM, Aldakheel FM, Albalawi GM, Albalawi GM, Khan AA. Current updates on the structural and functional aspects of the CRISPR/Cas13 system for RNA targeting and editing: A next‑generation tool for cancer management (Review). Int J Oncol 2025; 66:42. [PMID: 40342053 PMCID: PMC12068846 DOI: 10.3892/ijo.2025.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
For centuries, a competitive evolutionary race between prokaryotes and related phages or other mobile genetic elements has led to the diversification of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR‑associated sequence (Cas) genome‑editing systems. Among the different CRISPR/Cas systems, the CRISPR/Cas9 system has been widely studied for its precise DNA manipulation; however, due to certain limitations of direct DNA targeting, off‑target effects and delivery challenges, researchers are looking to perform transient knockdown of gene expression by targeting RNA. In this context, the more recently discovered type VI CRISPR/Cas13 system, a programmable single‑subunit RNA‑guided endonuclease system that has the capacity to target and edit any RNA sequence of interest, has emerged as a powerful platform to modulate gene expression outcomes. All the Cas13 effectors known so far possess two distinct ribonuclease activities. Pre‑CRISPR RNA processing is performed by one RNase activity, whereas the two higher eukaryotes and prokaryotes nucleotide‑binding domains provide the other RNase activity required for target RNA degradation. Recent innovative applications of the type VI CRISPR/Cas13 system in nucleic acid detection, viral interference, transcriptome engineering and RNA imaging hold great promise for disease management. This genome editing system can also be employed by the Specific High Sensitivity Enzymatic Reporter Unlocking platform to identify any tumor DNA. The discovery of this system has added a new dimension to targeting, tracking and editing circulating microRNA/RNA/DNA/cancer proteins for the management of cancer. However, there is still a lack of thorough understanding of the mechanisms underlying some of their functions. The present review summarizes the recent updates on the type VI CRISPR/Cas system in terms of its structural and mechanistic properties and some novel applications of this genome‑editing tool in cancer management. However, some issues, such as collateral degradation of bystander RNA, impose major limitations on its in vivo application. Furthermore, additional challenges and future prospects for this genome editing system are described in the present review.
Collapse
Affiliation(s)
- Khaled s. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Ghadah Mohammad Albalawi
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | | | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Mahjoubin-Tehran M, Rezaei S, Butler AE, Sahebkar A. Decoy oligonucleotides targeting NF-κB: a promising therapeutic approach for inflammatory diseases. Inflamm Res 2025; 74:47. [PMID: 40047902 DOI: 10.1007/s00011-025-02021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 05/13/2025] Open
Abstract
Nuclear factor-kappa B (NF-κB) transcription factor plays a crucial function in controlling several cellular processes, including the production of inflammatory mediators. The aberrant activation of this transcription factor and its signaling pathway is associated with the pathophysiology of many diseases. Therefore, discovering drugs that target NF-κB is crucial for treating various diseases. Decoy oligonucleotides (decoy ONs) are a pharmacological approach that specifically inhibits NF-κB activation and are used to treat several inflammatory diseases. Decoys that target NF-κB have been shown to enhance radiosensitivity and drug sensitivity in vitro and strongly block IL-6 and IL-8 gene expression induced by TNF-α in experimental cell systems. In vivo, NF-κB decoy reduced atherosclerotic plaque, prevented atopic dermatitis and extended cardiac transplant survival. Decoys have the potential to be used in clinical applications, but they face several challenges. To overcome these limitations, researchers have conducted studies on chemical modifications and delivery techniques. Innovative compounds that target NF-κB, such as NF-κB-decoy-based sensor-containing models, phosphorothioate hairpin-modified oligonucleotides, and peptide nucleic acid (PNA)-based transcription factor decoys, are very attractive. This research aims to explore the use of decoys to combat NF-κB in various disorders.
Collapse
Affiliation(s)
| | - Samaneh Rezaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Dai W, Wu J, Shui Y, Wu Q, Wang J, Xia X. NF-κB-activated oncogene inhibition strategy for cancer gene therapy. Cancer Gene Ther 2024; 31:1632-1645. [PMID: 39227689 PMCID: PMC11567881 DOI: 10.1038/s41417-024-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
NF-κB is a promising target for cancer treatment because of its overactivation in almost all cancers but countless NF-κB inhibitors rarely became clinical drugs due to side effects. In contrast to traditional cancer treatments aimed at inhibiting NF-κB activity, this study develop a novel approach termed HOPE, which focuses on activating the exogenous effector gene CRISPR-Cas13a within cancer cells, achieved by utilizing the NF-κB-specific promoter DMP previously constructed, then targets and suppresses the expression of oncogenes TERT, PLK1, KRAS and MYC at mRNA level. We evaluated the antitumour effects of HOPE in various cultured cells and confirmed it could induce obvious the death of cancer cells without affecting normal cells. By packaging HOPE into adeno-associated virus (AAV) and intravenously injected it to treat mice that were subcutaneously transplanted with colorectal cancer. This validated that rAAV-HOPE could significantly inhibit tumour growth without side effects. Based on the scRNA-seq data, we observed that HOPE could activate the immune system and decrease the proportion of cancer cells, particularly reducing the stemness of cancer cells. This study elucidates an important role of HOPE in inhibiting cancer cell growth both in vitro and in vivo, additionally provides a novel therapeutic technology for cancer gene therapy.
Collapse
Affiliation(s)
- Wei Dai
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, China
| | - Jian Wu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, 211166, China.
| | - Yingchun Shui
- Department of Obstetrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Qiuyue Wu
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinke Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
4
|
Abstract
Zhao Y, Liu C, Zhang X, Yan X. Angelica polysaccharide alleviates TNF-α-induced MIN6 cell damage a through the up-regulation microRNA-143. BioFactors. 2022;49:200. https://doi.org/10.1002/biof.1588 This article, published online on 20 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 4, and 5. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
5
|
Abstract
In 2020, nearly 20 million peoples got cancer and nearly 10 million peoples died of cancer, indicating the cancer remains a great threat to human health and life. New therapies are still in urgent demand. We here develop a novel cancer therapy named Ferroptosis ASsassinates Tumor (FAST) by combining iron oxide nanoparticles with cancer-selective knockdown of seven key ferroptosis-resistant genes (FPN, LCN2, FTH1, FSP1, GPX4, SLC7A11, NRF2). We found that FAST had notable anti-tumor activity in a variety of cancer cells but little effect on normal cells. Especially, FAST eradicated three different types of tumors (leukemia, colon cancer, and lung metastatic melanoma) from over 50% of cancer mice, making the mice survive up to 250 days without tumor relapse. FAST also significantly inhibited and prevented the growth of spontaneous breast cancer and improved survival in mice. FAST showed high pan anti-tumor efficacy, high cancer specificity, and in vivo safety. FAST defines a new form of advanced nanomaterials, advanced combinatorial nanomaterials, by combining two kinds of nanomaterials, a chemical nanomaterial (iron oxide nanoparticles) and a biochemical nanomaterial (adeno-associated virus), which successfully turns a general iron nanomaterial into an unprecedented assassin to cancer.
Collapse
Affiliation(s)
- Tao Luo
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Yile Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Jinke Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| |
Collapse
|
6
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
7
|
Qiao C, Wang H, Guan Q, Wei M, Li Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: Insights and future perspectives. Asian J Pharm Sci 2022; 17:613-629. [PMID: 36382305 PMCID: PMC9640473 DOI: 10.1016/j.ajps.2022.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
There are limited options for patients who develop liver metastasis from colorectal cancer (CRC), the leading cause of cancer-related mortality worldwide. Emerging evidence has provided insights into iron deficiency and excess in CRC. Ferroptosis is an iron-dependent form of programmed cell death characterized by aberrant iron and lipid metabolism, which play crucial roles in tumorigenesis, tumor progression, and treatment options. A better understanding of the underlying molecular mechanism of ferroptosis has shed light on the current findings of ferroptosis-based nanodrug targeting strategies, such as driving ferroptosis in tumor cells and the tumor microenvironment, emerging combination therapy and against multidrug resistance. Furthermore, this review highlights the challenge and perspective of a ferroptosis-driven nanodrug delivery system for CRC-targeted therapy.
Collapse
Affiliation(s)
- Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
8
|
Luo T, Wang Y, Tang H, Zhou F, Chen Y, Pei B, Wang J. An AAV-Based NF-κB-Targeting Gene Therapy (rAAV-DMP-miR533) to Inflammatory Diseases. J Inflamm Res 2022; 15:3447-3466. [PMID: 35726215 PMCID: PMC9206518 DOI: 10.2147/jir.s362732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background The inflammatory diseases pose a great threat to human health. Variant anti-inflammatory agents have been therefore developed. However, the current anti-inflammatory drugs are still challenged by low response and side effects. There remain great unmet treatments to inflammatory diseases. Methods In this work, we fabricate a recombinant adeno-associated virus (rAAV), rAAV-DMP-miR533, by packaging a DNA molecule DMP-miR533 into AAV, in which DMP is a NF-κB-activatable promoter composed of a NF-κB decoy and a minimal promoter and miR533 codes an artificial microRNA targeting NF-κB RELA. We evaluate the in vitro and in vivo anti-inflammatory effect of the virus with inflammatory cells and the mice of three typical inflammatory diseases including the dextran sulphate sodium-induced acute colitis, imiquimod-induced psoriasis, and collagen-induced arthritis. Results We found that rAAV-DMP-miR533 had marked anti-inflammatory effect in both cells and mice. In addition, rAAV-DMP-miR533 showed biosafety in mice. Conclusion This study thus provides a promising gene therapy to variant inflammatory diseases by directly targeting NF-κB, an established hub regulator of inflammation.
Collapse
Affiliation(s)
- Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Yile Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Hailin Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Fei Zhou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, People's Republic of China
| | - Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Bing Pei
- Department of Clinical Laboratory, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, 223800, People's Republic of China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
9
|
Abstract
Although some effective therapies have been available for cancer, it still poses a great threat to human health and life due to its drug resistance and low response in patients. Here, we develop a ferroptosis-based therapy by combining iron nanoparticles and cancer-specific gene interference. The expression of two iron metabolic genes (FPN and LCN2) was selectively knocked down in cancer cells by Cas13a or microRNA controlled by a NF-κB-specific promoter. Cells were simultaneously treated by iron nanoparticles. As a result, a significant ferroptosis was induced in a wide variety of cancer cells. However, the same treatment had little effect on normal cells. By transferring genes with adeno-associated virus and iron nanoparticles, the significant tumor growth inhibition and durable cure were obtained in mice with the therapy. In this work, we thus show a cancer therapy based on gene interference-enhanced ferroptosis.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021; 10:1245-1267. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decades, significant progress has been made in targeted cancer therapy. In precision oncology, molecular profiling of cancer patients enables the use of targeted cancer therapeutics. However, current diagnostic methods for molecular analysis of cancer are costly and require sophisticated equipment. Moreover, targeted cancer therapeutics such as monoclonal antibodies and small-molecule drugs may cause off-target effects and they are available for only a minority of cancer driver proteins. Therefore, there is still a need for versatile, efficient, and precise tools for cancer diagnostics and targeted cancer treatment. In recent years, the CRISPR-based genome and transcriptome engineering toolbox has expanded rapidly. Particularly, the RNA-targeting CRISPR-Cas13 system has unique biochemical properties, making Cas13 a promising tool for cancer diagnosis, therapy, and research. Cas13-based diagnostic methods allow early detection and monitoring of cancer markers from liquid biopsy samples without the need for complex instrumentation. In addition, Cas13 can be used for targeted cancer therapy through degrading and manipulating cancer-associated transcripts with high efficiency and specificity. Moreover, Cas13-mediated programmable RNA manipulation tools offer invaluable opportunities for cancer research, identification of drug-resistance mechanisms, and discovery of novel therapeutic targets. Here, we review and discuss the current use and potential applications of the CRISPR-Cas13 system in cancer diagnosis, therapy, and research. Thus, researchers will gain a deep understanding of CRISPR-Cas13 technologies, which have the potential to be used as next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Özgür Can
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ayça Nur Demir
- Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03100, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ahsen Özcan
- Institute of Genetic Engineering and Biotechnology, TUBITAK Marmara Research Center, Kocaeli 41470, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, 10 Mersin, Nicosia, Turkey
| |
Collapse
|
11
|
Zhang S, Luo T, Wang J. Stable Cells with NF-κB-ZsGreen Fused Genes Created by TALEN Editing and Homology Directed Repair for Screening Anti-inflammation Drugs. J Inflamm Res 2021; 14:917-928. [PMID: 33762839 PMCID: PMC7982563 DOI: 10.2147/jir.s298938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background NF-κB is a sequence-specific DNA-binding transcription factor that plays key roles in inflammation and cancer. It is well known that NF-κB is over-activated in these diseases. NF-κB inhibitors are therefore developed as promising drugs for these diseases. However, finding NF-κB inhibitors is dependent on effective screening platforms. Methods For providing an easy and visualizable tool for screening NF-κB inhibitors, and other NF-κB-related studies, this study edited all five genes of NF-κB family (RELA, RELB, CREL, NF-κB1, NF-κB2) in three different cell lines (293T, HepG2, and PANC1) with both TALEN and CRISPR. The edited NF-κB genes were repaired by homology-dependent repair using a linear homologous donor containing ZsGreen coding sequence. The edit efficiency was thus directly evaluated by detecting cellular fluorescence. The editing efficiency was also confirmed by PCR detection of NF-κB-ZsGreen fused genes. Results It was found that all genes were more efficiently edited by TALEN in all cells than CRISPR. The positive cells were then isolated from the TALEN-edited cell pool by flow cytometry. The purified positive cells were finally evaluated by regulating NF-κB activity with a known NF-κB inhibitor, BAY 11-7082, and an NF-κB-targeting artificial microRNA, miR533. The results revealed that all the labeled NF-κB genes responded well to the two kinds of NF-κB activity regulators in all cell lines. Conclusion This study thus obtained 15 cell lines with NF-κB-ZsGreen fused genes, which provide an easy and visualizable tool for screening NF-κB inhibitors and other NF-κB-related studies.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
12
|
Gao J, Luo T, Lin N, Zhang S, Wang J. A New Tool for CRISPR-Cas13a-Based Cancer Gene Therapy. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:79-92. [PMID: 33102691 PMCID: PMC7554321 DOI: 10.1016/j.omto.2020.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Cas13a has already been successfully applied to virus detection. However, as a new gene interference tool, its potential in cancer treatment was not fully explored until now. This study constructed a new Cas13a expression vector, decoy minimal promoter-Cas13a-U6-guide RNA (DMP-Cas13a-U6-gRNA [DCUg]), by controlling the Cas13a and gRNA expression with a nuclear factor κB (NF-κB)-specific promoter and U6 promoter, respectively. DCUg could specifically and effectively knock down the expression of reporter genes in the 293T and HepG2 cells. DCUg could also similarly knock down the expression of endogenous oncogenes (TERT, EZH2, and RelA) at both mRNA and protein levels in a human hepatoma cell HepG2, which led to significant apoptosis and growth inhibition. In contrast, the same transfection did not affect the target gene expression, cell apoptosis, and growth of a human normal liver cell HL7702. Finally, DCUg targeting these oncogenes was packaged into adeno-associated virus (AAV) and treated four cells (HepG2, HL7702, WEHI-3, and Hepa1-6) and tumor-bearing mice. As results, the recombinant AAV significantly inhibited the growth of three cancer cells (HepG2, Hepa1-6, and WEHI-3) in vitro and the xenografted Hepa1-6 and WEHI-3 tumors in mice. This study therefore developed a new tool for the CRISPR-Cas13a-based cancer gene therapy.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P.R. China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P.R. China
| | - Na Lin
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P.R. China
| | - Shuyan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P.R. China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
13
|
Dai W, Wu J, Wang D, Wang J. Cancer gene therapy by NF-κB-activated cancer cell-specific expression of CRISPR/Cas9 targeting telomeres. Gene Ther 2020; 27:266-280. [DOI: 10.1038/s41434-020-0128-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
|
14
|
Wang D, Dai W, Wang J. A Cell-Specific Nuclear Factor-Kappa B–Activating Gene Expression Strategy for Delivering Cancer Immunotherapy. Hum Gene Ther 2019; 30:471-484. [DOI: 10.1089/hum.2018.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P.R. China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P.R. China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P.R. China
| |
Collapse
|