1
|
Hassani S, Rostami P, Pourtavakol M, Karamashtiani A, Sayyadi M. Correlation of SNHG7 and BGL3 expression in patients with de novo acute myeloid leukemia; novel insights into lncRNA effect in PI3K signaling context in AML pathogenesis. Biochem Biophys Rep 2024; 40:101850. [PMID: 39469045 PMCID: PMC11513491 DOI: 10.1016/j.bbrep.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Background Acute myeloid leukemia (AML) has been identified as a top priority for discovering a reliable biomarker for treatment improvement and patient outcome prediction due to the heterogeneous nature of AML and the obstacle to find an appropriate treatment strategy for this malignancy. Considering the involvement of long noncoding RNA (lncRNA) SNHG7 and BGL3 found in various cancers, the exact expression pattern of these lncRNAs and their clinical implications in acute myeloid leukemia (AML) continue to be elusive. In order to demonstrate a possible mechanism underlying AML pathogenesis, our goal was to examine BGL3 and SNHG7 lncRNA expressions in PI3K pathway. Methods This case-control cross-sectional study were conducted on RNA extracted from blood samples of 30 patients diagnosed with AML (Ayatollah-Khansari hospital, Arak, Iran) and 30 (age and gender matched) healthy controls. The expression levels of SNHG7 and BGL3 lncRNAs and their target genes Akt and PTEN, were measured using qRT-PCR. Subsequently, by means of statistical analysis, we determined the plausible correlation between the expressions of the aforementioned genes and lncRNA respectively. Results In AML samples, a considerable increase in the expression levels of SNHG7 lncRNA and Akr gene was accompanied by a marked reduction in the expression levels of BGL3 lncRNA and PTEN gene. Nevertheless, No significant relationship between the expression level of the indicated genes/lncRNAs and age and sex was found. The remarkable correlation between the expression of genes/lncRNAs and the blast percentage in patients was the notable point in the result of this study. Conclusions As the most straightforward interpretation of our results, we propose that perhaps the association between SNHG7 and BGL3 built through the interaction between Akt and PTEN may play a crucial role in the AML pathogenesis and any element of this axis could be a potential novel target for further profound treatment strategies. Nonetheless, in the context of Hematological Malignancies, particularly AML, more detailed studies are needed in this area to elucidate the precise role played by this interesting testis-specific pathway.
Collapse
Affiliation(s)
- Saeed Hassani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Parsa Rostami
- Department of Internal Medicine, School of Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | | | | | - Mohammad Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Li J, Wang P, Liu F, Li Y, Wu Y, Wang F, Du J. Methyltransferase-like 14 promotes the tumorigenesis and proliferation of pancreatic cancer cells through myc proto-oncogene signaling pathway. Cytojournal 2024; 21:55. [PMID: 39737122 PMCID: PMC11683408 DOI: 10.25259/cytojournal_105_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Pancreatic cancer is characterized by low survival rate and rapid deterioration. Methyltransferase-like 14 (METTL14), as N6-methyladenosine (m6A) methyltransferase, is closely related to tumor progression. The purpose of this study is to look into how METTL14 affects pancreatic cancer tumorigenesis, cell division, and apoptosis. Material and Methods We examined and contrasted the levels of METTL14 protein and messenger RNA expression in human pancreatic ductal cells and human pancreatic cancer cells. After silencing or upregulating METTL14, the proliferative ability, migration ability, and cell apoptosis of pancreatic tumor cells was detected by colony-forming assay, wound scratch healing assay, cell counting kit 8 assay, and terminal deoxynucleotidyl transferasemediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling assay. Following the use of c-Myc inhibitor (10058-F4), western blot analysis was carried out to investigate the key factor expression and c-Myc signaling pathway activation status. Results METTL14 was preferentially expressed in human pancreatic cancer cells PANC-1 and SW1990 than in human normal pancreatic duct cells human pancreatic nestin-expressing cells (HPNE) (P < 0.001). Overexpression of METTL14 increased the tumorigenic and proliferative ability of pancreatic cancer cells. Overexpression of METTL14 decreased apoptosis rate. Western blot assay showed that nucleus b-catenin increased when METTL14 was overexpressed, and nucleus b-catenin decreased when METTL14 was silenced in PANC-1 cell (P < 0.01). The protein expression of other key factors, such as c-Myc, matrix metalloproteinase (MMP)-9, and MMP-2, were also affected. The use of c-Myc inhibitor (10058-F4) on the basis of OE-METTL14 reversed the effect of the overexpression of METTL14 on promoting the tumorigenesis and cell proliferation of pancreatic cancer cell lines PANC-1 and SW1990. Conclusion METTL14 promoted the tumorigenesis and proliferation of pancreatic cancer cells by the c-Myc signaling pathway.
Collapse
Affiliation(s)
- Junru Li
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| | - Peng Wang
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| | - Fei Liu
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| | - Yuanyuan Li
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| | - Youyou Wu
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| | - Fengbo Wang
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| | - Jundong Du
- Department of General Surgery, Jincheng General Hospital, Jincheng, China
| |
Collapse
|
3
|
Wang Y, He J, Lian S, Zeng Y, He S, Xu J, Luo L, Yang W, Jiang J. Targeting Metabolic-Redox Nexus to Regulate Drug Resistance: From Mechanism to Tumor Therapy. Antioxidants (Basel) 2024; 13:828. [PMID: 39061897 PMCID: PMC11273443 DOI: 10.3390/antiox13070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Drug resistance is currently one of the biggest challenges in cancer treatment. With the deepening understanding of drug resistance, various mechanisms have been revealed, including metabolic reprogramming and alterations of redox balance. Notably, metabolic reprogramming mediates the survival of tumor cells in harsh environments, thereby promoting the development of drug resistance. In addition, the changes during metabolic pattern shift trigger reactive oxygen species (ROS) production, which in turn regulates cellular metabolism, DNA repair, cell death, and drug metabolism in direct or indirect ways to influence the sensitivity of tumors to therapies. Therefore, the intersection of metabolism and ROS profoundly affects tumor drug resistance, and clarifying the entangled mechanisms may be beneficial for developing drugs and treatment methods to thwart drug resistance. In this review, we will summarize the regulatory mechanism of redox and metabolism on tumor drug resistance and highlight recent therapeutic strategies targeting metabolic-redox circuits, including dietary interventions, novel chemosynthetic drugs, drug combination regimens, and novel drug delivery systems.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jingqiu He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Shan Lian
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Sheng He
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China;
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chong-Qing Medical University, Chengdu 610041, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; (Y.W.); (J.H.); (S.L.); (Y.Z.); (S.H.); (J.X.)
| |
Collapse
|
4
|
Patnana PK, Liu L, Frank D, Nimmagadda SC, Behrens M, Ahmed H, Xie X, Liebmann M, Wei L, Gerdemann A, Thivakaran A, Humpf HU, Klotz L, Dugas M, Varghese J, Trajkovic-Arsic M, Siveke JT, Hanenberg H, Opalka B, Dührsen U, Reinhardt HC, Guenther U, von Bubnoff N, Khandanpour C. Dose-dependent expression of GFI1 alters metabolism in the haematopoietic progenitors and MLL::AF9-induced leukaemic cells. Br J Haematol 2023; 202:1033-1048. [PMID: 37423893 DOI: 10.1111/bjh.18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells. Using in-vitro and ex-vivo murine models of MLL::AF9-induced human AML and extra-cellular flux assays, we now demonstrate that a lower GFI1 expression enhances oxidative phosphorylation rate via upregulation of the FOXO1- MYC axis. Our findings underscore the significance of therapeutic exploitation in GFI1-low-expressing leukaemia cells by targeting oxidative phosphorylation and glutamine metabolism.
Collapse
Affiliation(s)
- Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | - Helal Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | | | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Helmut Hanenberg
- Clinic for Pediatrics III, University Hospital Essen, Essen, Germany
- Pediatric Oncology, Hematology & Immunology, Heinrich Heine University, University Hospital Düsseldorf, Dusseldorf, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Guenther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Guo H, Zhang W, Wang J, Zhao G, Wang Y, Zhu BM, Dong P, Watari H, Wang B, Li W, Tigyi G, Yue J. Cryptotanshinone inhibits ovarian tumor growth and metastasis by degrading c-Myc and attenuating the FAK signaling pathway. Front Cell Dev Biol 2022; 10:959518. [PMID: 36247016 PMCID: PMC9554091 DOI: 10.3389/fcell.2022.959518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cryptotanshinone (CT), a natural compound derived from Salvia miltiorrhiza Bunge that is also known as the traditional Chinese medicine Danshen, exhibits antitumor activity in various cancers. However, it remains unclear whether CT has a potential therapeutic benefit against ovarian cancers. The aim of this study was to test the efficacy of CT in ovarian cancer cells in vitro and using a xenograft model in NSG mice orthotopically implanted with HEY A8 human ovarian cancer cells and to explore the molecular mechanism(s) underlying CT’s antitumor effects. We found that CT inhibited the proliferation, migration, and invasion of OVCAR3 and HEY A8 cells, while sensitizing the cell responses to the chemotherapy drugs paclitaxel and cisplatin. CT also suppressed ovarian tumor growth and metastasis in immunocompromised mice orthotopically inoculated with HEY A8 cells. Mechanistically, CT degraded the protein encoded by the oncogene c-Myc by promoting its ubiquitination and disrupting the interaction with its partner protein Max. CT also attenuated signaling via the nuclear focal adhesion kinase (FAK) pathway and degraded FAK protein in both cell lines. Knockdown of c-Myc using lentiviral CRISPR/Cas9 nickase resulted in reduction of FAK expression, which phenocopies the effects of CT and the c-Myc/Max inhibitor 10058-F4. Taken together, our studies demonstrate that CT inhibits primary ovarian tumor growth and metastasis by degrading c-Myc and FAK and attenuating the FAK signaling pathway.
Collapse
Affiliation(s)
- Huijun Guo
- Department of Pathogen Biology and Immunology, College of Life Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Junming Yue, ; Wenjing Zhang, ; Bing-Mei Zhu,
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yaohong Wang
- Department of Pathology, Immunology and Microbiology, Vanderbilt University, Nashville, TN, United States
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Junming Yue, ; Wenjing Zhang, ; Bing-Mei Zhu,
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Baojin Wang
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Junming Yue, ; Wenjing Zhang, ; Bing-Mei Zhu,
| |
Collapse
|
6
|
Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by TXNIP in triple-negative breast cancer via promoting reactive oxygen-mediated DNA damage. Cell Death Dis 2022; 13:338. [PMID: 35414060 PMCID: PMC9005717 DOI: 10.1038/s41419-022-04783-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
Abstract
Given that triple-negative breast cancer (TNBC) lacks specific receptors (estrogen and progesterone receptors and human epidermal growth factor receptor 2) and cannot be treated with endocrine therapy, chemotherapy has remained the mainstay of treatment. Drug resistance is reportedly the main obstacle to the clinical use of doxorubicin (DOX) in this patient population. Accordingly, screening molecules related to chemoresistance and studying their specific mechanisms has clinical significance for improving the efficacy of chemotherapy in TNBC patients. Thioredoxin-interacting protein (TXNIP) is a metabolism-related protein that plays a tumor suppressor role in various malignant tumors; however, the specific role of TXNIP in tumor chemoresistance has not been reported. In the present study, we explored the potential molecular mechanism of TXNIP in the chemoresistance of TNBC for the first time. The results showed that TXNIP inhibited the proliferation of TNBC drug-resistant cells and promoted apoptosis in vitro and in vivo. Furthermore, TXNIP promoted the synthesis of reactive oxygen species (ROS) and the accumulation of DNA damage caused by DOX and increased γ-H2AX levels in a time and dose-dependent manner. Moreover, ROS scavenger pretreatment could block DNA damage induced by TXNIP and restore the resistance of TNBC resistant cells to DOX to a certain extent. In addition, we found that the small molecule c-Myc inhibitor 10058-F4 promoted TXNIP expression, increased ROS synthesis in cells, and could enhance the cytotoxicity of chemotherapy drugs in vitro and in vivo when combined with DOX. These results indicated that c-Myc inhibitor 10058-F4 could induce TXNIP upregulation in TNBC drug-resistant cells, and the upregulated TXNIP increased the accumulation of ROS-dependent DNA damage, thereby decreasing chemotherapy resistance of TNBC. Our findings reveal a new mechanism of mediating drug resistance and provide a new drug combination strategy to overcome DOX resistance in TNBC.
Collapse
|
7
|
WWP1 upregulation predicts poor prognosis and promotes tumor progression by regulating ubiquitination of NDFIP1 in intrahepatic cholangiocarcinoma. Cell Death Dis 2022; 8:107. [PMID: 35264565 PMCID: PMC8906119 DOI: 10.1038/s41420-022-00882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
WW domain-containing E3 ubiquitin protein ligase1 (WWP1) is reported to be upregulated in many types of human cancers; however, its expression and function in intrahepatic cholangiocarcinoma (ICC) remain unknown. Here, in this study we investigated the expression pattern, clinical prognosis, tumor biological functions, and molecular mechanisms of WWP1 in ICC. The expression of WWP1 in patient tissues was detected by western blotting, immunohistochemistry (IHC), and immunofluorescence. CCK-8, colony formation, EdU, transwell, and xenograft models were used to explore the role of WWP1 in the proliferation and metastasis of ICC. Co-immunoprecipitation, mass spectrometry, chromatin immunoprecipitation, and immunofluorescence were performed to detect the potential mechanisms. Our study revealed that WWP1 was highly expressed in ICC, and high levels of WWP1 were associated with poor prognosis. Functionally, WWP1 overexpression enhanced the proliferation and metastasis of ICC cells and vice versa. Mechanistically, MYC could be enriched in the promoter region of WWP1 to facilitate its expression. Then, WWP1 targets Nedd4 family interacting protein1 (NDFIP1) and reduces NDFIP1 protein levels via ubiquitination. Downregulation of NDFIP1 in ICC cells rescued the effects of silenced WWP1 expression. WWP1 expression was also negatively correlated with the protein level of NDFIP1 in patient tissues. In conclusion, WWP1 upregulated by MYC promotes the progression of ICC via ubiquitination of NDFIP1, which reveals that WWP1 might be a potential therapeutic target for ICC.
Collapse
|
8
|
Almajali B, Johan MF, Al-Wajeeh AS, Wan Taib WR, Ismail I, Alhawamdeh M, Al-Tawarah NM, Ibrahim WN, Al-Rawashde FA, Al-Jamal HAN. Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15030307. [PMID: 35337104 PMCID: PMC8948818 DOI: 10.3390/ph15030307] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Next-generation sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Nafe M. Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar;
| | - Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
9
|
The Wnt Signaling Pathway Inhibitors Improve the Therapeutic Activity of Glycolysis Modulators against Tongue Cancer Cells. Int J Mol Sci 2022; 23:ijms23031248. [PMID: 35163171 PMCID: PMC8835497 DOI: 10.3390/ijms23031248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022] Open
Abstract
Excessive glucose metabolism and disruptions in Wnt signaling are important molecular changes present in oral cancer cells. The aim of this study was to evaluate the effects of the combinatorial use of glycolysis and Wnt signaling inhibitors on viability, cytotoxicity, apoptosis induction, cell cycle distribution and the glycolytic activity of tongue carcinoma cells. CAL 27, SCC-25 and BICR 22 tongue cancer cell lines were used. Cells were treated with inhibitors of glycolysis (2-deoxyglucose and lonidamine) and of Wnt signaling (PRI-724 and IWP-O1). The effects of the compounds on cell viability and cytotoxicity were evaluated with MTS and CellTox Green tests, respectively. Apoptosis was evaluated by MitoPotential Dye staining and cell cycle distribution by staining with propidium iodide, followed by flow cytometric cell analysis. Glucose and lactate concentrations in a culture medium were evaluated luminometrically. Combinations of 2-deoxyglucose and lonidamine with Wnt pathway inhibitors were similarly effective in the impairment of oral cancer cells’ survival. However, the inhibition of the canonical Wnt pathway by PRI-724 was more beneficial, based on the glycolytic activity of the cells. The results point to the therapeutic potential of the combination of low concentrations of glycolytic modulators with Wnt pathway inhibitors in oral cancer cells.
Collapse
|
10
|
Ghaffarnia R, Nasrollahzadeh A, Bashash D, Nasrollahzadeh N, Mousavi SA, Ghaffari SH. Inhibition of c-Myc using 10058-F4 induces anti-tumor effects in ovarian cancer cells via regulation of FOXO target genes. Eur J Pharmacol 2021; 908:174345. [PMID: 34270986 DOI: 10.1016/j.ejphar.2021.174345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Ovarian cancer, characterized by rapid growth and asymptomatic development in the early stage, is the fifth common cancer in women. The deregulated expression of c-Myc in more than 50% of human tumors including ovarian cancer makes this oncogenic master transcription factor a potential therapeutic target for cancer treatment. In the present study, we evaluated the anti-tumor effects of 10058-F4, a small molecule c-Myc inhibitor, on ovarian cancer cells. We found that 10058-F4 not only inhibited the proliferation and clonal growth of ovarian cancer cells but also enhanced the cytotoxic effects of chemotherapeutic drugs. Our results also revealed that c-Myc inhibition using 10058-F4 increased the intracellular reactive oxygen species production coupled with suppressed expression of hTERT. RT-qPCR analysis indicated that 10058-F4 enhanced the mRNA levels of the forkhead box O (FOXO) family of transcription factors, including FOXO1, 3, and 4. Moreover, 10058-F4 induced G1 cell cycle arrest in 2008C13 ovarian cancer cells, along with increased expression of some key targets of FOXOs involved in the regulation of cell cycle such as p15, p21, p27, and GADD45A. The results of our study also showed that the 10058-F4-induced apoptosis in 2008C13 cell line was associated with the upregulation of FOXO downstream genes, including PUMA, Bim, and FasL. In conclusion, our results, for the first time, suggest that the anti-tumor effects of 10058-F4 in ovarian cancer cells might be mediated through upregulation of FOXO transcription factors and their key target genes involved in G1 cell cycle arrest, apoptosis, and autophagic cell death.
Collapse
Affiliation(s)
- Roya Ghaffarnia
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nasrollahzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed A Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Pan C, Zhu Y, Yu M, Zhao Y, Zhang C, Zhang X, Yao Y. Control Analysis of Protein-Protein Interaction Network Reveals Potential Regulatory Targets for MYCN. Front Oncol 2021; 11:633579. [PMID: 33968733 PMCID: PMC8096904 DOI: 10.3389/fonc.2021.633579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND MYCN is an oncogenic transcription factor of the MYC family and plays an important role in the formation of tissues and organs during development before birth. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets. METHODS We utilized network controllability theory, a recent developed powerful tool, to identify the potential drug target around MYCN based on Protein-Protein interaction network of MYCN. First, we constructed a Protein-Protein interaction network of MYCN based on public databases. Second, network control analysis was applied on network to identify driver genes and indispensable genes of the MYCN regulatory network. Finally, we developed a novel integrated approach to identify potential drug targets for regulating the function of the MYCN regulatory network. RESULTS We constructed an MYCN regulatory network that has 79 genes and 129 interactions. Based on network controllability theory, we analyzed driver genes which capable to fully control the network. We found 10 indispensable genes whose alternation will significantly change the regulatory pathways of the MYCN network. We evaluated the stability and correlation analysis of these genes and found EGFR may be the potential drug target which closely associated with MYCN. CONCLUSION Together, our findings indicate that EGFR plays an important role in the regulatory network and pathways of MYCN and therefore may represent an attractive therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Chunyu Pan
- Northeastern University, Shenyang, China
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yuyan Zhu
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Meng Yu
- Department of Reproductive Biology and Transgenic Animal, China Medical University, Shenyang, China
| | - Yongkang Zhao
- National Institute of Health and Medical Big Data, China Medical University, Shenyang, China
| | | | - Xizhe Zhang
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Shenyang, China
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yang Yao
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
12
|
Inhibitor of Multi-cyclin-dependent Kinases (AT7519) Reduced Survival of U937 Leukemic Cells and Enhanced Anti-leukemic Effect of Vincristine: A Highlight to CDK Inhibition Efficacy in Acute Leukemia. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The conservative character of the cell cycle outlined that any dysregulation in the regulatory components of this process in normal cells opens a gate toward neoplastic transformation. Objectives: Given the critical role of cyclin-dependent kinases (CDKs) in cancer pathogenesis and based on their frequent aberrancy in human leukemia, the present study aimed at evaluating the suppressive effect of a multi-CDK inhibitor AT7519 on acute myeloid leukemia-derived U937 cells. Methods: To assess the anti-leukemic effects of the inhibitor on acute myeloid leukemia (AML) cells, we used MTT and trypan blue assays. Flow cytometric analysis and q-RT-PCR were also applied to evaluate the impact of AT7519 on cell cycle and apoptosis. Results: The results suggested that suppression of CDK in U937 cells hampered the proliferation of leukemic cells through a G2/M arrest mediated by p21 gene. Additionally, the anti-survival impact of AT7519 on these cells was shown to be along with the apoptosis initiation not only through the increment of pro-apoptotic gene expression but also through diminishing the mRNA levels of both Pin1 and Survivin. Notably, the potent anti-leukemic property of this agent has become more prominent when we found that the blockage of CDKs in AML cells could synergize with the cytotoxic effect of vincristine (VCR). To the best of our knowledge, little is known about the molecular mechanisms of resistance to AT7519 and we proposed that the effectiveness of this agent was partially attenuated through either c-Myc or autophagy activation in U937 cells. Conclusions: This study suggests that the pharmacological targeting of CDKs could probably unwind the complexity of therapeutic obstacles on the way of acute leukemia, either in the context of mono- or combined-modal strategy.
Collapse
|
13
|
Zhang L, Zhang W, Sun J, Liu KN, Gan ZX, Liu YZ, Chang JF, Yang XM, Sun F. Nucleotide variation in histone H2BL drives crossalk of histone modification and promotes tumour cell proliferation by upregulating c-Myc. Life Sci 2021; 271:119127. [PMID: 33515561 DOI: 10.1016/j.lfs.2021.119127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Gene mutations play important roles in tumour development. In this study, we identified a functional histone H2B mutation H2BL-T11C, causing an amino acid variation from Leu to Pro (L3P, H2BL-L3P). Cells overexpressing H2BL-L3P showed stronger proliferation, colony formation, tumourigenic abilities, and a different cell cycle distribution. Meanwhile, the c-Myc expression was elevated as evident by RNA-seq. We further revealed that an H2BK5ac-H2BK120ubi crosstalk which regulates gene transcription. Moreover, EdU staining demonstrated an important role of c-Myc in accelerating cell cycle progression through the G1/S checkpoint, while treatment with 10058-F4, an inhibitor of the c-Myc/MAX interaction, alleviated the abnormal cell proliferation and cell cycle distribution in vitro and partially inhibited tumour growth in vivo. The mutation of amino acid L3P is associated with tumour progression, suggesting patients carrying this SNP may have higher risk of tumour development.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Xue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu-Zhou Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Yousefi AM, Safaroghli-Azar A, Fakhroueian Z, Bashash D. ZnO/CNT@Fe 3O 4 induces ROS-mediated apoptosis in chronic myeloid leukemia (CML) cells: an emerging prospective for nanoparticles in leukemia treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:735-745. [PMID: 32272856 DOI: 10.1080/21691401.2020.1748885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanoparticles revolutionised the drug delivery systems in human diseases; however, their prominent role was highlighted in the cancer-based therapies, where this technology could specifically target cancer cells. Herein, we decided to combine two nanoparticles Fe3O4 and ZnO to fabricate a new anti-cancer nanocomposite. Noteworthy, hydroxylated carbon nanotube (CNT) was used to increase the water-solubility of the compound, improving its uptake by malignant cells. This study was designed to evaluate the anticancer property as well as the molecular mechanisms of ZnO/CNT@Fe3O4 nanocomposite cytotoxicity in CML-derived K562 cells. Our results outlined that ZnO/CNT@Fe3O4 decreased the proliferative capacity of K562 cells through induction of G1 arrest and induced apoptosis probably via ROS-dependent upregulation of FOXO3a and SIRT1. The results of qRT-PCR analysis also demonstrated that while ZnO/CNT@Fe3O4 significantly increased the expression of pro-apoptotic genes in K562 cells, it had no significant inhibitory effect on the expression levels of anti-apoptotic target genes of NF-κB; proposing an attenuating role of NF-κB signalling pathway in K562 cell response to ZnO/CNT@Fe3O4. Synergistic experiment showed that ZnO/CNT@Fe3O4 could enhance the cytotoxic effects of imatinib on K562 cells. Overall, it seems that pharmaceutical application of nanocomposites possesses novel promising potential for leukaemia treatment strategies.
Collapse
Affiliation(s)
- Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fakhroueian
- School of Chemical Engineering, College of Engineering, Institute of Petroleum Engineering, University of Tehran, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sayyadi M, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Abolghasemi H, Anoushirvani AA, Bashash D. c-Myc Inhibition Using 10058-F4 Increased the Sensitivity of Acute Promyelocytic Leukemia Cells to Arsenic Trioxide Via Blunting PI3K/NF-κB Axis. Arch Med Res 2020; 51:636-644. [DOI: 10.1016/j.arcmed.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/03/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
|
16
|
Sayyadi M, Safaroghli-Azar A, Safa M, Abolghasemi H, Momeny M, Bashash D. NF-κB-dependent Mechanism of Action of c-Myc Inhibitor 10058-F4: Highlighting a Promising Effect of c-Myc Inhibition in Leukemia Cells, Irrespective of p53 Status. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:153-165. [PMID: 32922477 PMCID: PMC7462502 DOI: 10.22037/ijpr.2020.112926.14018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the frequent contribution in the pathogenesis of different human malignancies, c-Myc is among those transcription factors that are believed to be pharmacologically targeted for cancer therapeutic approaches. In the present study, we examined the anti-leukemic effect of a well-known c-Myc inhibitor 10058-F4 on a panel of hematologic malignant cells harboring either mutant or wild-type p53. Notably, we found that the suppression of c-Myc was coupled with the reduction in the survival of all the tested leukemic cells; however, as far as we are aware, this study suggests for the first time that the cytotoxic effect of 10058-F4 was not significantly affected by the molecular status of p53. Delving into the molecular mechanisms of the inhibitor in the most sensitive cell line revealed that 10058-F4 could induce apoptotic cell death in mutant p53-expressing NB4 cells through the suppression of NF-κB pathway coupled with a significant induction of intracellular reactive oxygen species (ROS). In addition, we found that the anti-leukemic effect of 10058-F4 was overshadowed, at least partially, through the compensatory activation of the PI3K signaling pathway; highlighting a plausible attenuating role of this axis on 10058-F4 cytotoxicity. In conclusion, the results of the present study shed light on the favorable anti-leukemic effect of 10058-F4, especially in combination with PI3K inhibitors in acute promyelocytic leukemia; however, further investigations should be accomplished to determine the efficacy of the inhibitor, either as a single agent or in a combined-modal strategy, in leukemia treatment.
Collapse
Affiliation(s)
- Mohammad Sayyadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Cancer Cell Signaling, Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zabihi M, Safaroghli-Azar A, Gharehbaghian A, Allahbakhshian Farsani M, Bashash D. CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:119-131. [PMID: 32802093 PMCID: PMC7393062 DOI: 10.22037/ijpr.2019.112560.13827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteins in natural defense against malignant transformation not only represents a heroic perspective for these proteins, but also provides a bright future for the application of small molecule inhibitors of CDKs in the novel cancer treatment strategies. The results of the present study revealed that the inhibition of CDKs using pan-CDK inhibitor AT7519, as revealed by the induction of G1 cell cycle arrest as well as the reduction of cyclins expression, resulted in decreased survival in acute myeloid leukemia (AML)-derived KG-1 cells, either in the context of single agent or in combination with arsenic trioxide (ATO). Apart from alterations in the expression of proliferation and apoptotic genes, the anti-survival property of AT7519 was coupled with the inhibition of autophagy-related genes. Notably, we found that the blockage of autophagy system in KG-1 cells resulted in a superior cytotoxic effect, introducing autophagy as a probable suppressor of cell death. As far as we are aware, to date, no study has reported the contributory mechanisms correlated with the less sensitivity of acute leukemia cells to AT7519 and our study suggested for the first time that the activation of both PI3K and c-Myc signaling pathways could overshadow, at least partly, the efficacy of this agent in KG-1 cells. Overall, due to the pharmacologic safety of AT7519, our study proposed this inhibitor as a promising agent for the treatment of AML either as a single agent or in a combined-modal strategy.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Allahbakhshian Farsani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Shao QP, Wei C, Yang J, Zhang WZ. miR-3609 Decelerates the Clearance of Sorafenib in Hepatocellular Carcinoma Cells by Targeting EPAS-1 and Reducing the Activation of the Pregnane X Receptor Pathway. Onco Targets Ther 2020; 13:7213-7227. [PMID: 32801751 PMCID: PMC7394586 DOI: 10.2147/ott.s246471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background The pregnane X receptor (PXR) not only plays an important role in cellular metabolism processes but also induces the resistance of hepatocellular carcinoma (HCC) cells to molecularly targeted drugs by mediating their metabolism and clearance by these cells. Endothelial PAS domain-containing protein 1 (EPAS-1) acts as a coactivator to regulate the transcription factor activity of PXR. In the present study, a microRNA that potentially targets EPAS-1, namely miR-3609, was identified using the miRDB tool. Methods The expression of miR-3609 and EPAS-1 was examined by qPCR. Lentiviral particles containing the full-length sequences of miR-3609 (pri-miR-3609) were prepared. The antitumor effect of antitumor agents was examined by the in vitro and in vivo assays. Results The expression of miR-3609 was negatively correlated with that of EPAS-1 in both HCC clinical specimens and paired non-tumor specimens, and the effect of miR-3609 on the expression of EPAS-1 was confirmed by Western blot experiments. Overexpression of miR-3609 decreased the expression of EPAS-1 and, in turn, repressed the activation of the PXR pathway. miR-3609 decreased the transcription factor activation of PXR, repressed its recruitment to its target gene promoter regions, and decreased the expression of its target genes CYP3A4 and P-GP. In addition, miR-3609 decelerated the metabolism and clearance of sorafenib in HCC cells and enhanced the antitumor effect of sorafenib in HCC cells. Conclusion Therefore, the results indicate that miR-3609 decreases the expression of EPAS-1 and enhances the sensitivity of HCC cells to sorafenib.
Collapse
Affiliation(s)
- Qing-Ping Shao
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, People's Republic of China
| | - Chen Wei
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Jie Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Wen-Zhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, People's Republic of China
| |
Collapse
|
19
|
Yoshida GJ. Beyond the Warburg Effect: N-Myc Contributes to Metabolic Reprogramming in Cancer Cells. Front Oncol 2020; 10:791. [PMID: 32547946 PMCID: PMC7269178 DOI: 10.3389/fonc.2020.00791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells generate large amounts of lactate derived from glucose regardless of the available oxygen level. Cancer cells finely control ATP synthesis by modulating the uptake of substrates and the activity of enzymes involved in aerobic glycolysis (Warburg effect), which enables them to adapt to the tumor microenvironment. However, increasing evidence suggests that mitochondrial metabolism, including the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and glutaminolysis, is paradoxically activated in MYCN-amplified malignancies. Unlike non-amplified cells, MYCN-amplified cancer cells significantly promote OXPHOS-dependent ATP synthesis. Furthermore, tumor cells are differentially dependent on fatty acid β-oxidation (FAO) according to N-Myc status. Therefore, upregulation of FAO-associated enzymes is positively correlated with both N-Myc expression level and poor clinical outcome. This review explores therapeutic strategies targeting cancer stem-like cells for the treatment of tumors associated with MYCN amplification.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Immunological Diagnosis, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Feng W, Dean DC, Hornicek FJ, Spentzos D, Hoffman RM, Shi H, Duan Z. Myc is a prognostic biomarker and potential therapeutic target in osteosarcoma. Ther Adv Med Oncol 2020; 12:1758835920922055. [PMID: 32426053 PMCID: PMC7222246 DOI: 10.1177/1758835920922055] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past four decades, outcomes for osteosarcoma patients have plateaued as there have been few emerging therapies showing clinical results. Thus, the identification of novel biomarkers and therapeutic strategies are urgently needed to address these primary obstacles in patient care. Although the Myc-oncogene has known roles in oncogenesis and cancer cell growth, its expression and function in osteosarcoma are largely unknown. Methods Expression of Myc was determined by Western blotting of osteosarcoma cell lines and patient tissues, and by immunohistochemistry of a unique osteosarcoma tissue microarray (TMA) constructed from 70 patient samples with extensive follow-up data. Myc specific siRNA and inhibitor 10058-F4 were applied to examine the effect of Myc inhibition on osteosarcoma cell proliferation. The clonogenicity and migration activity was determined by clonogenic and wound-healing assays. A mimic in vivo assay, three-dimensional (3D) cell culture model, was performed to further validate the effect of Myc inhibition on osteosarcoma cell tumorigenic markers. Results Myc was significantly overexpressed in human osteosarcoma cell lines compared with normal human osteoblasts, and also highly expressed in fresh osteosarcoma tissues. Higher Myc expression correlated significantly with metastasis and poor prognosis. Through the addition of Myc specific siRNA and inhibitor, we significantly reduced Myc protein expression, resulting in decreased osteosarcoma cell proliferation. Inhibition of Myc also suppressed the migration, clonogenicity, and spheroid growth of osteosarcoma cells. Conclusion Our results support Myc as an emerging prognostic biomarker and therapeutic target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Wenlong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dylan C Dean
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dimitrios Spentzos
- Department of Orthopaedic Surgery, Musculoskeletal Oncology Service, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA Department of Surgery, University of California, San Diego, CA, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles, E. Young. Dr. South, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Chen W, Liang JL, Zhou K, Zeng QL, Ye JW, Huang MJ. Effect of CIP2A and its mechanism of action in the malignant biological behavior of colorectal cancer. Cell Commun Signal 2020; 18:67. [PMID: 32321509 PMCID: PMC7178757 DOI: 10.1186/s12964-020-00545-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has revealed a close correlation between cancerous inhibitor of protein phosphatase 2A (CIP2A) and cancer progression. CIP2A has been shown to participate in diverse biological processes, such as development, tumorigenic transformation and chemoresistance. However, the functions of CIP2A in colorectal cancer (CRC) and its underlying mechanisms of action are not yet completely understood. The purpose of this study was to explore its clinical significance, function and relevant pathways in CRC. Methods Quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC), western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the expression of CIP2A in CRC tissues, sera and CRC cell lines. The association between the expressions of CIP2A and patient survival was analyzed using the Kaplan-Meier curves. Additionally, the functional role of CIP2A in the cell lines was identified through small interfering RNA (siRNA)-mediated depletion of the protein followed by analyses of proliferation and xenograft growth in vivo using short hairpin (sh) RNAs. Effects of the C-myc inhibitor 10,058-F4 on the expressions of C-myc, and CIP2A in CRC cell lines and its potential mechanisms of action were investigated. Finally, the potential molecular pathways associated with CIP2A were screened using the phosphokinase array and identified through western blotting. Results CIP2A mRNA and protein levels were upregulated in CRC tissues compared to those of the corresponding normal tissues. It can be used as an independent prognostic indicator to determine overall survival (OS) and disease-free survival (DFS). Depletion of CIP2A substantially suppressed the growth of CRC cells and colony formation in vitro, and inhibited the growth of xenograft tumors in vivo. Additionally, the levels of CIP2A in the sera of patients with CRC were higher than those of the control subjects. Multivariate analyses revealed that the levels of CIP2A in the sera were not independent prognostic indicators in patients with CRC. Moreover, 10,058-F4 could effectively inhibit the growth of CRC cells in vitro, which could be correlated with an inhibition in the expressions of C-myc, CIP2A and its downstream regulatory anti-apoptotic proteins. Furthermore, the Human Phosphokinase Antibody Array was used to gain insights into the CIP2A-dependent intermediary signaling pathways. The results revealed that several signaling pathways were affected and the protein levels of p-p53 (S392), p-STAT5a (Y694), Cyclin D1, p-ERK1/2 and p-AKT (T308) had decreased in CIP2A-shRNA group based on the results of the western blot analysis. Conclusions CIP2A could promote the development of CRC cells and predict poor prognosis in patients with CRC, suggesting that it may serve as a potential prognostic marker and therapeutic target against CRC. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Wei Chen
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Jing-Lin Liang
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Kai Zhou
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Qing-Li Zeng
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,The 334 Hospital Affiliated of Nanchang University, Nanchang, 330024, Jiangxi, China
| | - Jun-Wen Ye
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Mei-Jin Huang
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
22
|
Contribution Value of Akt, c-Myc, CIP2A, and PP2A Genes Expression in Leukemogenesis: A Bright Perspective on the Molecular Pattern of Patients with Acute Myeloid Leukemia (AML). INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.100223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Esmaeili S, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Salari S, Gharehbaghian A, Hamidpour M, Bashash D. Activation of PPARγ intensified the effects of arsenic trioxide in acute promyelocytic leukemia through the suppression of PI3K/Akt pathway: Proposing a novel anticancer effect for pioglitazone. Int J Biochem Cell Biol 2020; 122:105739. [PMID: 32169580 DOI: 10.1016/j.biocel.2020.105739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022]
Abstract
The indulgent success of arsenic trioxide (ATO) in the induction of complete remission in acute promyelocytic leukemia (APL) patients has accommodated this agent into the therapeutic protocols. However, the intrusion of unfavorable side effects had put an unanswered question on the way of the application of this agent; whether the benefits of ATO may outweigh its drawbacks. In this study, we found that when ATO is accompanied by an activator of peroxisome proliferator-activated receptors gamma (PPARγ), even the lower concentrations could induce significant inhibitory effects on the survival of NB4 through diminishing the ability of the cells to replicate DNA in the S phase of cell cycle. We also found that through suppression of the PI3K pathway, the combination of pioglitazone and ATO provided a signal through which the induction of apoptotic cell death was enhanced probably via the elevation of reactive oxygen species (ROS). With respect to the tight connection between PI3K pathway and autophagy system and given to the inhibitory effect of pioglitazone-plus-ATO on PI3K, we found that the combination of these agents not only suppressed the expression of autophagy-related genes, but also their efficacy was augmented when autophagy was inhibited in NB4; clarifying the encouraging role of autophagy in the survival maintenance of APL cells. In conclusion, given the significant efficacy as well as the safety profile of pioglitazone in potentiating the anticancer effects of chemotherapeutic drugs, the present study suggests it as a promising agent to be used in adjuvant strategy for the treatment of APL.
Collapse
Affiliation(s)
- Shadi Esmaeili
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Sheikh‐Zeineddini N, Safaroghli-azar A, Salari S, Bashash D. C-Myc inhibition sensitizes pre-B ALL cells to the anti-tumor effect of vincristine by altering apoptosis and autophagy: Proposing a probable mechanism of action for 10058-F4. Eur J Pharmacol 2020; 870:172821. [DOI: 10.1016/j.ejphar.2019.172821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
|
25
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|
26
|
Conneely SE, Stevens AM. Advances in Pediatric Acute Promyelocytic Leukemia. CHILDREN-BASEL 2020; 7:children7020011. [PMID: 32024232 PMCID: PMC7072343 DOI: 10.3390/children7020011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Acute promyelocytic leukemia (APL) is a rare disease accounting for only 5%-10% of pediatric acute myeloid leukemia (AML) and fewer than 1000 cases occur annually in the United States across all age groups. Characterized by t (15; 17), with a resultant PML-RARA gene fusion driving leukemia development, advances in therapy have improved outcomes for APL significantly in the past several decades, now making APL the most curable form of AML in both children and adults. Cure rates in APL are now comparable to pediatric B-lymphoid leukemias. The success of APL treatment is due, in part, to the breadth of understanding of the driver PML-RARA mutation as well as collaborative efforts to quickly introduce and maximize the benefit of new therapies. Here, we review the presentation, clinical features, pathogenesis, and treatment advances in pediatric APL.
Collapse
|
27
|
Ma DB, Qin MM, Shi L, Ding XM. MicroRNA-6077 enhances the sensitivity of patients-derived lung adenocarcinoma cells to anlotinib by repressing the activation of glucose transporter 1 pathway. Cell Signal 2019; 64:109391. [PMID: 31421224 DOI: 10.1016/j.cellsig.2019.109391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Anlotinib is a novel molecular targeted agent targeting the vascular endothelial growth factor receptor, which differs from the other currently available non-small cell lung cancer (NSCLC) molecular targeted drugs targeting this receptor. Although the application of anlotinib may bring new hope for patients with advanced NSCLC, the cost of treatment is high. The results of this study showed that microRNA-6077 (miR-6077) represses the expression of GLUT1 (glucose transporter 1) and enhances the sensitivity of patient-derived lung adenocarcinoma (AC) cells to anlotinib. The miR-6077, which potentially binds to the 3'untranslated region of GLUT1, was identified and screened by miRDB, an online tool; sequences of miR-6077 were prepared as lentivirus particles. A549 cells (a lung adenocarcinoma cell line) and five patient-derived AC cell lines were infected with control miRNA or miR-6077, and subsequently treated with the indicated concentration of anlotinib. The expression of proteins, such as GLUT1, was determined by western blotting. The antitumor effect of anlotinib was identified through in-vitro (e.g., MTT) or in-vivo methods (e.g., subcutaneous tumor model). Overexpression of miR-6077 repressed the expression of GLUT1 and decreased the glucose uptake, lactate production, or ATP generation in AC cells. In addition, MiR-6077 may enhance the antitumor effect of anlotinib on A549 or patient-derived AC cell lines. Therefore, our results indicated that miR-6077 represses the expression of GLUT1 and enhances the sensitivity of patients-derived lung AC cells to anlotinib.
Collapse
Affiliation(s)
- De-Bin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Meng-Meng Qin
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Liang Shi
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China.
| | - Xin-Min Ding
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital affiliated to Capital Medical University, Beijing 100038, China.
| |
Collapse
|
28
|
Riyahi N, Safaroghli-Azar A, Sheikh-Zeineddini N, Sayyadi M, Bashash D. Synergistic Effects of PI3K and c-Myc Co-targeting in Acute Leukemia: Shedding New Light on Resistance to Selective PI3K-δ Inhibitor CAL-101. Cancer Invest 2019; 37:311-324. [DOI: 10.1080/07357907.2019.1651328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Niknam Riyahi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Sheikh-Zeineddini
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Sayyadi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Xiong Y, Cao F, Hu L, Yan C, Chen L, Panayi AC, Sun Y, Zhou W, Zhang P, Wu Q, Xue H, Liu M, Liu Y, Liu J, Abududilibaier A, Mi B, Liu G. miRNA-26a-5p Accelerates Healing via Downregulation of PTEN in Fracture Patients with Traumatic Brain Injury. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:223-234. [PMID: 31272072 PMCID: PMC6610686 DOI: 10.1016/j.omtn.2019.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 01/11/2023]
Abstract
Patients who sustain a traumatic brain injury (TBI) are known to have a significantly quicker fracture healing time than patients with isolated fractures, but the underlying mechanism has yet to be identified. In this study, we found that the upregulation of miRNA-26a-5p induced by TBI correlated with a decrease in phosphatase and tensin homolog (PTEN) in callus formation. In vitro, overexpressing miRNA-26a-5p inhibited PTEN expression and accelerated osteoblast differentiation, whereas silencing of miRNA-26a-5p inhibited osteoblast activity. Reduction of PTEN facilitated osteoblast differentiation via the PI3K/AKT signaling pathway. Through luciferase assays, we found evidence that PTEN is a miRNA-26a-5p target gene that negatively regulates the differentiation of osteoblasts. Moreover, the present study confirmed that preinjection of agomiR-26a-5p leads to increased bone formation. Collectively, these results indicate that miRNA-26a-5p overexpression may be a key factor governing the improved fracture healing observed in TBI patients after the downregulation of PTEN and PI3K/AKT signaling. Upregulation of miRNA-26a-5p may therefore be a promising therapeutic strategy for promoting fracture healing.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qipeng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Abudula Abududilibaier
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
30
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
31
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
32
|
Sheikh‐Zeineddini N, Bashash D, Safaroghli‐Azar A, Riyahi N, Shabestari RM, Janzamin E, Safa M. Suppression of c‐Myc using 10058‐F4 exerts caspase‐3‐dependent apoptosis and intensifies the antileukemic effect of vincristine in pre‐B acute lymphoblastic leukemia cells. J Cell Biochem 2019; 120:14004-14016. [DOI: 10.1002/jcb.28675] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Negar Sheikh‐Zeineddini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ava Safaroghli‐Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Niknam Riyahi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rima Manafi Shabestari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | | | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|