1
|
Xu DQ, Geng JX, Gao ZK, Fan CY, Zhang BW, Han X, He LQ, Dai L, Gao S, Yang Z, Zhang Y, Arshad M, Fu Y, Mu XQ. To explore the potential combined treatment strategy for colorectal cancer: Inhibition of cancer stem cells and enhancement of intestinal immune microenvironment. Eur J Pharmacol 2025; 998:177533. [PMID: 40120791 DOI: 10.1016/j.ejphar.2025.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The antibiotic salinomycin, a well-known cancer stem cell inhibitor, may impact the diversity of the intestinal microbiota in colorectal cancer (CRC) mice, which plays a pivotal role in shaping the immune system. This study explores the anti-cancer effects and mechanisms of combining salinomycin and fecal microbiota transplantation (FMT) in treating CRC. METHODS FMT was given via enema, while salinomycin was injected intraperitoneally into the CRC mouse model induced by azoxymethane/dextran sodium sulfate. RESULTS In CRC mice, a large number of LGR5-labeled cancer stem cells and severe disturbances in the intestinal microbiota were observed. Interestingly, salinomycin inhibited the proliferation of cancer stem cells without exacerbating the microbial disorder as expected. In comparison to salinomycin treatment, the combination of salinomycin and FMT significantly improved pathological damage and restored intestinal microbial diversity, which is responsible for shaping the anti-cancer immune microenvironment. The supplementation of FMT significantly increased the levels of propionic acid and butyric acid while also promoting the infiltration of CD8+ T cells and Ly6G+ neutrophils, as well as reducing F4/80+ macrophage recruitment. Notably, cytokines that were not impacted by salinomycin exhibited robust reactions to alterations in the gut microbiota. These included pro-inflammatory factors (IL6, IL12b, IL17, and IL22), chemokine-like protein OPN, and immunosuppressive factor PD-L1. CONCLUSIONS Salinomycin plays the role of "eliminating pathogenic qi," targeting cancer stem cells; FMT plays the role of "strengthening vital qi," reversing the intestinal microbiota disorder and enhancing anti-cancer immunity. They have a synergistic effect on the development of CRC.
Collapse
Affiliation(s)
- Dan-Qi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Geng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhan-Kui Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Chao-Yuan Fan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xing Han
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qian He
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lin Dai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuo Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhou Yang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yang Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Muhammad Arshad
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yin Fu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150006, China.
| | - Xiao-Qin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
3
|
Wang K, Tao L, Zhu M, Yu X, Lu Y, Yuan B, Hu F. Melittin Inhibits Colorectal Cancer Growth and Metastasis by Ac-Tivating the Mitochondrial Apoptotic Pathway and Suppressing Epithelial-Mesenchymal Transition and Angiogenesis. Int J Mol Sci 2024; 25:11686. [PMID: 39519238 PMCID: PMC11546240 DOI: 10.3390/ijms252111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Melittin has previously been found to have a positive effect on colorectal cancer (CRC) treatment, one of the most difficult-to-treat malignancies, but the mechanism by which this effect occurs remains unclear. We evaluated melittin's pro-apoptotic and anti-metastatic effects on CRC in vitro and in vivo. The results showed that melittin-induced mitochondrial ROS bursts decreased ΔΨm, inhibited Bcl-2 expression, and increased Bax expression in both cells and tumor tissues. This led to increased mitochondrial membrane permeability and the release of pro-apoptotic factors, particularly the high expression of Cytochrome C, initiating the apoptosis program. Additionally, through wound-healing and transwell assays, melittin inhibited the migration and invasion of CRC cells. In vivo, the anti-metastatic effect of melittin was also verified in a lung metastasis mouse model. Western blotting and immunohistochemistry analysis indicated that melittin suppressed the expression of MMPs and regulated the expression of crucial EMT markers and related transcription factors, thereby inhibiting EMT. Furthermore, the melittin disrupts neovascularization, ultimately inhibiting the metastasis of CRC. In conclusion, melittin exerts anti-CRC effects by promoting apoptosis and inhibiting metastasis, providing a theoretical basis for further research on melittin as a targeted therapeutic agent for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (K.W.); (L.T.); (M.Z.); (X.Y.); (Y.L.); (B.Y.)
| |
Collapse
|
4
|
Radu P, Zurzu M, Tigora A, Paic V, Bratucu M, Garofil D, Surlin V, Munteanu AC, Coman IS, Popa F, Strambu V, Ramboiu S. The Impact of Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:4140. [PMID: 38673727 PMCID: PMC11050141 DOI: 10.3390/ijms25084140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Petru Radu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mihai Zurzu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Anca Tigora
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Vlad Paic
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mircea Bratucu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Dragos Garofil
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Alexandru Claudiu Munteanu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Ionut Simion Coman
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
- General Surgery Department, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni Road, 041915 Bucharest, Romania
| | - Florian Popa
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Victor Strambu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Sandu Ramboiu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| |
Collapse
|
5
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
6
|
Dai X, Chen W, Qiao Y, Chen X, Chen Y, Zhang K, Zhang Q, Duan X, Li X, Zhao J, Tian F, Liu K, Dong Z, Lu J. Dihydroartemisinin inhibits the development of colorectal cancer by GSK-3β/TCF7/MMP9 pathway and synergies with capecitabine. Cancer Lett 2024; 582:216596. [PMID: 38101610 DOI: 10.1016/j.canlet.2023.216596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Patients with colorectal cancer (CRC) suffer from poor prognosis and lack effective drugs. Dihydroartemisinin (DHA) has anti-cancer potential but the mechanism remains unclear. We elucidated the effects and mechanism of DHA on CRC development with the aim of providing an effective, low-toxicity drug and a novel strategy for CRC. Herein, proliferation assay, transwell assay, tube formation assay, metastasis models, PDX model and AOM/DSS model were used to reveal the effects of DHA on CRC. The key pathway and target were identified by RNA-seq, ChIP, molecular docking, pull down and dual-luciferase reporter assays. As a result, DHA showed a strong inhibitory effect on the growth, metastasis and angiogenesis of CRC with no obvious toxicity, and the inhibitory effect was similar to that of the clinical drug Capecitabine (Cap). Indeed, DHA directly targeted GSK-3β to inhibit CRC development through the GSK-3β/TCF7/MMP9 pathway. Meaningfully, DHA in combination with Cap enhanced the anti-cancer effect, and alleviated Cap-induced diarrhoea, immunosuppression and inflammation. In conclusion, DHA has the potential to be an effective and low-toxicity drug for the treatment of CRC. Furthermore, DHA in combination with Cap could be a novel therapeutic strategy for CRC with improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
7
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
8
|
Chen Y, Yang Z, He X, Zhu W, Wang Y, Li J, Han Z, Wen J, Liu W, Yang Y, Zhang K. Proanthocyanidins inhibited colorectal cancer stem cell characteristics through Wnt/β-catenin signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:2894-2903. [PMID: 37551626 DOI: 10.1002/tox.23924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a key role in tumor cell growth, drug resistance, recurrence, and metastasis. Proanthocyanidins (PC) is widely existed in plants and endowed with powerful antioxidant and anti-aging effects. Interestingly, recent studies have found that PC exhibits the inhibitory effect on tumor growth. However, the role of PC in CSCs of colorectal cancer (CRC) and molecular mechanism remain unclear. METHODS CCK-8, colony, and tumorsphere formation assay were used to evaluate cancer cell viability and stemness, respectively. Western blotting was used to detect the protein expression. Tumor xenograft experiments were employed to examine the tumorigenicity of CRC cells in nude mice. RESULTS PC decreased the proliferation of CRC cells (HT29 and HCT-116), and improved the sensitivity of CRC cells to oxaliplatin (L-OHP), as well as inhibited tumor growth in nude mice. Further studies showed that PC also down-regulated CSCs surface molecular and stemness transcriptional factors, while suppressed the formations of tumorspheres and cell colony in CRC. In addition, PC-impaired proteins expressions of p-GSK3β, β-catenin and DVL1-3. LiCl, an activator of the Wnt/β-catenin signaling, rescued PC-induced downregulation of CSCs markers, and reduction of tumorspheres and cell colony formation abilities in CRC cells. Furthermore, the effects of PC on inhibiting cell proliferation and enhancing L-OHP sensitivity were impaired by LiCl. CONCLUSIONS PC exerted an inhibitory effect on CSCs via Wnt/β-catenin in CRC, and may be a potential new class of natural drug for CRC treatment.
Collapse
Affiliation(s)
- Yuzhuo Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhirong Yang
- Pathology Department of Deyang People's Hospital, Deyang, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xingqiang He
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yujun Wang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Jiaofeng Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Jie Wen
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Wei Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
9
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Wang Y, Yang Z, Zhu W, Chen Y, He X, Li J, Han Z, Yang Y, Liu W, Zhang K. Dihydroartemisinin inhibited stem cell-like properties and enhanced oxaliplatin sensitivity of colorectal cancer via AKT/mTOR signaling. Drug Dev Res 2023; 84:988-998. [PMID: 37132439 DOI: 10.1002/ddr.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Colorectal cancer (CRC) is a common tumor with high morbidity and mortality. The use of oxaliplatin (L-OHP) as a first-line treatment for CRC is limited due to chemoresistance. Growing evidence have revealed that the existence of cancer stem-like cells (CSLCs) is one of the important reasons for drug resistance and recurrence of cancers. Dihydroartemisinin (DHA), a derivative of artemisinin, has showed anticancer effects on a variety of malignancies, in addition to its antimalarial effects. However, the effect and mechanism of DHA on CSLCs and chemosensitivity in CRC cells remains unclear. In this study, we found that DHA inhibited cell viability in HCT116 and SW620 cells. Moreover, DHA decreased cell clonogenicity, and improved L-OHP sensitivity. Furthermore, DHA treatment attenuated tumor sphere formation, and the expressions of stem cell surface marker (CD133 and CD44) and stemness-associated transcription factor (Nanog, c-Myc, and OCT4). Mechanistically, the present findings showed that DHA inhibited of AKT/mTOR signaling pathway. The activation of AKT/mTOR signaling reversed DHA-decreased cell viability, clonogenicity, L-OHP resistance, tumor sphere, and expressions of stemness-associated protein in CRC. The inhibitory effect of DHA on tumorigenicity of CRC cells has also been demonstrated in BALB/c nude mice. In conclusion, this study revealed that DHA inhibited CSLCs properties in CRC via AKT/mTOR signaling, suggesting that DHA may be used as a potential therapeutic agent for CRC.
Collapse
Affiliation(s)
- Yujun Wang
- School of Pharmacy, Chengdu Medical College, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhirong Yang
- Pathology Department, Deyang People's Hospital, Deyang, China
| | - Wanglong Zhu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuzhuo Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xingqiang He
- College of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Jiaofeng Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhan Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Wei Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Taib N, Merhi M, Inchakalody V, Mestiri S, Hydrose S, Makni-Maalej K, Raza A, Sahir F, Azizi F, Nizamuddin PB, Fernandes Q, Yoosuf ZSKM, Almoghrabi S, Al-Zaidan L, Shablak A, Uddin S, Maccalli C, Al Homsi MU, Dermime S. Treatment with decitabine induces the expression of stemness markers, PD-L1 and NY-ESO-1 in colorectal cancer: potential for combined chemoimmunotherapy. J Transl Med 2023; 21:235. [PMID: 37004094 PMCID: PMC10067322 DOI: 10.1186/s12967-023-04073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug. METHODS We compared the effect of DAC in primary 1076 Col and metastatic 1872 Col cell lines isolated and generated from patients' tumor tissues. Both cell lines were treated with DAC, and the expression of the NY-ESO-1 cancer-testis antigen, the PD-L1 immunoinhibitory marker, and the CD44, Nanog, KLF-4, CD133, MSI-1 stemness markers were analyzed using different molecular and immunological assays. RESULTS DAC treatment significantly upregulated stemness markers in both primary 1076 Col and meta-static 1872 Col cell lines, although a lower effect occurred on the latter: CD44 (7.85 fold; ***p = 0.0001 vs. (4.19 fold; *p = 0.0120), Nanog (4.1 fold; ***p < 0.0001 vs.1.69 fold; ***p = 0.0008), KLF-4 (4.33 fold; ***p < 0.0001 vs.2.48 fold; ***p = 0.0005), CD133 (16.77 fold; ***p = 0.0003 vs.6.36 fold; *p = 0.0166), and MSI-1 (2.33 fold; ***p = 0.0003 vs.2.3 fold; ***p = 0.0004), respectively. Interestingly, in the metastatic 1872 Col cells treated with DAC, the expression of both PD-L1 and NY-ESO-1 was increased tenfold (*p = 0.0128) and fivefold (***p < 0.0001), respectively. CONCLUSIONS We conclude that the upregulation of both stemness and immune checkpoint markers by DAC treatment on CRC cells might represent a mechanism of immune evasion. In addition, induction of NY-ESO-1 may represent an immuno-therapeutic option in metastatic CRC patients. Finally, the combination of DAC and anti-PD-1/anti-PD-L1 antibodies treatment should represent a potential therapeutic intervention for this group of patients.
Collapse
Affiliation(s)
- Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Karama Makni-Maalej
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Fairooz Sahir
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Fouad Azizi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Parveen B Nizamuddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- College of Medicine, Qatar University, 2713, Doha, Qatar
| | - Zeenath Safira K M Yoosuf
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, 34110, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 2030, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, 2713, Doha, Qatar
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Human Immunology Department, Research Branch, Sidra Medicine, 26999, Doha, Qatar
| | | | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, 2030, Doha, Qatar.
- National Center for Cancer Care and Research, Hamad Medical Corporation, 2030, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, 34110, Doha, Qatar.
| |
Collapse
|
12
|
Qi P, Ning Z, Zhang X. Synergistic effects of 3D chitosan-based hybrid scaffolds and mesenchymal stem cells in orthopaedic tissue engineering. IET Nanobiotechnol 2023; 17:41-48. [PMID: 36708277 PMCID: PMC10116017 DOI: 10.1049/nbt2.12103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
Restoration of damaged bone and cartilage tissue with biomaterial scaffolds is an area of interest in orthopaedics. Chitosan is among the low-cost biomaterials used as scaffolds with considerable biocompability to almost every human tissue. Considerable osteoconductivity, porosity, and appropriate pore size distribution have made chitosan an appropriate scaffold for loading of stem cells and a good homing place for differentiation of stem cells to bone tissue. Moreover, the similarity of chitosan to glycosaminoglycans and its potential to be used as soft gels, which could be lasting more than 1 week in mobile chondral defects, has made chitosan a polymer of interest in repairing bone and cartilage defects. Different types of scaffolds using chitosan in combination with mesenchymal stem cells (MSCs) are discussed. MSCs are widely used in regenerative medicine because of their regenerative ability, and recent line evidence reviewed demonstrated that the combination of MSCs with a combination of chitosan with different materials, including collagen type 1, hyaluronic acid, Poly(L-lacticacid)/gelatin/β-tricalcium phosphate, gamma-poly[glutamic acid] polyelectrolyte/titanium alloy, modified Poly(L-Lactide-co-Epsilon-Caprolactone), calcium phosphate, β-glycerophosphate hydrogel/calcium phosphate cement (CPC), and CPC-Chitosan-RGD, can increase the efficacy of using MSCs, and chitosan-based stem cell delivery can be a promising method in restoration of damaged bone and cartilage tissue.
Collapse
Affiliation(s)
- Ping Qi
- Department of General Practice, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhaohui Ning
- Department of Traditional Chinese Medicine, Taian Central Hospital, Taian, Shandong, China
| | - Xiuju Zhang
- Department of General Practice, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
13
|
Tumor-augmenting Effect of Histone Methyltransferase WHSC1 on Colorectal Cancer Via Epigenetic Upregulation of TACC3 and PI3K/Akt Activation. Arch Med Res 2022; 53:658-665. [DOI: 10.1016/j.arcmed.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
14
|
Xie W, Zeng Y, Hu L, Hao J, Chen Y, Yun X, Lin Q, Li H. Based on different immune responses under the glucose metabolizing type of papillary thyroid cancer and the response to anti-PD-1 therapy. Front Immunol 2022; 13:991656. [PMID: 36211409 PMCID: PMC9536150 DOI: 10.3389/fimmu.2022.991656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 12/28/2022] Open
Abstract
Glucose metabolism-related genes play an important role in the development and immunotherapy of many tumours, but their role in thyroid cancer is ambiguous. To investigate the role of glucose metabolism-related genes in the development of papillary thyroid cancer (PTC) and their correlation with the clinical outcome of PTC, we collected transcriptomic data from 501 PTC patients in the Cancer Genome Atlas (TCGA). We performed nonnegative matrix decomposition clustering of 2752 glucose metabolism-related genes from transcriptome data and classified PTC patients into three subgroups (C1 for high activation of glucose metabolism, C2 for low activation of glucose metabolism and C3 for moderate activation of glucose metabolism) based on the activation of different glucose metabolism-related genes in 10 glucose metabolism-related pathways. We found a positive correlation between the activation level of glucose metabolism and the tumour mutation burden (TMB), neoantigen number, mRNA stemness index (mRNAsi), age, and tumour stage in PTC patients. Next, we constructed a prognostic prediction model for PTC using six glucose metabolism-related genes (PGBD5, TPO, IGFBPL1, TMEM171, SOD3, TDRD9) and constructed a nomogram based on the risk score and clinical parameters of PTC patients. Both the prognostic risk prediction model and nomogram had high stability and accuracy for predicting the progression-free interval (PFI) in PTC patients. Patients were then divided into high-risk and low-risk groups by risk score. The high-risk group was sensitive to paclitaxel and anti-PD-1 treatment, and the low-risk group was sensitive to sorafenib treatment. We found that the high-risk group was enriched in inflammatory response pathways and associated with high level of immune cell infiltration. To verify the accuracy of the prognostic prediction model, we knocked down PGBD5 in PTC cells and found that the proliferation ability of PTC cells was significantly reduced. This suggests that PGBD5 may be a relatively important oncogene in PTC. Our study constructed a prognostic prediction model and classification of PTC by glucose metabolism-related genes, which provides a new perspective on the role of glucose metabolism in the development and immune microenvironment of PTC and in guiding chemotherapy, targeted therapy and immune checkpoint blockade therapy of PTC.
Collapse
Affiliation(s)
- Wenjun Xie
- Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jiaru Hao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yuzheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xinwei Yun
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Xinwei Yun, ; Qiang Lin, ; Huashui Li,
| | - Qiang Lin
- Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- *Correspondence: Xinwei Yun, ; Qiang Lin, ; Huashui Li,
| | - Huashui Li
- Department of General Surgery, Shengli Clinical Medical College, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- *Correspondence: Xinwei Yun, ; Qiang Lin, ; Huashui Li,
| |
Collapse
|
15
|
Babaker MA, Aljoud FA, Alkhilaiwi F, Algarni A, Ahmed A, Khan MI, Saadeldin IM, Alzahrani FA. The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126812. [PMID: 35743255 PMCID: PMC9224713 DOI: 10.3390/ijms23126812] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.
Collapse
Affiliation(s)
- Manal A. Babaker
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Fadwa A. Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
| | - Faris Alkhilaiwi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 73221, Saudi Arabia;
| | - Asif Ahmed
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- School of Health Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Mohammad Imran Khan
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Islam M. Saadeldin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (I.M.S.); (F.A.A.)
| | - Faisal A. Alzahrani
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.M.S.); (F.A.A.)
| |
Collapse
|
16
|
Mousazadeh L, Mousazadeh B, Motaei J, Abbasi F, Esfehani RJ. Preclinical and clinical aspects of using Tazemetostate in human cancers. Curr Pharm Des 2022; 28:1329-1333. [DOI: 10.2174/1381612828666220408121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Epigenetic drugs are novel drug categories with promising effects in different cancers. Tazemetostate is among the drugs that were recently used in clinical settings, especially in the treatment of specific tumors and lymphomas. There are a growing number of ongoing clinical trials evaluating the safety and efficacy of tazemetostate in different cancers. The present review addressed the available preclinical studies evaluating the combination of tazemetostate and other chemotherapy agents in treating different cancers and summarized the limited clinical evidence available regarding the efficacy of this novel Enhancer of Zeste Homolog 2 (EZH2) inhibitor in cancer. Based on the available clinical studies, tazemetostate could be considered a safe epigenetic agent with limited adverse events for treating specific types of lymphomas and solid tumors. However, the superiority of using tazemetostate over other chemotherapy agents in patients with cancer as well as using the drug for other clinical conditions including non-alcoholic steatohepatitis needs further investigation. Moreover, the effect of tazemetostate on human germline cells is clearly evaluated as some animal studies demonstrated that the drug can affect germline epigenome suggesting further studies on this issue.
Collapse
Affiliation(s)
- Leila Mousazadeh
- Department of Nursing, Kurdistan Technical Institute, Sulaymaniyah, Iraq
| | - Behzad Mousazadeh
- Department of Medical laboratory science, Kurdistan Technical Institute, Sulaymaniyah, Iraq
| | - Jamshid Motaei
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Abbasi
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Jafarzadeh Esfehani
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Nguyen Ho-Bouldoires TH, Sollier K, Zamfirov L, Broders-Bondon F, Mitrossilis D, Bermeo S, Guerin CL, Chipont A, Champenois G, Leclère R, André N, Ranno L, Michel A, Ménager C, Meseure D, Demené C, Tanter M, Fernández-Sánchez ME, Farge E. Ret kinase-mediated mechanical induction of colon stem cells by tumor growth pressure stimulates cancer progression in vivo. Commun Biol 2022; 5:137. [PMID: 35177769 PMCID: PMC8854631 DOI: 10.1038/s42003-022-03079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
How mechanical stress actively impacts the physiology and pathophysiology of cells and tissues is little investigated in vivo. The colon is constantly submitted to multi-frequency spontaneous pulsatile mechanical waves, which highest frequency functions, of 2 s period, remain poorly understood. Here we find in vivo that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells (SC) through the mechanosensitive Ret kinase. When permanently stimulated by a magnetic mimicking-tumor growth analogue pressure, we find that SC levels pathologically increase and undergo mechanically induced hyperproliferation and tumorigenic transformation. To mimic the high frequency pulsatile mechanical waves, we used a generator of pulsed magnetic force stimulation in colonic tissues pre-magnetized with ultra-magnetic liposomes. We observed the pulsatile stresses using last generation ultra-wave dynamical high-resolution imaging. Finally, we find that the specific pharmacological inhibition of Ret mechanical activation induces the regression of spontaneous formation of SC, of CSC markers, and of spontaneous sporadic tumorigenesis in Apc mutated mice colons. Consistently, in human colon cancer tissues, Ret activation in epithelial cells increases with tumor grade, and partially decreases in leaking invasive carcinoma. High frequency pulsatile physiological mechanical stresses thus constitute a new niche that Ret-dependently fuels mice colon physiological SC level. This process is pathologically over-activated in the presence of permanent pressure due to the growth of tumors initiated by pre-existing genetic alteration, leading to mechanotransductive self-enhanced tumor progression in vivo, and repressed by pharmacological inhibition of Ret. Ho-Bouldoires, Sollier, Zamfirov and Broders-Bondon et al. show that high frequency pulsatile mechanical stresses maintain the physiological level of mice colon stem cells through the mechanosensitive Ret kinase and that Ret activation is elevated in human colon cancer tissue. They go on to show that the maintenance of such stimulation in the form of tumour growth pressure results in mechanically-induced hyperproliferation and tumorigenic transformation of stem cells, which can be prevented by Ret kinase inhibition.
Collapse
Affiliation(s)
- Thanh Huong Nguyen Ho-Bouldoires
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | - Kévin Sollier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | - Laura Zamfirov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.,Physics for Medicine Paris, ESPCI ParisTech, PSL Research University, Inserm U1273, F-75005, Paris, France
| | - Florence Broders-Bondon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | - Démosthène Mitrossilis
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.,Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St., 115 27, Athens, Greece
| | - Sebastian Bermeo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France
| | | | - Anna Chipont
- Cytometry Platform, Institut Curie, Paris, France
| | - Gabriel Champenois
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Renaud Leclère
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Nicolas André
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Laurent Ranno
- NEEL Institut, CNRS, Grenoble Alpes University, F-38042, Grenoble, France
| | - Aude Michel
- Sorbonne Université, Laboratoire PHENIX Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, CNRS UMR 8234, F-75005, Paris, France
| | - Christine Ménager
- Sorbonne Université, Laboratoire PHENIX Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, CNRS UMR 8234, F-75005, Paris, France
| | - Didier Meseure
- Platform of Investigative Pathology, Institut Curie, 75248, Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, ESPCI ParisTech, PSL Research University, Inserm U1273, F-75005, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, ESPCI ParisTech, PSL Research University, Inserm U1273, F-75005, Paris, France
| | - Maria Elena Fernández-Sánchez
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.
| | - Emmanuel Farge
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire de Physico-Chimie Curie, Mechanics and Genetics of Embryonic and Tumoral Development team, INSERM, F-75005, Paris, France.
| |
Collapse
|
18
|
Gholizadeh M, Doustvandi MA, Mohammadnejad F, Shadbad MA, Tajalli H, Brunetti O, Argentiero A, Silvestris N, Baradaran B. Photodynamic Therapy with Zinc Phthalocyanine Inhibits the Stemness and Development of Colorectal Cancer: Time to Overcome the Challenging Barriers? Molecules 2021; 26:6877. [PMID: 34833970 PMCID: PMC8621355 DOI: 10.3390/molecules26226877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a light-based cancer therapy approach that has shown promising results in treating various malignancies. Growing evidence indicates that cancer stem cells (CSCs) are implicated in tumor recurrence, metastasis, and cancer therapy resistance in colorectal cancer (CRC); thus, targeting these cells can ameliorate the prognosis of affected patients. Based on our bioinformatics results, SOX2 overexpression is significantly associated with inferior disease-specific survival and worsened the progression-free interval of CRC patients. Our results demonstrate that zinc phthalocyanine (ZnPc)-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially decrease tumor migration via downregulating MMP9 and ROCK1 and inhibit the clonogenicity of SW480 cells via downregulating CD44 and SOX2. Despite inhibiting clonogenicity, ZnPc-PDT with 12 J/cm2 irradiation fails to downregulate CD44 expression in SW480 cells. Our results indicate that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially reduce the cell viability of SW480 cells and stimulate autophagy in the tumoral cells. Moreover, our results show that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially arrest the cell cycle at the sub-G1 level, stimulate the intrinsic apoptosis pathway via upregulating caspase-3 and caspase-9 and downregulating Bcl-2. Indeed, our bioinformatics results show considerable interactions between the studied CSC-related genes with the studied migration- and apoptosis-related genes. Collectively, the current study highlights the potential role of ZnPc-PDT in inhibiting stemness and CRC development, which can ameliorate the prognosis of CRC patients.
Collapse
Affiliation(s)
- Mahsa Gholizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
| | - Mohammad Amin Doustvandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
| | - Fateme Mohammadnejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| | - Habib Tajalli
- Biophotonic Research Center, Islamic Azad University, Tabriz Branch, Tabriz 51579-44533, Iran;
- Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 51666-16471, Iran
| | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), 70124 Bari, Italy; (O.B.); (A.A.)
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), 70124 Bari, Italy; (O.B.); (A.A.)
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), 70124 Bari, Italy; (O.B.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran; (M.G.); (M.A.D.); (F.M.); (M.A.S.)
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14731, Iran
| |
Collapse
|
19
|
Shariati M, Esfahani RJ, Bidkhori HR, Sabouri E, Mehrzad S, Sadr-Nabavi A. Cell-based treatment of cerebral palsy: still a long way ahead. Curr Stem Cell Res Ther 2021; 17:741-749. [PMID: 34727864 DOI: 10.2174/1574888x16666211102090230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cerebral palsy (CP) is a permanent neurodevelopmental disorder with considerable global disability. Various rehabilitation strategies are currently available. However, none represents a convincing curative result. Cellular therapy recently holds much promise as an alternative strategy to repair neurologic defects. METHOD In this narrative review, a comprehensive search of the MEDLINE and ClinicalTrials.gov was made, using the terms: "cell therapy" and "cerebral palsy", including published and registered clinical studies, respectively. RESULTS The early effects of these studies demonstrated that using cell therapy in CP patients is safe and improves the deficits for a variable duration. Despite such hopeful early bird results, the long-term outcomes are not conclusive. CONCLUSIONS Due to the heterogeneous nature of CP, personal factors seem essential to consider. Cell dosage, routes of administration, and repeated dosing are pivotal to establish optimal personalized treatments. Future clinical trials should consider employing other cell types, specific cell modifications before administration, and cell-free platforms.
Collapse
Affiliation(s)
- Mohammad Shariati
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad. Iran
| | - Reza Jafarzadeh Esfahani
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad. Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad. Iran
| | - Ehsan Sabouri
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Shadi Mehrzad
- Stem Cells and Regenerative Medicine Research Department, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad. Iran
| | - Ariane Sadr-Nabavi
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
20
|
Ding J, Wang X, Gao J, Song T. Silencing of cystatin SN abrogates cancer progression and stem cell properties in papillary thyroid carcinoma. FEBS Open Bio 2021. [PMID: 34102026 PMCID: PMC8329778 DOI: 10.1002/2211-5463.13221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) accounts for approximately 80% of total thyroid cancers worldwide. Although the prognosis for early‐stage PTC is favorable, the 5‐year survival rate of patients with late‐stage PTC is still very poor. Cystatin SN (cystatin 1, CST1) facilitates the progression of multiple cancers, but its role in regulating PTC pathogenesis is still largely unknown. In this study, we measured the expression levels of CST1 in PTC clinical tissues and cell lines by real‐time quantitative PCR and western blot analysis, and we performed gain‐ and loss‐of‐function experiments to examine the effects of CST1 on PTC cell growth, invasion, migration, epithelial–mesenchymal transition and stemness. Tumorigenicity was assessed using in vivo tumor‐bearing nude mouse models. As expected, upregulated CST1 was observed in PTC tissues (P < 0.05) and cells, compared with their normal counterparts (P < 0.05); furthermore, patients with PTC with higher levels of CST1 exhibited unfavorable prognosis (P < 0.05). In addition, CST1 ablation inhibited PTC cell growth (P < 0.05) in vivo and in vitro. Silencing of CST1 also inhibited cell motility and epithelial–mesenchymal transition in PTC cells (P < 0.05), whereas CST1 overexpression had the opposite effects on the earlier cellular functions. Notably, up‐regulation of CST1 promoted cell spheroid formation (P < 0.05) and increased the expression levels of stemness signatures (P < 0.05) in PTC cells. Collectively, these findings suggest that CST1 functions as an oncogene to facilitate cancer development and promote cancer stem cell properties in PTC cells, increasing our understanding of PTC pathogenesis mechanisms and possibly aiding in the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Jiaojiao Ding
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaorong Wang
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junxi Gao
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tao Song
- Department of Ultrasound, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Ahmadi Z, Mohammadinejad R, Roomiani S, Afshar EG, Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J Pharmacopuncture 2021; 24:1-13. [PMID: 33833895 PMCID: PMC8010425 DOI: 10.3831/kpi.2021.24.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/19/2019] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Flavonoids consist a wide range of naturally occurring compounds which are exclusively found in different fruits and vegetables. These medicinal herbs have a number of favourable biological and therapeutic activities such as antioxidant, neuroprotective, renoprotective, anti-inflammatory, anti-diabetic and anti-tumor. Troxerutin, also known as vitamin P4, is a naturally occurring flavonoid which is isolated from tea, coffee and cereal grains as well as vegetables. It has a variety of valuable pharmacological and therapeutic activities including antioxidant, anti-inflammatory, anti-diabetic and anti-tumor. These pharmacological impacts have been demonstrated in in vitro and in vivo studies. Also, clinical trials have revealed the efficacy of troxerutin for management of phlebocholosis and hemorrhoidal diseases. In the present review, we focus on the therapeutic effects and biological activities of troxerutin as well as its molecular signaling pathways.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
22
|
Mao X, Zhang X, Zheng X, Chen Y, Xuan Z, Huang P. Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. J Nat Med 2021; 75:590-601. [PMID: 33713277 PMCID: PMC8159825 DOI: 10.1007/s11418-021-01505-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 01/24/2023]
Abstract
Abstract Colorectal cancer stem cells (CSCs) have the potential for self-renewal, proliferation, and differentiation. And LGR5 is a stem cell marker gene of colorectal cancer. Curcumin can suppress oncogenicity of many cancer cells, yet the effect and mechanism of curcumin in LGR5(+) colorectal cancer stem cells (CSCs) have not been studied. In this study, we studied the effect of curcumin on LGR5(+) colorectal CSCs using the experiments of tumorsphere formation, cell viability and cell apoptosis. Then autophagy analysis, RNA-Seq, and real-time PCR were used to identify the mechanism responsible for the inhibition of LGR5(+) colorectal CSCs. Our results showed that curcumin inhibited tumorsphere formation, decreased cell viability in a dose-dependent manner, and also promoted apoptosis of LGR5(+) colorectal CSCs. Next, we found curcumin induced autophagy of LGR5(+) colorectal CSCs. When LGR5(+) colorectal CSCs were co-treated with curcumin and the autophagy inhibitor (hydroxychloroquine), curcumin-induced cell proliferation inhibition decreased. In addition, we also found that curcumin inhibited the extracellular matrix (ECM)-receptor interaction pathway via the downregulation of the following genes: GP1BB, COL9A3, COMP, AGRN, ITGB4, LAMA5, COL2A1, ITGB6, ITGA1, and TNC. Further, these genes were transcriptionally regulated by TFAP2A, and the high expression of TFAP2A was associated with poor prognosis in colorectal cancer. In conclusion, curcumin suppressed LGR5(+) colorectal CSCs, potentially by inducing autophagy and repressing the oncogenic TFAP2A-mediated ECM pathway. Graphic abstract ![]()
Collapse
Affiliation(s)
- Xiaohong Mao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaowei Zheng
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yongwu Chen
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230036, China
| | - Zixue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
23
|
Khan I, Prabhakar A, Delepine C, Tsang H, Pham V, Sur M. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. BIOMICROFLUIDICS 2021; 15:024105. [PMID: 33868534 PMCID: PMC8043249 DOI: 10.1063/5.0041027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Organoids are biological systems grown in vitro and are observed to self-organize into 3D cellular tissues of specific organs. Brain organoids have emerged as valuable models for the study of human brain development in health and disease. Researchers are now in need of improved culturing and imaging tools to capture the in vitro dynamics of development processes in the brain. Here, we describe the design of a microfluidic chip and bioreactor, to enable in situ tracking and imaging of brain organoids on-chip. The low-cost 3D printed microfluidic bioreactor supports organoid growth and provides an optimal imaging chamber for live-organoid imaging, with drug delivery support. This fully isolated design of a live-cell imaging and culturing platform enables long-term live-imaging of the intact live brain organoids as it grows. We can thus analyze their self-organization in a controlled environment with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Ikram Khan
- Department of Electrical Engineering, Indian
Institute of Technology, Madras 600036, India
| | - Anil Prabhakar
- Department of Electrical Engineering, Indian
Institute of Technology, Madras 600036, India
| | - Chloe Delepine
- Picower Institute for Learning and Memory,
Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
| | - Hayley Tsang
- Picower Institute for Learning and Memory,
Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
| | - Vincent Pham
- Picower Institute for Learning and Memory,
Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory,
Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Hwang GR, Yuen JG, Ju J. Roles of microRNAs in Gastrointestinal Cancer Stem Cell Resistance and Therapeutic Development. Int J Mol Sci 2021; 22:ijms22041624. [PMID: 33562727 PMCID: PMC7915611 DOI: 10.3390/ijms22041624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to cancer treatment is one of the major challenges currently faced when treating gastrointestinal (GI) cancers. A major contributing factor to this resistance is the presence of cancer stem cells (CSCs) in GI cancers (e.g., colorectal, pancreatic, gastric, liver cancer). Non-coding RNAs, such as microRNAs (miRNAs), have been found to regulate several key targets that are responsible for cancer stemness, and function as oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs. As a result, several miRNAs have been found to alter, or be altered by, the expression of CSC-defining markers and their related pathways. These miRNAs can be utilized to affect stemness in multiple ways, including directly targeting CSCs and enhancing the efficacy of cancer therapeutics. This review highlights current studies regarding the roles of miRNAs in GI CSCs, and efforts towards the development of cancer therapeutics.
Collapse
|
25
|
Yan G, Li S, Yue M, Li C, Kang Z. Lysine demethylase 5B suppresses CC chemokine ligand 14 to promote progression of colorectal cancer through the Wnt/β-catenin pathway. Life Sci 2021; 264:118726. [PMID: 33160990 DOI: 10.1016/j.lfs.2020.118726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
AIMS Epigenetic and genetic alterations are crucial events in the onset and progression of human cancers including colorectal cancer (CRC). This work aims to probe the relevance of lysine demethylase 5B (KDM5B) to the progression of CRC and the possible molecules involved. MATERIALS AND METHODS KDM5B expression in CRC tissues and cells was determined. The association between KDM5B and the prognosis of patients was analyzed. Gain- and loss-of function studies of KDM5B were performed in HT-29 and KDM5B cells to explore the impact of KDM5B on cell behaviors. Expression of CC chemokine ligand 14 (CCL14) in CRC tissues and cells and its correlation with KDM5B were analyzed. Altered expression of CCL14 was introduced in CRC cells, and a Wnt/β-catenin-specific antagonist KYA1797K was induced in cells as well. KEY FINDINGS KDM5B was abundantly expressed while CCL14 was poorly expressed in CRC tissues and cells. High KDM5B expression was relevant to poor prognosis of patients. Downregulation of KDM5B suppressed proliferation and aggressiveness of HT-29 cells, and reduced the growth of xenograft tumors in mice, while upregulation of KDM5B in SW480 cells led to reverse results. KDM5B reduced CCL14 expression through demethylation modification of H3K4me3. Upregulation of CCL14 suppressed colony formation and invasiveness of CRC cells. KDM5B downregulated CCL14 to activate the Wnt/β-catenin. Inhibition of β-catenin by KYA1797K blocked the oncogenic roles of KDM5B in cells and in xenograft tumors. SIGNIFICANCE This study suggested that KDM5B suppresses CCL14 through demethylation modification of H3K4me3, leading to activation of the Wnt/β-catenin and the CRC progression.
Collapse
Affiliation(s)
- Guoqiang Yan
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Shiquan Li
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Meng Yue
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Chenyao Li
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Zhenhua Kang
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
26
|
Zargari S, Negahban Khameneh S, Rad A, Forghanifard MM. MEIS1 promotes expression of stem cell markers in esophageal squamous cell carcinoma. BMC Cancer 2020; 20:789. [PMID: 32819319 PMCID: PMC7441725 DOI: 10.1186/s12885-020-07307-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MEIS1 (Myeloid ecotropic viral integration site 1) as a homeobox (HOX) transcription factor plays regulatory roles in a variety of cellular processes including development, differentiation, survival, apoptosis and hematopoiesis, as well as stem cell regulation. Few studies have established pluripotency and self-renewal regulatory roles for MEIS1 in human esophageal squamous cell carcinoma (ESCC), and our aim in this study was to evaluate the functional correlation between MEIS1 and the stemness markers in ESCC patients and cell line KYSE-30. METHODS Expression pattern of MEIS1 and SALL4 gene expression was analyzed in different pathological features of ESCC patients. shRNA in retroviral vector was used for constantly silencing of MEIS1 mRNA in ESCC line (KYSE-30). Knockdown of MEIS1 gene and the expression pattern of selected stemness markers including SALL4, OCT4, BMI-1, HIWI, NANOG, PLK1, and KLF4 were evaluated using real-time PCR. RESULTS Significant correlations were observed between MEIS1 and stemness marker SALL4 in different early pathological features of ESCC including non-invaded tumors, and the tumors with primary stages of progression. Retroviral knockdown of MEIS1 in KYSE-30 cells caused a noteworthy underexpression of both MEIS1 and major involved markers in stemness state of the cells including SALL4, OCT4, BMI-1, HIWI and KLF4. CONCLUSIONS The results highlight the important potential role of MEIS1 in modulating stemness properties of ESCCs and cells KYSE-30. These findings may confirm the linkage between MEIS1 and self-renewal capacity in ESCC and support probable oncogenic role for MEIS1 in the disease.
Collapse
Affiliation(s)
- Selma Zargari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Negahban Khameneh
- Department of Biology, Damghan branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Islamic Republic of Iran
| | - Abolfazl Rad
- Cellular and Molecular Research center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Islamic Republic of Iran.
| |
Collapse
|
27
|
Aghabozorgi AS, Ebrahimi R, Bahiraee A, Tehrani SS, Nabizadeh F, Setayesh L, Jafarzadeh-Esfehani R, Ferns GA, Avan A, Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci 2020; 256:118006. [PMID: 32593708 DOI: 10.1016/j.lfs.2020.118006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a common cancer with poor prognosis and high mortality. There is growing information about the factors involved in the pathogenesis of CRC. However, the knowledge of the predisposing factors is limited. The development of CRC is strongly associated with the Wingless/Integrated (Wnt) signaling pathway. This pathway comprises several major target proteins, including LRP5/6, GSK3β, adenomatous polyposis coli (APC), axis inhibition protein (Axin), and β-catenin. Genetic variations in these components of the Wnt signaling pathway may lead to the activation of β-catenin, potentially increasing the proliferation of colorectal cells. Because of the potentially important role of the Wnt signaling pathway in CRC, we aimed to review the involvement of different mutations in the main downstream proteins of this pathway, including LRP5/6, APC, GSK3β, Axin, and β-catenin. Determination of the genetic risk factors involved in the progression of CRC may lead to novel approaches for the early diagnosis of CRC and the identification of potential therapeutic targets in the treatment of CRC.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
28
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
He X, Ma J, Zhang M, Cui J, Yang H. Long Non-Coding RNA SNHG16 Activates USP22 Expression to Promote Colorectal Cancer Progression by Sponging miR-132-3p. Onco Targets Ther 2020; 13:4283-4294. [PMID: 32547062 PMCID: PMC7244243 DOI: 10.2147/ott.s244778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is the most common cause of cancer-related mortality in the world. Long non-coding RNAs (lncRNAs) are involved in the development of many cancers. However, studies on the effect of lncRNA small nucleolar RNA host gene 16 (SNHG16) on the proliferation, metastasis and apoptosis of CRC are still few. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the expression levels of SNHG16, microRNA-132-3p (miR-132-3p) and ubiquitin specific peptidase 22 (USP22). The proliferation, apoptosis, migration and invasion of CRC cells were evaluated by the 3-(4,5-dimethyl-2 thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flow cytometry and transwell assay, respectively. Dual-luciferase reporter assay was used to verify the interactions among SNHG16, miR-132-3p and USP22. Also, Western blot analysis was used to assess the protein levels of USP22 and metastasis-related markers. Moreover, mice xenograft models were used to determine the effect of SNHG16 on CRC tumor growth in vivo. Results SNHG16 was highly expressed in CRC tissues and cells. Knockdown of SNHG16 reduced the proliferation, migration, invasion, and promoted the apoptosis of CRC cells. MiR-132-3p could interact with SNHG16, and its inhibitor recovered the suppression effect of silenced SNHG16 on CRC cell progression. Besides, USP22 was a target of miR-132-3p, and its overexpression restored the inhibition effect of miR-132-3p mimic on CRC cell progression. In addition, interference of SNHG16 reduced CRC tumor growth in vivo. Conclusion LncRNA SNHG16 might act as an oncogene in CRC. The discovery of the SNHG16/miR-132-3p/USP22 pathway provided new thinking for the treatment of CRC.
Collapse
Affiliation(s)
- Xiaowen He
- Department of General Surgery, Liu Zhou People's Hospital, Liuzhou, Guangxi 545006, People's Republic of China
| | - Jun Ma
- Department of General Surgery, Liu Zhou People's Hospital, Liuzhou, Guangxi 545006, People's Republic of China
| | - Mingming Zhang
- Department of General Surgery, Liu Zhou People's Hospital, Liuzhou, Guangxi 545006, People's Republic of China
| | - Jianhua Cui
- Department of General Surgery, Liu Zhou People's Hospital, Liuzhou, Guangxi 545006, People's Republic of China
| | - Hao Yang
- Department of General Surgery, Liu Zhou People's Hospital, Liuzhou, Guangxi 545006, People's Republic of China
| |
Collapse
|
30
|
Oliveira-Alves SC, Pereira RS, Pereira AB, Ferreira A, Mecha E, Silva AB, Serra AT, Bronze MR. Identification of functional compounds in baru (Dipteryx alata Vog.) nuts: Nutritional value, volatile and phenolic composition, antioxidant activity and antiproliferative effect. Food Res Int 2020; 131:109026. [PMID: 32247467 DOI: 10.1016/j.foodres.2020.109026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/06/2023]
Abstract
This work aimed to contribute to the nutritional and functional characterization of roasted baru nuts, a seed widely consumed and produced in Brazil. Baru nut was characterized in terms of its nutritional value and volatile composition (SPME-GC-MS analysis). The ultrasound assisted extraction was used to extract free and bound phenolic compounds that were identified by LC-DAD-ESI-MS/MS method. Bioactivity assays were carried out to evaluate the antioxidant activity (ORAC and HOSC assay) and anticancer effect (inhibition of HT29 cell growth and targeting of cancer stemness) of baru nut extracts and phenolic compounds. Results showed that baru is a good source of protein and monounsaturated fatty acids, specifically oleic acid (47.20 g/100 g). The predominant volatile compounds are hexanal (71.18%) and 2,5-dimethyl-pyrazine (9.43%). The main phenolic compounds identified were gallic acid and its derivatives, such as gallic acid esters and gallotannins. Among all, gallic acid and methyl gallate seemed to be the main compounds responsible for the high antioxidant activity. The antiproliferative effect evaluated of baru extracts in HT29 cell line showed ability to impair cell growth in both monolayer and spheroid cultures and to reduce ALDH+ population. These results supply new information about the functional compounds presents in baru nut, which are important sources of natural antioxidants and antiproliferative compounds.
Collapse
Affiliation(s)
- Sheila C Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| | - Rafaela Sofia Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana Bárbara Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - António Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Andreia B Silva
- iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Maria R Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
31
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Rezaei-Kalat A, Parizadeh SMR, Javanbakht A, Hassanian SM, Ferns GA, Khazaei M, Avan A. Personalized Peptide-based Vaccination for Treatment of Colorectal Cancer: Rational and Progress. Curr Drug Targets 2019; 20:1486-1495. [DOI: 10.2174/1389450120666190619121658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with
a high rate of morbidity and mortality. A large proportion of patients with early stage CRC, who undergo
conventional treatments develop local recurrence or distant metastasis and in this group of advanced
disease, the survival rate is low. Furthermore there is often a poor response and/or toxicity associated
with chemotherapy and chemo-resistance may limit continuing conventional treatment alone.
Choosing novel and targeted therapeutic approaches based on clinicopathological and molecular features
of tumors in combination with conventional therapeutic approach could be used to eradicate residual
micrometastasis and therefore improve patient prognosis and also be used preventively. Peptide-
based vaccination therapy is one class of cancer treatment that could be used to induce tumorspecific
immune responses, through the recognition of specific antigen-derived peptides in tumor
cells, and this has emerged as a promising anti-cancer therapeutic strategy. The aim of this review was
to summarize the main findings of recent studies in exciting field of peptide-based vaccination therapy
in CRC patients as a novel therapeutic approach in the treatment of CRC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Javanbakht
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Luo K, Bao Y, Liu F, Xiao C, Li K, Zhang C, Huang R, Lin J, Zhang J, Jin Y. Synthesis and biological evaluation of novel benzylidene-succinimide derivatives as noncytotoxic antiangiogenic inhibitors with anticolorectal cancer activity in vivo. Eur J Med Chem 2019; 179:805-827. [DOI: 10.1016/j.ejmech.2019.06.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/05/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
|
33
|
E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions. Clin Chim Acta 2019; 498:126-134. [PMID: 31445029 DOI: 10.1016/j.cca.2019.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Despite the medical advances of the 21st century, the incidence of cancer continues to increase and the search for a universal cure remains a major health challenge. Our lack of understanding the complex pathophysiology of the tumor microenvironment has hindered the development and efficiency of anti-cancer therapeutic strategies. The tumor microenvironment, composed of multiple cellular and non-cellular components, enables tumor-promoting processes such as proliferation, angiogenesis, migration and invasion, metastasis, and drug resistance. The ubiquitin-mediated degradation system is involved in several physiologic processes including cell cycling, signal transduction, receptor downregulation, endocytosis and transcriptional regulation. Ubiquitination includes attachment of ubiquitin to target proteins via E1 (activating), E2 (conjugating) and E3 (ligating) enzymes. Several studies have shown that E2 enzymes are dysregulated in variety of cancers. Multiple investigations have demonstrated the involvement of E2s in various tumor-promoting processes including DNA repair, cell cycle progression, apoptosis and oncogenic signaling. E2 enzymes consist of 40 members that facilitate ubiquitin-substrate conjugation thereby modulating the stability and interaction of various proteins. As such, E2s are potential biomarkers as diagnostic, prognostic and therapeutic tools. In this review, we discuss the role of E2s in modulating various types of cancer.
Collapse
|
34
|
Wei L, Wang Z, Xia Y, Liu B. The mechanism and tumor inhibitory study of Lagopsis supine ethanol extract on colorectal cancer in nude mice. Altern Ther Health Med 2019; 19:173. [PMID: 31299960 PMCID: PMC6624892 DOI: 10.1186/s12906-019-2585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/30/2019] [Indexed: 02/05/2025]
Abstract
Background This study was aimed to determination the tumor inhibitory effect and explore the potential mechanisms of Lagopsis supine ethanol extract (Ls) on colorectal cancer. Methods The cell growth inhibition experiment of Ls in colorectal cancer cell lines was determined by MTT method in the time course of 24, 48 and 72 h in four gradient drug concentrations. The protein expression levels of pSTAT3, pJAK2, STAT3, JAK2, Bcl-2 and caspase 3 were measured by Western blot method. The mRNA levels of the downstream genes of STAT3 were detected through semi-quantitative RT PCR. Sixty Balb/c-nude mice were xenograft with HCT116 colorectal cancer cells through subcutaneously. The xenografts were divided into five groups: model group, positive group (capecitabine 300 mg/kg) and three dosages of Ls treated groups (75, 150 and 300 mg/kg). Tumor size and tumor weight were calculated for evaluation the anti-tumor effects. H & E staining and immunohistochemical analysis were used to determine the histopathological changes and the levels of pSTAT3 and pJAK2 in the tumor tissues. Results Ls exhibited a significant anti-proliferation effect in HCT116 and SW480 cells in vitro. The protein levels of pSTAT3, pJAK2 and Bcl-2, and the mRNA levels of Bcl-2 and Bak notably reduced with a dose-dependent manner. While the protein levels of caspase 3, and mRNA levels of Bax and caspase-3 remarkably increased in the gradient dosage of Ls in HCT116 cells. HCT116 in vivo xenografts experiment showed that the growth of the tumors significantly inhibited by Ls administration, which with no any significant body weight changes in each experiment group. The histopathology analysis displayed that Ls significantly reduced the inflammatory cells in tumor tissue. Furthermore, Ls also significantly down-regulate the protein levels of pSTAT3 and pJAK2 in the tumor tissues, compared with the model group. Conclusions This work shows that Ls inhibited the cell proliferation of colorectal cancer in vitro and significantly reduced the tumor growth in HCT116 xenografts in vivo, which is probably related with the JAK/STAT signal pathway.
Collapse
|