1
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2024:10.1007/s12013-024-01591-4. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Ørbeck SV, Jakobsen T, García-Rodríguez JL, Burton M, Rasmussen LG, Ewald JD, Fristrup CW, Pfeiffer P, Mortensen MB, Kristensen LS, Detlefsen S. Exploring the prognostic value of circular RNAs in pancreatic ductal adenocarcinoma using genome-wide expression profiling. Pancreatology 2024; 24:706-718. [PMID: 38724419 DOI: 10.1016/j.pan.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND/OBJECTIVES Median survival of pancreatic ductal adenocarcinoma (PDAC) is around eight months and new prognostic tools are needed. Circular RNAs (circRNAs) have gained interest in different types of cancer. However, only a few studies have evaluated their potential in PDAC. We aimed to identify the most differentially expressed circRNAs in PDAC compared to controls and to explore their potential as prognostic markers. METHODS Using frozen specimens with PDAC and controls, we performed RNA sequencing and identified 20,440 unique circRNAs. A custom code set of capture- and reporter probes for NanoString nCounter analysis was designed to target 152 circRNAs, based on abundancy, differential expression and a literature study. Expression of these 152 circRNAs was examined in 108 formalin-fixed and paraffin-embedded surgical PDAC specimens and controls. The spatial expression of one of the most promising candidates, ciRS-7 (hsa_circ_0001946), was evaluated by chromogenic in situ hybridization (CISH) using multi-punch tissue microarrays (TMAs) and digital imaging analysis. RESULTS Based on circRNA expression profiles, we identified different PDAC subclusters. The 30 most differentially expressed circRNAs showed log2 fold changes from -3.43 to 0.94, where circNRIP1 (hsa_circ_0004771), circMBOAT2 (hsa_circ_0007334) and circRUNX1 (hsa_circ_0002360) held significant prognostic value in multivariate analysis. CiRS-7 was absent in PDAC cells but highly expressed in the tumor microenvironment. CONCLUSIONS We identified several new circRNAs with biomarker potential in surgically treated PDAC, three of which showed an independent prognostic value. We also found that ciRS-7 is absent in cancer cells but abundant in tumor microenvironment and may hold potential as marker of activated stroma.
Collapse
Affiliation(s)
- Siri Vreim Ørbeck
- Department of Pathology, Odense University Hospital, Odense, Denmark; Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Mark Burton
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Clinical Genome Center, University of Southern Denmark, Odense, Denmark
| | - Lukas Gammelgaard Rasmussen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Jesper Dupont Ewald
- Department of Pathology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus Wilki Fristrup
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Per Pfeiffer
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Michael Bau Mortensen
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Surgery, Odense University Hospital, Odense, Denmark
| | | | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark; Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Cai P, Fu X, Li X, Zhao W. Upregulation of circ_0076684 in osteosarcoma facilitates malignant processes by mediating miRNAs/CUX1. J Orthop Surg Res 2024; 19:260. [PMID: 38659042 PMCID: PMC11044396 DOI: 10.1186/s13018-024-04742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.
Collapse
Affiliation(s)
- Pengfei Cai
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xin Fu
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China
| | - Xiaofei Li
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| | - Wei Zhao
- Department of Orthopeadics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, No. 365 Renmin East Road, Jinhua City, 321000, Zhejiang Province, China.
| |
Collapse
|
5
|
Zhang J, Cui X, Qu H, Zhang Y. Circ_0030411 aggravates cisplatin-resistance in non-small cell lung cancer by serving as a miR-495-3p sponge to enhance CCND1 expression. J Chemother 2023; 35:550-562. [PMID: 36591727 DOI: 10.1080/1120009x.2022.2162218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Circular RNAsplay important modulators in cisplatin (DDP) resistant non-small cell lung cancer (NSCLC). Herein, the role and mechanism of circ_0030411 in DDP-resistant NSCLC was explored. Circ_0030411, miR-495-3p, CCND1, PCNA, Bax, E-cadherin, and ki-67 expression were examined byqRT-PCR, western blot and IHC. DDP resistance, cell proliferation, apoptosis, and motility were assessed usingCCK, EdU flow cytometry, and transwell. Xenograft tumour model was established to explore the role of circ_0030411 in DDP-resistant NSCLC. Interaction between miR-495-3p and circ_0030411 or CCND1 wasverified via luciferase reporterand RIP. Circ_0030411 and CCND1 were increased in DDP-resistant NSCLC tissues and cells, andmiR-495-3p level was decreased. Circ_0030411 knockdown hindered cell growth, migration, invasion, in DDP-resistant NSCLC cells, and improved DDP sensitivityof NSCLC in vivo. Mechanistically, circ_0030411 acted as a sponge of miR-495-3p to affect CCND1expression. Circ_0030411 facilitated DDP resistance by regulating the miR-495-3p/CCND1 axis, highlighting a promising target for NSCLC patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohai Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hangying Qu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
7
|
Xia Y, Wang D, Piao Y, Chen M, Wang D, Jiang Z, Liu B. Modulation of immunosuppressive cells and noncoding RNAs as immunotherapy in osteosarcoma. Front Immunol 2022; 13:1025532. [PMID: 36457998 PMCID: PMC9705758 DOI: 10.3389/fimmu.2022.1025532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 07/21/2023] Open
Abstract
The most common bone cancer is osteosarcoma (OS), which mostly affects children and teenagers. Early surgical resection combined with chemotherapy significantly improves the prognosis of patients with OS. Existing chemotherapies have poor efficacy in individuals with distant metastases or inoperable resection, and these patients may respond better to novel immunotherapies. Immune escape, which is mediated by immunosuppressive cells in the tumour microenvironment (TME), is a major cause of poor OS prognosis and a primary target of immunotherapy. Myeloid-derived suppressor cells, regulatory T cells, and tumour-associated macrophages are the main immunosuppressor cells, which can regulate tumorigenesis and growth on a variety of levels through the interaction in the TME. The proliferation, migration, invasion, and epithelial-mesenchymal transition of OS cells can all be impacted by the expression of non-coding RNAs (ncRNAs), which can also influence how immunosuppressive cells work and support immune suppression in TME. Interferon, checkpoint inhibitors, cancer vaccines, and engineered chimeric antigen receptor (CAR-T) T cells for OS have all been developed using information from studies on the metabolic properties of immunosuppressive cells in TME and ncRNAs in OS cells. This review summarizes the regulatory effect of ncRNAs on OS cells as well as the metabolic heterogeneity of immunosuppressive cells in the context of OS immunotherapies.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yuting Piao
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Huang SX, Mei HB, Liu K, Tang J, Wu JY, Zhu GH, Ye WH. CircPVT1 promotes the tumorigenesis and metastasis of osteosarcoma via mediation of miR-26b-5p/CCNB1 axis. J Bone Miner Metab 2022; 40:581-593. [PMID: 35648221 DOI: 10.1007/s00774-022-01326-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most aggressive malignancy among the bone tumors in the world. Circular RNAs (circRNAs) have been reported to be participated in multiple cancers, including OS. Meanwhile, circPVT1 has been proved to be upregulated in OS. However, the mechanism by which circPVT1 mediates the tumorigenesis of OS remains to be further explored. MATERIALS AND METHODS Protein and gene expressions in OS cells were measured by western blot and RT-qPCR, respectively. Cell growth was assessed by flow cytometry and colony formation, respectively. In addition, cell migration was assessed by wound healing, and invasion was evaluated by Transwell assay. Meanwhile, the correlation among circPVT1, miR-26b-5p and CCNB1 was explored by RNA pull-down and dual luciferase assay. Finally, in vivo model was established to explore the role of circPVT1 in OS in vivo. RESULTS CircPVT1 and CCNB1 were significantly upregulated in OS cells, while miR-26b-5p was downregulated. Knockdown of circPVT1 notably inhibited proliferation and induced apoptosis of OS cells. CircPVT1 shRNA significantly suppressed the OS cell invasion and migration. Meanwhile, circPVT1 sponged miR-26b-5p and CCNB1 was found to be the direct target of miR-26b-5p. Furthermore, silencing of circPVT1 inhibited the growth and metastasis of OS in vivo. CONCLUSION Silencing of circPVT1 notably suppressed the tumorigenesis and metastasis of OS via miR-26b-5p/CCNB1 axis. Therefore, circPVT1 might be used as a target for OS treatment.
Collapse
Affiliation(s)
- Sheng-Xiang Huang
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Hai-Bo Mei
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Kun Liu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Jin Tang
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Jiang-Yan Wu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Guang-Hui Zhu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Wei-Hua Ye
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Yang Q, Yu H, Hu K. Hsa_circ_0001017 promotes cell proliferation, migration and invasion in osteosarcoma by sponging miR-145-5p. J Orthop Surg Res 2022; 17:184. [PMID: 35346268 PMCID: PMC8962139 DOI: 10.1186/s13018-022-03062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have displayed important roles in the development and progression of various cancers. However, the functions of the majority of circRNAs in osteosarcoma (OS) remain unknown. METHODS Circular RNA microarray analysis was performed in three OS cell lines (Saos-2, U2OS and MG63) and normal vascular endothelial cells. The co-differentially expressed circRNAs (CDECs) were identified in OS cell lines with the criterion of FDR (false discovery rate) < 0.05 and |fold change (FC)|> 2. Quantitative real-time PCR was used to validate the expression levels of selected CDECs. A series of functional assays, including MTT assay, flow cytometry and transwell assay were conducted in OS cells. The interaction between circRNA and miRNAs was confirmed by luciferase reporter assay and RNA immunoprecipitation assay. RESULTS A total of 241 CDECs, including 75 upregulated and 166 downregulated CDECs, were identified in three OS cell lines compared with normal vascular endothelial cells. PCR validation showed that hsa_circ_0000704, hsa_circ_0001017 and hsa_circ_0005035 were all highly expression in the three OS cell lines, compared with osteoblast cell lines (HECC, hFOB1.19 and HFF-1). Functionally, overexpression of circ_0001017 significantly promoted the cell proliferation, migration and invasion and decreased apoptosis in U2OS cells. Knockdown of circ_0001017 obtained the opposite results. Circ_0001017 may downregulate miR-145-5p through direct binding. Furthermore, the expression of miR-145-5p was negatively regulated by circ_0001017 in OS cells. In addition, further functional studies indicated that miR-145-5p inhibitor eliminated the effects caused by si-circ_0001017 in OS cells. CONCLUSIONS In conclusion, our study suggested that circ_0001017 may be a novel oncogenic factor during the progression and development of OS by targeting miR-145-5p.
Collapse
Affiliation(s)
- Qinglei Yang
- Department of Arthropathy and Osteopathy, Yuebei People's Hospital Affiliated to Shantou University Medical College, No.133 Huimin South Road, Wujiang District, Shaoguan City, 512000, Guangdong Province, People's Republic of China
| | - Hongying Yu
- Department of Pharmacy, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, 512000, China
| | - Konghe Hu
- Department of Arthropathy and Osteopathy, Yuebei People's Hospital Affiliated to Shantou University Medical College, No.133 Huimin South Road, Wujiang District, Shaoguan City, 512000, Guangdong Province, People's Republic of China
| |
Collapse
|
10
|
Li JX, Wang JJ, Deng ZF, Zheng H, Yang CM, Yuan Y, Yang C, Gu FF, Wu WQ, Qiao GL, Ma LJ. Circular RNA circ_0008934 promotes hepatocellular carcinoma growth and metastasis through modulating miR-1305/TMTC3 axis. Hum Cell 2022; 35:498-510. [PMID: 35015267 DOI: 10.1007/s13577-021-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Circular RNAs (circRNAs) play important roles in the progression of hepatocellular carcinoma (HCC). However, the exact function of circ_0008934 in HCC is unknown. Our study aimed to investigate the expression characteristics of circ_0008934 in HCC and its effects on the proliferation and metastasis of HCC, and to explore the potential mechanism. In this study, circ_0008934 expression was found to be significantly upregulated in HCC tissues and cell lines by qRT-PCR. High level of circ_0008934 is closely associated with higher serum AFP (P < 0.001), larger tumor diameter (P = 0.012), microvascular invasion (P = 0.008) and poorer prognosis (P = 0.007) of HCC patients. Functionally, knockdown of circ_0008934 inhibited HCC cell proliferation, invasion and migration in vitro and vivo. Mechanically, circ_0008934 was a sponge of miR-1305 to facilitate the TMTC3 expression, and the TMTC3 expression in HCC tissues was negatively associated with the survival of HCC patients. Furthermore, rescued assays revealed that the circ_0008934 facilitated HCC proliferation, invasion and migration by regulating miR-1305/ TMTC3 signaling pathways. Overall, these results demonstrate that downregulation of circ_0008934 repress HCC growth and metastasis by upregulating miR-1305 to inhibit TMTC3, suggesting circ_0008934/ miR-1305/ TMTC3 regulatory axis may be a possible novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jia-Xi Li
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Jin-Jiang Wang
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Zhou-Feng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Hao Zheng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,The Department of Reproductive Genetic Center, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Mei Yang
- Department of Laboratory, Shunyi District Hospital, Beijing, 101300, China
| | - Ying Yuan
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Cheng Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Fang-Fang Gu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China
| | - Wei-Qi Wu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| | - Guang-Lei Qiao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| | - Li-Jun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
11
|
Zhou Z, Liu T, Li Z, Wang L. Circ_0003732 promotes osteosarcoma progression through regulating miR-377-3p/CPEB1 axis and Wnt/β-catenin signaling pathway. Anticancer Drugs 2022; 33:e299-e310. [PMID: 34407049 DOI: 10.1097/cad.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Osteosarcoma is a prevalent malignant bone cancer. This study aimed to explore the biologic role and potential mechanism of circ_0003732 in osteosarcoma carcinogenesis. Quantitative real-time PCR was implemented to detect the RNA expression of circ_0003732, microRNA-377-3p (miR-377-3p) and cytoplasmic polyadenylation element-binding protein 1 (CPEB1). Cell proliferation was evaluated by cell counting kit-8 assay and colony formation assay. Transwell, wound healing and flow cytometry assays were employed to assess cell migration, invasion and apoptosis. In addition, the interaction between miR-377-3p and circ_0003732 or CPEB1 was validated by dual-luciferase reporter assay. The protein expression was detected by western blot assay or immunohistochemistry assay. Xenograft tumor assay was performed to explore the regulation of circ_0003732 on osteosarcoma tumor growth in vivo. Circ_0003732 was upregulated in osteosarcoma tissues and cells. Knockdown of circ_0003732 suppressed osteosarcoma cell proliferation, migration, invasion and triggered cell apoptosis in vitro, as well as reduced osteosarcoma tumor growth in vivo. Meanwhile, miR-377-3p could bind to circ_0003732 and CPEB1 and miR-377-3p inhibitor could reverse the effects of circ_0003732 silence on osteosarcoma cell progression. Furthermore, CPEB1 overexpression could overturn the suppressive impacts of miR-377-3p on osteosarcoma progression. In addition, circ_0003732 silence restrained Wnt/β-catenin signaling pathway via regulating miR-377-3p in osteosarcoma cells. Circ_0003732 might play a positive role in the malignant progression of osteosarcoma by regulating the miR-377-3p/CPEB1 axis and activating the Wnt/β-catenin signaling pathway, which might provide new insights for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zheng Zhou
- Department Of Orthopedics, The Second Xiangya Hospital Of Central South University, China
| | | | | | | |
Collapse
|
12
|
Lu N, Ren L. TTK (threonine tyrosine kinase) regulates the malignant behaviors of cancer cells and is regulated by microRNA-582-5p in ovarian cancer. Bioengineered 2021; 12:5759-5768. [PMID: 34516342 PMCID: PMC8806697 DOI: 10.1080/21655979.2021.1968778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
There is growing evidence that threonine tyrosine kinase (TTK) dysregulation is linked to the progression of multiple malignancies. Nonetheless, the role of TTK in ovarian cancer (OC) remains unclear. The GEO2R method was employed to screen out the mRNAs that were abnormally expressed between OC tissues and normal ovarian tissues using three datasets from the Gene Expression Omnibus (GEO) database: GSE14407, GSE18520, and GSE36668. Moreover, the Kaplan-Meier plotter was utilized to investigate the association between TTK expression and OC patients' prognosis. Furthermore, quantitative real-time PCR (qRT-PCR) was applied to examine miR-582-5p expression and TTK mRNA expression in OC tissues and cells. Additionally, immunohistochemistry (IHC) experiment and Western blot were executed to examine TTK protein expression in OC tissues and cells, respectively. In addition, Cell Counting Kit-8 (CCK-8), transwell, and flow-cytometry experiments were performed to examine the multiplication, migration, and apoptosis of OC cells, respectively. In addition, dual-luciferase reporter gene tests were executed to validate the targeting relationship between miR-582-5p and TTK. We demonstrated that TTK expression was up-regulated in OC tissues and cells, and its overexpression was found to be associated with an adverse prognosis in OC patients. TTK overexpression enhanced OC cell multiplication and migration, and repressed apoptosis. Mechanistically, TTK was a downstream target of miR-582-5p. Furthermore, miR-582-5p overexpression impeded OC cell multiplication and migration, while TTK overexpression reversed this phenomenon. These data suggest that miR-582-5p and TTK are promising targets for OC diagnosis and therapy.
Collapse
Affiliation(s)
- Na Lu
- Department of Gynecology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi China
| | - Lixin Ren
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi China
| |
Collapse
|
13
|
Cui XH, Peng QJ, Li RZ, Lyu XJ, Zhu CF, Qin XH. Cell division cycle associated 8: A novel diagnostic and prognostic biomarker for hepatocellular carcinoma. J Cell Mol Med 2021; 25:11097-11112. [PMID: 34741389 PMCID: PMC8650035 DOI: 10.1111/jcmm.17032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The cell division cycle associated 8 (CDCA8) is a crucial component of the chromosome passenger complex (CPC). It has been implicated in the regulation of cell dynamic localization during mitosis. However, its role in hepatocellular carcinoma (HCC) is not clearly known. In this study, data of 374 patients with HCC were retrieved from the Cancer Genome Atlas (TCGA) database. Pan analysis of Gene Expression Profiling Interactive Analysis (GEPIA) database was performed to profile the mRNA expression of CDCA8 in HCC. Then, the Kaplan‐Meier plotter database was analysed to determine the prognostic value of CDCA8 in HCC. In addition, samples of tumour and adjacent normal tissues were collected from 88 HCC patients to perform immunohistochemistry (IHC), reverse transcription‐quantitative polymerase chain reaction (qRT‐PCR) and Western blotting. The results obtained from bioinformatic analyses were validated through CCK‐8 assay, EdU assay, colony formation assay, cell cycle assays and Western blotting experiments. Analysis of the Kaplan‐Meier plotter database showed that high expression of CDCA8 may lead to poor overall survival (OS, p = 4.06e‐05) in patients with HCC. For the 88 patients with HCC, we found that stages and grades appeared to be strongly linked with CDCA8 expression. Furthermore, the high expression of CDCA8 was found to be correlated with poor OS (p = 0.0054) and progression‐free survival (PFS, p = 0.0009). In vitro experiments revealed that inhibition of CDCA8 slowed cell proliferation and blocked the cell cycle at the G0/G1 phase. In vivo experiments demonstrated that inhibition of CDCA8 inhibited tumour growth. Finally, blockade of CDCA8 reduced the expression levels of cyclin A2, cyclin D1, CDK4, CDK6, Ki67 and PCNA. And, there is an interaction between CDCA8 and E2F1. In conclusion, this research demonstrates that CDCA8 may serve as a biomarker for early diagnosis and prognosis prediction of HCC patients. In addition, CDCA8 could be an effective therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Han Cui
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiu-Ju Peng
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ren-Zhi Li
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xia-Jie Lyu
- Weifang Medical University, Weifang, Shandong, China
| | - Chun-Fu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xi-Hu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
14
|
EZH2 Mediates miR-146a-5p/HIF-1 α to Alleviate Inflammation and Glycolysis after Acute Spinal Cord Injury. Mediators Inflamm 2021; 2021:5591582. [PMID: 34104112 PMCID: PMC8159642 DOI: 10.1155/2021/5591582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Acute spinal cord injury (ASCI) is a severe traumatic disease of the central nervous system, the underlying mechanism of which is unclear. This study was intended to study the role of EZH2 and miR-146a-5p/HIF-1α in inflammation and glycolysis after ASCI, providing reference and basis for the clinical treatment and prognosis of ASCI injury. We used lipopolysaccharide (LPS) to induce inflammation of microglia, and we constructed the ASCI animal model. qRT-PCR detected the relative expression levels of EZH2, HIF-1α, miR-146a-5p, IL-6, TNF-α, IL-17, PKM2, GLUT1, and HK2 in cells and tissues. Western blot was performed to detect the expression levels of EZH2, HIF-1α, H3K27me3, IL-6, TNF-α, IL-17, PKM2, GLUT1, and HK2. ChIP verified the enrichment of H3K27me3 in the miR-146a-5p promoter region. Bioinformatics predicted the binding sites of HIF-1α and miR-146a-5p, and dual-luciferase reporter assay verified the binding of HIF-1α and miR-146a-5p. ELISA detects the levels of inflammatory factors IL-6, TNF-α, and IL-17 in the cerebrospinal fluid of rats. The GC-TOFMS was used to detect the changes of glycolytic metabolites in the cerebrospinal fluid of rats. EZH2 could mediate inflammation and glycolysis of microglia. EZH2 regulates inflammation and glycolysis through HIF-1α. EZH2 indirectly regulated the HIF-1α expression by mediating miR-146a-5p. EZH2 mediates miR-146a-5p/HIF-1α to alleviate inflammation and glycolysis in ASCI rats. In the present study, our results demonstrated that EZH2 could mediate miR-146a-5p/HIF-1α to alleviate the inflammation and glycolysis after ASCI. Therefore, EZH2/miR-146a-5p/HIF-1α might be a novel potential target for treating ASCI.
Collapse
|
15
|
Hu R, Chen S, Yan J. Blocking circ-CNST suppresses malignant behaviors of osteosarcoma cells and inhibits glycolysis through circ-CNST-miR-578-LDHA/PDK1 ceRNA networks. J Orthop Surg Res 2021; 16:300. [PMID: 33962616 PMCID: PMC8103765 DOI: 10.1186/s13018-021-02427-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background CircRNA CNST (circ-CNST) is a newly identified biomarker for prognosis of osteosarcoma (OS). However, its role in OS progression remains to be well documented. Methods Expression of circ-CNST, microRNA (miR)-578, lactate dehydrogenase A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1) was detected by quantitative real-time polymerase chain reaction and Western blotting. The physical interaction was confirmed by dual-luciferase reporter assay. Cell behaviors and glycolysis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry, transwell assays, xenograft experiment, and commercial kits. Results Circ-CNST was upregulated in human OS tissues and cells, accompanied with downregulation of miR-578 and upregulation of LDHA and PDK1. There were negative correlations between miR-578 expression and circ-CNST or LDHA/PDK1 in OS tissues. Moreover, high circ-CNST/LDHA/PDK1 or low miR-578 might predict shorter overall survival, advanced TNM stages, and lymph node metastasis. Physically, miR-578 was targeted by circ-CNST, and miR-578 could target LDHA/PDK1. Functionally, blocking circ-CNST and restoring miR-578 enhanced apoptosis rate and suppressed cell proliferation, colony formation, migration, and invasion in 143B and U2OS cells, accompanied with decreased glucose consumption, lactate production, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio. Furthermore, in vivo growth of U2OS cells was retarded by silencing circ-CNST. Depletion of miR-578 could counteract the suppressive role of circ-CNST deficiency in 143B and U2OS cells, and restoring LDHA or PDK1 partially reversed the role of miR-578 inhibition as well. Conclusion Circ-CNST knockdown could antagonize malignant behaviors and glycolysis of OS cells by regulating miR-578-LDHA/PDK1 axes. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02427-0.
Collapse
Affiliation(s)
- Rui Hu
- Department of Spine Surgery Clinic, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Shan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Jianxin Yan
- Department of Joint Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Avenue, Enshi City, 445000, Hubei Province, China.
| |
Collapse
|
16
|
Zhang S. The characteristics of circRNA as competing endogenous RNA in pathogenesis of acute myeloid leukemia. BMC Cancer 2021; 21:277. [PMID: 33722210 PMCID: PMC7962291 DOI: 10.1186/s12885-021-08029-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background As one of the novel molecules, circRNA has been identified closely involved in the pathogenesis of many diseases. However, the function of circRNA in acute myeloid leukemia (AML) still remains unknown. Methods In the current study, the RNA expression profiles were obtained from Gene Expression Omnibus (GEO) datasets. The differentially expressed RNAs were identified using R software and the competing endogenous RNA (ceRNA) network was constructed using Cytoscape. Functional and pathway enrichment analyses were performed to identify the candidate circRNA-mediated aberrant signaling pathways. The hub genes were identified by MCODE and CytoHubba plugins of Cytoscape, and then a subnetwork regulatory module was established. Results A total of 27 circRNA-miRNA pairs and 208 miRNA-mRNA pairs, including 12 circRNAs, 24 miRNAs and 112 mRNAs were included in the ceRNA network. Subsequently, a subnetwork, including 4 circRNAs, 5 miRNAs and 6 mRNAs, was established based on related circRNA-miRNA-mRNA regulatory modules. Conclusions In summary, this work analyzes the characteristics of circRNA as competing endogenous RNA in AML pathogenesis, which would provide hints for developing novel prognostic, diagnostic and therapeutic strategy for AML.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Medicine, Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Du R, Fu B, Sun G, Ma B, Deng M, Zhu X, Kong D. Circular RNA circ_0046264 Suppresses Osteosarcoma Progression via microRNA-940/Secreted Frizzled Related Protein 1 Axis. TOHOKU J EXP MED 2021; 254:189-197. [PMID: 34305100 DOI: 10.1620/tjem.254.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) feature prominently in regulating tumor progression. The study aims to investigate the role and mechanism of circ_0046264 in osteosarcoma. In this study, dysregulated circRNAs in osteosarcoma tissues and adjacent tissues were screened out by analyzing circRNA microarray (GSE140256). The expressions of circ_0046264 in 58 osteosarcoma tissues and 4 osteosarcoma cell lines were detected by quantitative real-time polymerase chain reaction. Subsequently, the relationship of circ_0046264 expression level and clinical features were analyzed. Ethyldeoxyuridine assay and Transwell assay were employed to detect cell viability, migration and invasion. Dual-luciferase reporter assay was adopted to confirm the targeting relationships between circ_0046264 and microRNA-940 (miR-940), as well as miR-940 and secreted frizzled related protein 1 (SFRP1). SFRP1 expression was determined by western blot. Here, we demonstrated that circ_0046264 was greatly down-regulated in osteosarcoma and was inversely related to tumor size and Ki67 expression. Functional assays validated that circ_0046264 could restrain the proliferation, migration and invasion. Mechanistically, circ_0046264 could adsorb miR-940 and indirectly modulate SFRP1 expression. Furthermore, the transfection of miR-940 mimics or SFRP1 small interfering RNA could reverse the impact of circ_0046264 overexpression on the growth, migration and invasion of osteosarcoma cells. Taken together, circ_0046264 is a tumor suppressor to inhibit the osteosarcoma progression via modulating the miR-940 / SFRP1 axis.
Collapse
Affiliation(s)
- Rui Du
- Department of Foot and Ankle Surgery, Affiliated Hospital of Binzhou Medical University
| | - Bingjin Fu
- Department of Foot and Ankle Surgery, Affiliated Hospital of Binzhou Medical University
| | - Guangchao Sun
- Department of Foot and Ankle Surgery, Affiliated Hospital of Binzhou Medical University
| | - Bingdong Ma
- Department of Foot and Ankle Surgery, Yantai Affiliated Hospital of Binzhou Medical University
| | - Mingming Deng
- Department of Foot and Ankle Surgery, Affiliated Hospital of Binzhou Medical University
| | - Xiaodong Zhu
- Department of Foot and Ankle Surgery, Affiliated Hospital of Binzhou Medical University
| | - Dehai Kong
- Department of Foot and Ankle Surgery, Affiliated Hospital of Binzhou Medical University
| |
Collapse
|