1
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
2
|
Gonzalez-Candia A, Figueroa EG, Krause BJ. Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. Biochem Pharmacol 2024; 228:116318. [PMID: 38801924 DOI: 10.1016/j.bcp.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Esteban G Figueroa
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
3
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
4
|
Hu Y, Liu T, Zheng G, Zhou L, Ma K, Xiong X, Zheng C, Li J, Zhu Y, Bian W, Zheng X, Xiong Q, Lin J. Mechanism exploration of 6-Gingerol in the treatment of atherosclerosis based on network pharmacology, molecular docking and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154835. [PMID: 37121058 DOI: 10.1016/j.phymed.2023.154835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The 6-Gingerol has significant anti-inflammatory, anti-oxidative and hypolipidemic activities and is widely used for treating cardiac-cerebral vascular diseases. However, the multi-target mechanism of 6-Gingerol in the treatment of atherosclerosis remains to be elucidated. METHODS Firstly, the therapeutic actions of 6-Gingerol anti-atherosclerosis were researched based on an atherosclerotic ApoE-deficient mice model induced by high-fat feed. Then, network pharmacology and molecular docking were employed to reveal the anti-atherogenic mechanism of 6-Gingerol. Finally, the target for these predictions was validated by target protein expression assay in vitro and in vivo experiments and further correlation analysis. RESULTS Firstly, 6-Gingerol possessed obvious anti-atherogenic activity, which was manifested by a significant reduction in the plaque area, decrease in the atherosclerosis index and vulnerability index. Secondly, based on network pharmacology, 14 predicted intersection target genes between the targets of 6-Gingerol and atherogenic-related targets were identified. The key core targets of 6-Gingerol anti-atherosclerosis were found to be TP53, RELA, BAX, BCL2, and CASP3. Lipid and atherosclerosis pathways might play a critical role in 6-Gingerol anti-atherosclerosis. Molecular docking results also further revealed that the 6-Gingerol bound well and stable to key core targets from network pharmacological predictions. Then, the experimental results in vivo and in vitro verified that the up-regulation of TP53, RELA, BAX, CASP3, and down-regulation of BCL2 from atherosclerotic ApoE-deficient mice model can be improved by 6-Gingerol intervention. Meanwhile, the correlation analysis further confirmed that 6-Gingerol anti-atherosclerosis was closely related to these targets. CONCLUSION The 6-Gingerol can markedly improve atherosclerosis by modulating key multi-targets TP53, RELA, BAX, CASP3, and BCL2 in lipid and atherosclerosis pathways. These novel findings shed light on the anti-atherosclerosis mechanism of 6-Gingerol from the perspective of multiple targets and pathways.
Collapse
Affiliation(s)
- Youdong Hu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tingting Liu
- Department of Gynecology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, China
| | - Guangzhen Zheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Li Zhou
- Department of Intensive Care Unit, Dazhou Central Hospital, Dazhou, 635000, Sichuan, China
| | - Ke Ma
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Xiaolian Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Cheng Zheng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jin Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yong Zhu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Wenhui Bian
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Xiangde Zheng
- Department of Intensive Care Unit, Dazhou Central Hospital, Dazhou, 635000, Sichuan, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | - Jiafeng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Huang HT, Lv WQ, Xu FY, Wang XL, Yao YL, Su LJ, Zhao HJ, Huang Y. Mechanism of Yiqi Huoxue Huatan recipe in the treatment of coronary atherosclerotic disease through network pharmacology and experiments. Medicine (Baltimore) 2023; 102:e34178. [PMID: 37390239 PMCID: PMC10313272 DOI: 10.1097/md.0000000000034178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
In recent years, with population aging and economic development, morbidity and mortality of atherosclerotic cardiovascular disease associated with atherosclerosis (AS) have gradually increased. In this study, a combination of network pharmacology and experimental verification was used to systematically explore the action mechanism of Yiqi Huoxue Huatan Recipe (YHHR) in the treatment of coronary atherosclerotic heart disease (CAD). We searched and screened the active ingredients of Coptis chinensis, Astragalus membranaceus, Salvia miltiorrhiza, and Hirudo. We also searched multiple databases for related target genes corresponding to the compounds and CAD. STRING was used to construct the protein-protein interaction (PPI) network of genes. Metascape was used to perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for common targets to analyze the main pathways, and finally, the molecular docking and main possible pathways were verified by experimental studies. Firstly, a total of 1480 predicted target points were obtained through the Swiss Target Prediction database. After screening, merging, and deleting duplicate values, a total of 768 targets were obtained. Secondly, "Coronary atherosclerotic heart disease" was searched in databases such as the OMIM, GeneCards, and TTD. 1844 disease-related targets were obtained. Among PPI network diagram of YHHR-CAD, SRC had the highest degree value, followed by AKT1, TP53, hsp90aa1 and mapk3. The KEGG pathway bubble diagram was drawn using Chiplot, the Signal pathways such as NF kappa B signaling pathway, Lipid and AS, and Apelin signaling pathway are closely related to the occurrence of CAD. The PCR and Western blot methods were used to detect the expression of NF-κB p65. When compared with that in the model group, the expression of NF-κB p65mRNA decreased in the low-concentration YHHR group, with P < .05, while the expression of NF-κB p65mRNA decreased significantly in the high-concentration YHHR group, with P < .01. On the other hand, when compared with that in the model group, the expression of NF-κB p65 decreased in the low-concentration YHHR group, but was not statistically significant, while the expression of NF-κB p65 was significant in the high-concentration YHHR group, and has statistical significance with P < .05. YHHR has been shown to resist inflammation and AS through the SRC/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | - Wen-Qing Lv
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei-Yue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiao-Long Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Li Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jie Su
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han-Jun Zhao
- Shanghai Pudong New District Zhoupu Hospital, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Ma J, Zhao W, Pei X, Li X, Zhao W. MicroRNA-345-3p is a potential biomarker and ameliorates rheumatoid arthritis by reducing the release of proinflammatory cytokines. J Orthop Surg Res 2023; 18:399. [PMID: 37264454 DOI: 10.1186/s13018-023-03797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
OBJECTIVES The study was to explore the influence of microRNA (miR)-345-3p on proinflammatory cytokines in patients with rheumatoid arthritis (RA). METHODS A total of 32 RA patients and 32 healthy patients were enrolled. Proinflammatory factors in patients' serum were detected by ELISA, and miR-345-3p was detected by RT-qPCR. The correlation between miR-345-3p expression and proinflammatory factors in RA patients was analyzed. The diagnostic value of miR-345-3p and proinflammatory factors in RA patients was analyzed by receiver operating curve diagnosis. The predictive value of miR-345-3p levels and proinflammatory factors in RA patients was analyzed by multivariate Cox regression. HFLS-RA and HFLS cells were cultured, in which miR-345-3p and proinflammatory cytokines were detected by RT-qPCR. Cell proliferation and apoptosis were determined by CCK-8 and flow cytometry, respectively. RESULTS MiR-345-3p was lowly expressed in the serum of RA patients. MiR-345-3p and proinflammatory factors were of diagnostic and predictive values in RA. Elevated miR-345-3p restrained the production of proinflammatory factors of HFLS-RA cells, improved cell proliferation, and reduced apoptosis. CONCLUSION MiR-345-3p is a potential biomarker and ameliorates RA by reducing the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - Wei Zhao
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - Xue Pei
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - XinZhi Li
- Department of Orthopaedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang City, 443001, Hubei Province, China
| | - Wei Zhao
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China.
| |
Collapse
|
7
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Zhan C, Liu K, Zhang Y, Zhang Y, He M, Wu R, Bi C, Shen B. Myocardial infarction unveiled: Key miRNA players screened by a novel lncRNA-miRNA-mRNA network model. Comput Biol Med 2023; 160:106987. [PMID: 37141653 DOI: 10.1016/j.compbiomed.2023.106987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is a major contributor to global mortality, and microRNAs (miRNAs) are important in its pathogenesis. Identifying blood miRNAs with clinical application potential for the early detection and treatment of MI is crucial. METHODS We obtained MI-related miRNA and miRNA microarray datasets from MI Knowledge Base (MIKB) and Gene Expression Omnibus (GEO), respectively. A new feature called target regulatory score (TRS) was proposed to characterize the RNA interaction network. MI-related miRNAs were characterized using TRS, transcription factor (TF) gene proportion (TFP), and ageing-related gene (AG) proportion (AGP) via the lncRNA-miRNA-mRNA network. A bioinformatics model was then developed to predict MI-related miRNAs, which were verified by literature and pathway enrichment analysis. RESULTS The TRS-characterized model outperformed previous methods in identifying MI-related miRNAs. MI-related miRNAs had high TRS, TFP, and AGP values, and combining the three features improved prediction accuracy to 0.743. With this method, 31 candidate MI-related miRNAs were screened from the specific-MI lncRNA-miRNA-mRNA network, associated with key MI pathways like circulatory system processes, inflammatory response, and oxygen level adaptation. Most candidate miRNAs were directly associated with MI according to literature evidence, except hsa-miR-520c-3p and hsa-miR-190b-5p. Furthermore, CAV1, PPARA and VEGFA were identified as MI key genes, and were targeted by most of the candidate miRNAs. CONCLUSIONS This study proposed a novel bioinformatics model based on multivariate biomolecular network analysis to identify putative key miRNAs of MI, which deserve further experimental and clinical validation for translational applications.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
9
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
10
|
Xue W, He W, Yan M, Zhao H, Pi J. Exploring Shared Biomarkers of Myocardial Infarction and Alzheimer's Disease via Single-Cell/Nucleus Sequencing and Bioinformatics Analysis. J Alzheimers Dis 2023; 96:705-723. [PMID: 37840493 PMCID: PMC10657707 DOI: 10.3233/jad-230559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Patients are at increased risk of dementia, including Alzheimer's disease (AD), after myocardial infarction (MI), but the biological link between MI and AD is unclear. OBJECTIVE To understand the association between the pathogenesis of MI and AD and identify common biomarkers of both diseases. METHODS Using public databases, we identified common biomarkers of MI and AD. Least absolute shrinkage and selection operator (LASSO) regression and protein-protein interaction (PPI) network were performed to further screen hub biomarkers. Functional enrichment analyses were performed on the hub biomarkers. Single-cell/nucleus analysis was utilized to further analyze the hub biomarkers at the cellular level in carotid atherosclerosis and AD datasets. Motif enrichment analysis was used to screen key transcription factors. RESULTS 26 common differentially expressed genes were screened between MI and AD. Function enrichment analyses showed that these differentially expressed genes were mainly associated with inflammatory pathways. A key gene, Regulator of G-protein Signaling 1 (RGS1), was obtained by LASSO regression and PPI network. RGS1 was confirmed to mainly express in macrophages and microglia according to single-cell/nucleus analysis. The difference in expression of RGS1 in macrophages and microglia between disease groups and controls was statistically significant (p < 0.0001). The expression of RGS1 in the disease groups was upregulated with the differentiation of macrophages and microglia. RelA was a key transcription factor regulating RGS1. CONCLUSION Macrophages and microglia are involved in the inflammatory response of MI and AD. RGS1 may be a key biomarker in this process.
Collapse
Affiliation(s)
- Weiqi Xue
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weifeng He
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengyuan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianbin Pi
- Department of Cardiovascular Disease, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
11
|
Cui Z, Zhang W, Le X, Song K, Zhang C, Zhao W, Sha L. Analyzing network pharmacology and molecular docking to clarify Duhuo Jisheng decoction potential mechanism of osteoarthritis mitigation. Medicine (Baltimore) 2022; 101:e32132. [PMID: 36550856 PMCID: PMC9771196 DOI: 10.1097/md.0000000000032132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a classic remedy for treating Osteoarthritis (OA), Duhuo Jisheng decoction has successfully treated countless patients. Nevertheless, its specific mechanism is unknown. This study explored the active constituents of Duhuo Jisheng decoction and the potential molecular mechanisms for treating OA using a Network Pharmacology approaches. Screening active components and corresponding targets of Duhuo parasite decoction by traditional Chinese medicine systems pharmacology database and analysis platform database. Combining the following databases yielded OA disease targets: GeneCards, DrugBank, PharmGkb, Online Mendelian Inheritance in Man, and therapeutic target database. The interaction analysis of the herb-active ingredient-core target network and protein-protein interaction protein network was constructed by STRING platform and Cytoscape software. Gene ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were carried out. PyMOL and other software were used to verify the molecular docking between the essential active components and the core target. 262 active ingredients were screened, and their main components were quercetin, kaempferol, wogonin, baicalein, and beta-carotene. 108 intersection targets of disease and drug were identified, and their main components were RELA, FOS, STAT3, MAPK14, MAPK1, JUN, and ESR1. Gene ontology analysis showed that the key targets were mainly involved in biological processes such as response to lipopolysaccharide, response to xenobiotic stimulus, and response to nutrient levels. The results of Kyoto Encyclopedia of Genes and Genomes analysis show that the signal pathways include the AGE - RAGE signaling pathway, IL - 17 signaling pathway, TNF signaling pathway, and Toll - like receptor signaling pathway. Molecular docking showed that the main active components of Duhuo parasitic decoction had a good bonding activity with the key targets in treating OA. Duhuo Jisheng decoction can reduce the immune-inflammatory reaction, inhibit apoptosis of chondrocytes, strengthen proliferation and repair of chondrocytes and reduce the inflammatory response in a multi-component-multi-target-multi-pathway way to play a role in the treatment of OA.
Collapse
Affiliation(s)
- Zhenhai Cui
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Weidong Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuezhen Le
- The Third Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Kunyu Song
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunliang Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wenhai Zhao
- Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liquan Sha
- The Third Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
- * Correspondence: Liquan Sha, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China (e-mail: )
| |
Collapse
|
12
|
microRNAs Associated with Carotid Plaque Development and Vulnerability: The Clinician's Perspective. Int J Mol Sci 2022; 23:ijms232415645. [PMID: 36555285 PMCID: PMC9779323 DOI: 10.3390/ijms232415645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke (IS) related to atherosclerosis of large arteries is one of the leading causes of mortality and disability in developed countries. Atherosclerotic internal carotid artery stenosis (ICAS) contributes to 20% of all cerebral ischemia cases. Nowadays, atherosclerosis prevention and treatment measures aim at controlling the atherosclerosis risk factors, or at the interventional (surgical or endovascular) management of mature occlusive lesions. There is a definite lack of the established circulating biomarkers which, once modulated, could prevent development of atherosclerosis, and consequently prevent the carotid-artery-related IS. Recent studies emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal role in this approach. There are some research studies on the association between the expression of small non-coding microRNAs with a carotid plaque development and vulnerability. However, the data remain inconsistent. In addition, all major studies on carotid atherosclerotic plaque were conducted on cell culture or animal models; very few were conducted on humans, whereas the accumulating evidence demonstrates that it cannot be automatically extrapolated to processes in humans. Therefore, this paper aims to review the current knowledge on how miRNA participate in the process of carotid plaque formation and rupture, as well as stroke occurrence. We discuss potential target miRNA that could be used as a prognostic or therapeutic tool.
Collapse
|
13
|
Identification of Adipocytokine Pathway-Related Genes in Epilepsy and Its Effect on the Peripheral Immune Landscape. Brain Sci 2022; 12:brainsci12091156. [PMID: 36138892 PMCID: PMC9497159 DOI: 10.3390/brainsci12091156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a multifactorial neurological disorder with recurrent epileptic seizures. Current research stresses both inflammatory and autoimmune conditions as enablers in the pathophysiological process of epilepsy. In view of the growing concern about the role of adipocytokines in antiepileptic and modulating immune responses, we aimed to investigate the relevance of the adipocytokine signaling pathway in the pathological process of epilepsy and its impacts on peripheral immune characteristics. In this study, expression profiles of 142 peripheral blood samples were downloaded from the Gene Expression Omnibus (GEO) database. Adipocytokine pathway-related genes were screened out by feature selection using machine-learning algorithms. A nomogram was then constructed and estimated for the efficacy of diagnosis. Cluster analysis was employed for the recognization of two distinct epilepsy subtypes, followed by an estimation of the immune cell infiltration levels using single-sample gene-set enrichment analysis (ssGSEA). The biological characteristics were analyzed by functional enrichment analysis. The aberrant regulation of adipocytokine signaling pathway was found in the peripheral blood of patients with epilepsy. Twenty-one differently expressed adipocytokine pathway-related genes were identified and five (RELA, PRKAB1, TNFRSF1A, CAMKK2, and CPT1B) were selected to construct a nomogram. Subsequent validations of its forecasting ability revealed that this model has satisfactory predictive value. The immune cell infiltration degrees, such as those of innate immune cells and lymphocytes, were found to significantly correlate to the levels of adipocytokine pathway-related genes. Additionally, 239 differentially expressed genes (DEGs) were identified and their biological functions were mainly enriched in the regulation of the immune response. In conclusion, our results confirmed the predictive value of adipocytokine pathway-related genes for epilepsy and explored their effects on immune infiltration, thereby improving our understanding of the pathogenesis of epilepsy and providing assistance in the diagnosis and treatment of epilepsy.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is critical for all aspects of vascular pathobiology. In vascular disease the balance of its structural components is shifted. In atherosclerotic plaques there is in fact a dynamic battle between stabilizing and proinflammatory responses. This review explores the most recent strides that have been made to detail the active role of the ECM - and its main binding partners - in driving atherosclerotic plaque development and destabilization. RECENT FINDINGS Proteoglycans-glycosaminoglycans (PGs-GAGs) synthesis and remodelling, as well as elastin synthesis, cross-linking, degradation and its elastokines potentially affect disease progression, providing multiple steps for potential therapeutic intervention and diagnostic targeted imaging. Of note, GAGs biosynthetic enzymes modulate the phenotype of vascular resident and infiltrating cells. In addition, while plaque collagen structure exerts very palpable effects on its immediate surroundings, a new role for collagen is also emerging on a more systemic level as a biomarker for cardiovascular disease as well as a target for selective drug-delivery. SUMMARY The importance of studying the ECM in atherosclerosis is more and more acknowledged and various systems are being developed to visualize, target and mimic it.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Sweden
| |
Collapse
|
15
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
16
|
Reveals of candidate active ingredients in Justicia and its anti-thrombotic action of mechanism based on network pharmacology approach and experimental validation. Sci Rep 2021; 11:17187. [PMID: 34433871 PMCID: PMC8387432 DOI: 10.1038/s41598-021-96683-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Thrombotic diseases seriously threaten human life. Justicia, as a common Chinese medicine, is usually used for anti-inflammatory treatment, and further studies have found that it has an inhibitory effect on platelet aggregation. Therefore, it can be inferred that Justicia can be used as a therapeutic drug for thrombosis. This work aims to reveal the pharmacological mechanism of the anti-thrombotic effect of Justicia through network pharmacology combined with wet experimental verification. During the analysis, 461 compound targets were predicted from various databases and 881 thrombus-related targets were collected. Then, herb-compound-target network and protein-protein interaction network of disease and prediction targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, Gene Ontology (GO) and pathway (KEGG) enrichment were used to further determine the association between target proteins and diseases. Finally, the expression of hub target proteins of the core component and the anti-thrombotic effect of Justicia's core compounds were verified by experiments. In conclusion, the core bioactive components, especially justicidin D, can reduce thrombosis by regulating F2, MMP9, CXCL12, MET, RAC1, PDE5A, and ABCB1. The combination of network pharmacology and the experimental research strategies proposed in this paper provides a comprehensive method for systematically exploring the therapeutic mechanism of multi-component medicine.
Collapse
|
17
|
Therapies Targeted at Non-Coding RNAs in Prevention and Limitation of Myocardial Infarction and Subsequent Cardiac Remodeling-Current Experience and Perspectives. Int J Mol Sci 2021; 22:ijms22115718. [PMID: 34071976 PMCID: PMC8198996 DOI: 10.3390/ijms22115718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.
Collapse
|
18
|
Kowara M, Cudnoch-Jedrzejewska A. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. Int J Mol Sci 2021; 22:ijms22094354. [PMID: 33919446 PMCID: PMC8122261 DOI: 10.3390/ijms22094354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications—myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches—towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.
Collapse
|