1
|
Fu Y, Zhou J, Schroyen M, Zhang H, Wu S, Qi G, Wang J. Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens. J Anim Sci Biotechnol 2024; 15:37. [PMID: 38439110 PMCID: PMC10910863 DOI: 10.1186/s40104-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Wang Y, Yang C, Wan J, Liu P, Yu H, Yang X, Ma D. Bone marrow adipocyte: Origin, biology and relationship with hematological malignancy. Int J Lab Hematol 2024; 46:10-19. [PMID: 37926488 DOI: 10.1111/ijlh.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Bone marrow adipose tissue (BMAT) has been histologically recognized for decades. In this study, we performed a bibliometric analysis to quantitatively analyze the clusters of keywords of BMAT and hematopoiesis to better understand BMAT and hematopoiesis. Starting with conclusive keywords, our results demonstrated that BMAds is distinct from extramedullary adipose tissues and maintains a routine but dynamic accumulation throughout an individual's life. Various pathophysiological factors take part in dysregulation of the adipose-osteogenic balance throughout life. Bone marrow adipocytes (BMAds) are also contradictorily involved in normal hematopoiesis, and positively participate in the occurrence and progression of hematologic malignancies, exerting a chemoprotective role in tumor treatment. Mechanically, metabolic reprogramming and abnormal secretory profile of BMAds and tumor cells play a critical role in the chemotherapy resistance. Overall, we hope that this work will provide new ideas for relevant future research on BMAds.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Chunxia Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- College of Pediatrics, Guizhou Medical University, Guiyang, China
| | - Junzhao Wan
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China
| | - Hantao Yu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaoyan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- College of Pediatrics, Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Provincial Institute of Hematological Malignancies, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Zhang X, Li J, Liu T, Zhao M, Liang B, Chen H, Zhang Z. Identification of Key Biomarkers and Immune Infiltration in Liver Tissue after Bariatric Surgery. DISEASE MARKERS 2022; 2022:4369329. [PMID: 35789605 PMCID: PMC9250435 DOI: 10.1155/2022/4369329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Few drugs are clearly available for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH); nevertheless, mounting studies have provided sufficient evidence that bariatric surgery is efficient for multiple metabolic diseases, including NAFLD and NASH, while the molecular mechanisms are still poorly understood. Methods The mRNA expression profiling of GSE48452 and GSE83452 were retrieved and obtained from the Gene Expression Omnibus (GEO) database. The limma package was employed for identifying differentially expressed genes (DEGs), followed by clusterProfiler for performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and GSEA software for performing GSEA analyses. The PPI network analyses were constructed using Metascape online analyses. WGCNA was also utilized to identify and verify the hub genes. CIBERSORT tools contributed to the analysis of immune cell infiltration of liver diseases. Results We identify coexpressed differential genes including 10 upregulated and 55 downregulated genes in liver tissue after bariatric surgery. GO and KEGG enrichment analyses indicated that DEGs were remarkably involved in the immune response. GSEA demonstrated that DEGs were markedly enriched in the immune response before surgery, while most were enriched in metabolism after surgery. Seven genes were screened through the MCC algorithm and KME values, including SRGN, CD53, EVI2B, MPEG1, NCKAP1L, LCP1, and TYROBP. The mRNA levels of these genes were verified in the Attie Lab Diabetes Database, and only LCP1 was found to have significant differences and correlation with certain immune cells. Conclusion Our knowledge of the mechanisms by which bariatric surgery benefits the liver and the discovery of LCP1 is expected to serve as potential biomarkers or therapeutic targets for NAFLD and NASH.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingxin Li
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baozhu Liang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Wang Y, Liu C, Chen Y, Chen T, Han T, Xue L, Xu B. Systemically Silencing Long Non-coding RNAs Maclpil With Short Interfering RNA Nanoparticles Alleviates Experimental Ischemic Stroke by Promoting Macrophage Apoptosis and Anti-inflammatory Activation. Front Cardiovasc Med 2022; 9:876087. [PMID: 35600488 PMCID: PMC9120540 DOI: 10.3389/fcvm.2022.876087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023] Open
Abstract
Background Maclpil is a proinflammatory long non-coding RNA highly expressed on monocyte-derived macrophages in the ischemic brain. This study investigated the impact and the mechanisms of systemically delivering nanoparticle Maclpil short interfering RNA (siRNA) on experimental ischemic stroke in a mouse model. Methods Ischemic stroke (focal cerebral ischemia) was induced in male C57BL/6 mice through the middle cerebral artery occlusion. Three hours thereafter, mice were intravenously injected with Maclpil siRNA or scramble siRNA nanoparticles. Bone marrow cell-derived macrophages were transfected with Maclpil or scramble siRNA and subjected to oxygen glucose deprivation culture. The influence of silencing Maclpil on stroke outcomes, neuroinflammation, and macrophage fates was assessed via histology, flow cytometry, Western blotting, and quantitative PCR analysis. Results Three days following stroke induction, siRNA silencing Maclpil substantially reduced ischemic infarction size and improved neurological behaviors. Silencing Maclpil also markedly attenuated the accumulation of monocyte-derived macrophages, CD4+ T cells, and CD8+ T cells in the ischemic hemisphere without affecting microglia cellularity. Reciprocally, myeloid cells and both subsets of T cells were elevated in mouse peripheral blood following Maclpil siRNA treatment. Under oxygen glucose deprivation conditions that mimicked hypoxia and hypoglycemia in vitro, Maclpil siRNA silencing augmented macrophage apoptosis in conjunction with upregulation of proapoptotic Bax and caspase 3 expressions. siRNA knocking down Maclpil skewed macrophages from proinflammatory classical toward anti-inflammatory alternative activation as evidenced by increased arginase 1, Ym1, and Fizz1 and reduced inducible nitric oxide synthase, IL-1β, and TNF-α mRNA levels. Consistent with macrophage phenotype switching, silencing Maclpil by siRNA enhanced fatty acid oxidation as indicated by increased mRNA levels of 3 key metabolic enzymes (ACADM, ACADVL, and HADHA). Conclusion Systemically silencing Maclpil by siRNA nanoparticles attenuated experimental ischemic stroke by promoting macrophage apoptosis and anti-inflammatory alternative activation. Identifying and targeting Maclpil human homolog(s) may help develop a novel therapy for stroke clinical management.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Yan Wang,
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
| | - Yong Chen
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Tiffany Chen
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Tao Han
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Baohui Xu
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Manigandan S, Yun JW. Loss of cytoplasmic FMR1-interacting protein 2 (CYFIP2) induces browning in 3T3-L1 adipocytes via repression of GABA-BR and activation of mTORC1. J Cell Biochem 2022; 123:863-877. [PMID: 35233844 DOI: 10.1002/jcb.30231] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/05/2022] [Accepted: 02/13/2022] [Indexed: 11/11/2022]
Abstract
Obesity and related metabolic disorders are epidemic diseases. Promoting thermogenesis and a functional increase in the browning of white adipocytes may counteract obesity. On the other hand, the molecular mechanism that regulates brown and beige fat-mediated thermogenesis is unclear. This article reports a molecular network led by cytoplasmic FMR1-interacting protein 2 (CYFIP2) that negatively regulates adipocyte browning in white adipocytes. Although the function of CYFIP2 in Fragile X Syndrome (FXS) and autism have been reported, its physiological roles in adipocytes remain elusive. Therefore, this study examined the physiological consequences of its deprivation in cultured 3T3-L1 white adipocytes using loss-of-function studies. Combined real-time quantitative reverse-transcription polymerase chain reaction and immunoblot analysis showed that the loss of CYFIP2 induces fat browning, as evidenced by the gene and protein expression levels of the brown fat-associated markers. A deficiency of CYFIP2 promoted mitochondrial biogenesis and significantly enhanced the expression of the core set beige fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmem26) and proteins (PGC-1α, PRDM16, and UCP1). In addition, a CYFIP2 deficiency promoted lipid catabolism and suppressed adipogenesis, lipogenesis, and autophagy. A mechanistic study showed that the loss of CYFIP2 induces browning in white adipocytes, independently via the activation of mTORC1 and suppression of the GABA-BR signaling pathway. The present data revealed a previously unidentified mechanism of CYFIP2 in the browning of white adipocytes and emphasized the potential of CYFIP2 as a pharmacotherapeutic target for treating obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Subramani Manigandan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|