1
|
Zhang X, Wu W, Wei Y, Zhang Y, Nie X, Sun X, Lin L, Yang D, Yan Y. A FRET-based multifunctional fluorescence probe for the simultaneous detection of sulfite and viscosity in living cells. Bioorg Chem 2024; 148:107423. [PMID: 38733751 DOI: 10.1016/j.bioorg.2024.107423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Viscosity and sulfur dioxide derivatives were significant indicators for the assessment of health threat and even cancers, therefore, on-site and real time detection of viscosity and sulfur dioxide derivatives has obtained considerable attentions. An FRET-based fluorescence probe JZX was designed and synthesized based on a novel energy donor of N,N-diethyl-4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzamide fluorophore. JZX exhibited a large Stokes shift (230 nm), high energy transfer efficiency, wide emission channel gap (135 nm) and excellent stability and biocompatibility. JZX detected sulfur dioxide with low detection limit (55 nM), fast responding (16 min), high selectivity and sensitivity. Additionally, JZX tend to target endoplasmic reticulum of which normal metabolism will be disturbed by the abnormal levels of viscosity and sulfur dioxide derivatives. Prominently, JZX could concurrently detect viscosity and sulfur dioxide derivatives depending on different fluorescence signals in living cells for the screening of cancer cells. Hence, probe JZX will be a promising candidate for the detection of viscosity and sulfur dioxide derivatives, and even for the diagnosis of liver cancers.
Collapse
Affiliation(s)
- Xin Zhang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yin Wei
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Yiheng Zhang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Xuqing Nie
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Xiaoqi Sun
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China
| | - Di Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
2
|
Zengin S, Mercan S, Tarhan D, Gök A, Ercan AM. Age-related changes on physicochemical properties of the artificial vitreous humor: A practical tool for enhancing ex vivo studies. Exp Eye Res 2024; 239:109762. [PMID: 38147936 DOI: 10.1016/j.exer.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The vitreous humor (VH) is a hydrophilic, jelly-like ocular fluid, which is located in the posterior chamber of the eye. The rheological, structural, and chemical properties of VH change significantly during aging, which further causes eye-associated diseases and could be a potential indicator for various diseases. In this study, artificial VH (A-VH) samples were created by taking into account different age groups to observe age-related changes in the physicochemical properties of these samples. This study aimed to measure the physicochemical properties of age-dependently prepared A-VH samples to determine the changes with aging in the physicochemical properties of A-VH samples. Phosphate-buffered saline (PBS)-based A-VH samples were prepared in three types representing adult, middle-aged, and elder individuals. Age-related changes in physicochemical properties (surface tension, osmolality, pH, relative viscosity, density, and refractive index) were analyzed by related equipment. The A-VH samples, prepared using PBS, showed strong similarity to authentic VH in terms of physicochemical properties. While the age-related changes studies have revealed some discrepancies between age-dependently prepared A-VH samples in terms of surface tension, osmolality, relative viscosity, and pH with high correlation coefficients (r2 > 0,94), density and refractive index values did not show any significant differences and correlation between types of A-VH representing 3 age groups. In conclusion, age-dependent A-VH samples were created successfully to use ex vivo method development studies, and the influence of aging on the physicochemical properties of VH was demonstrated as well.
Collapse
Affiliation(s)
- Simge Zengin
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey
| | - Selda Mercan
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey.
| | - Duygu Tarhan
- Bahcesehir University, School of Medicine, Department of Biophysics, Goztepe, Istanbul, Turkey
| | - Aslı Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul, Turkey
| | - Alev Meltem Ercan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Biophysics, Fatih, Istanbul, Turkey
| |
Collapse
|
3
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
4
|
Chen J, Yan D, Chen Y. Understanding the driving force for cell migration plasticity. Biophys J 2023; 122:3570-3576. [PMID: 37041746 PMCID: PMC10541478 DOI: 10.1016/j.bpj.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Cell migration is a complex phenomenon. Not only do different cells migrate in different default modes, but the same cell can also change its migration mode to adapt to different terrains. This complexity has riddled cell biologists and biophysicists for decades in that, despite the development of many powerful tools over the past 30 years, how cells move is still being actively investigated. This is because we have yet to fully understand the mystery of cell migration plasticity, particularly the reciprocal relation between force generation and migration mode transition. Herein we explore the future directions, in terms of measurement platforms and imaging-based techniques, to facilitate the undertaking of elucidating the relation between force generation machinery and migration mode transition. By briefly reviewing the evolution of the platforms and techniques developed in the past, we propose the desirable features to be added to achieve high measurement accuracy and improved temporal and spatial resolution, permitting us to unveil the mystery of cell migration plasticity.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel Yan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
5
|
Peng Y, Huang H, Liu Y, Zhao X. Theoretical Insights into a Near-Infrared Fluorescent Probe NI-VIS Based on the Organic Molecule for Monitoring Intracellular Viscosity. Molecules 2023; 28:6105. [PMID: 37630357 PMCID: PMC10458998 DOI: 10.3390/molecules28166105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
So many biological functional disorders and diseases, such as atherosclerosis, hypertension, diabetes, Alzheimer's disease, as well as cell malignancy are closely related with the intracellular viscosity. A safe and effective intracellular viscosity detecting method is desired by the biomedical community. Recently, a novel near-infrared fluorescent probe NI-VIS with a twisting intramolecular charge transfer mechanism was developed. The capability of this probe to visualize the viscosity variation in cirrhotic liver tissues and map the micro viscosity in vivo were testified using an experiment. In this work, the twisting intramolecular charge transfer mechanism and fluorescent properties of the probe NI-VIS were studied in detail under quantum mechanical method. The low energy barrier among the different conformations of the probe indicated the occurrence of twisting intramolecular charge transfer due to the rotation of the aryl group in the probe molecule while within the low viscosity environment. The electronic structure analysis on different probe conformations revealed the electron transfer process of the probe under optical excitation. All these theoretical results could provide insights into understand in greater depth the principles and build highly effective fluorescent probe to monitor the viscosity in biological samples.
Collapse
Affiliation(s)
- Yongjin Peng
- College of Bio-Informational Engineering, Jinzhou Medical University, Jinzhou 121001, China
| | | | | | - Xiaoyan Zhao
- College of Bio-Informational Engineering, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|