1
|
Tants JN, Becker L, McNicoll F, Müller-McNicoll M, Schlundt A. NMR-derived secondary structure of the full-length Ox40 mRNA 3'UTR and its multivalent binding to the immunoregulatory RBP Roquin. Nucleic Acids Res 2022; 50:4083-4099. [PMID: 35357505 PMCID: PMC9023295 DOI: 10.1093/nar/gkac212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs). Structural analyses are complicated by inconsistent mapping and prediction of RNA fold, by dynamics, and size. We here, for the first time, provide the secondary structure of a complete mRNA 3'UTR. We use NMR spectroscopy in a divide-and-conquer strategy complemented with SAXS, In-line probing and SHAPE-seq applied to the 3'UTR of Ox40 mRNA, which encodes a T-cell co-receptor repressed by the protein Roquin. We provide contributions of RNA elements to Roquin-binding. The protein uses its extended bi-modal ROQ domain to sequentially engage in a 2:1 stoichiometry with a 3'UTR core motif. We observe differential binding of Roquin to decay elements depending on their structural embedment. Our data underpins the importance of studying RNA regulation in a full sequence and structural context. This study serves as a paradigm for an approach in analysing structured RNA-regulatory hubs and their binding by RBPs.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lea Marie Becker
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - François McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Max-von-Laue-Str. 13, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Goethe University Frankfurt, Institute for Molecular Biosciences and Biomagnetic Resonance Centre (BMRZ), Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
2
|
Lazzaretti D, Bandholz-Cajamarca L, Emmerich C, Schaaf K, Basquin C, Irion U, Bono F. The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Life Sci Alliance 2018; 1:e201800187. [PMID: 30456389 PMCID: PMC6238398 DOI: 10.26508/lsa.201800187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/29/2023] Open
Abstract
Combination of in vitro and in vivo data show that RNA sequence influences Staufen target recognition and that protein–RNA base contacts are required for Staufen function in Drosophila. During mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in Drosophila and mammals. We solved the structure of two dsRBDs of human Staufen1 in complex with a physiological dsRNA sequence. We identified interactions between the dsRBDs and the RNA sugar–phosphate backbone and direct contacts of conserved Staufen residues to RNA bases. Mutating residues mediating nonspecific backbone interactions only affected Staufen function in Drosophila when in vitro binding was severely reduced. Conversely, residues involved in base-directed interactions were required in vivo even when they minimally affected in vitro binding. Our work revealed that Staufen can read sequence features in the minor groove of dsRNA and suggests that these influence target selection in vivo.
Collapse
Affiliation(s)
| | | | | | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Lazzaretti D, Veith K, Kramer K, Basquin C, Urlaub H, Irion U, Bono F. The bicoid mRNA localization factor Exuperantia is an RNA-binding pseudonuclease. Nat Struct Mol Biol 2016; 23:705-13. [PMID: 27376588 DOI: 10.1038/nsmb.3254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Anterior patterning in Drosophila is mediated by the localization of bicoid (bcd) mRNA at the anterior pole of the oocyte. Exuperantia (Exu) is a putative exonuclease (EXO) associated with bcd and required for its localization. We present the crystal structure of Exu, which reveals a dimeric assembly with each monomer consisting of a 3'-5' EXO-like domain and a sterile alpha motif (SAM)-like domain. The catalytic site is degenerate and inactive. Instead, the EXO-like domain mediates dimerization and RNA binding. We show that Exu binds RNA directly in vitro, that the SAM-like domain is required for RNA binding activity and that Exu binds a structured element present in the bcd 3' untranslated region with high affinity. Through structure-guided mutagenesis, we show that Exu dimerization is essential for bcd localization. Our data demonstrate that Exu is a noncanonical RNA-binding protein with EXO-SAM-like domain architecture that interacts with its target RNA as a homodimer.
Collapse
Affiliation(s)
| | - Katharina Veith
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Kramer
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
4
|
Arkov AL, Ramos A. Building RNA-protein granules: insight from the germline. Trends Cell Biol 2010; 20:482-90. [PMID: 20541937 PMCID: PMC2929181 DOI: 10.1016/j.tcb.2010.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/30/2022]
Abstract
The germline originates from primordial embryonic germ cells which give rise to sperm and egg cells and consequently, to the next generation. Germ cells of many organisms contain electron-dense granules that comprise RNA and proteins indispensable for germline development. Here we review recent reports that provide important insights into the structure and function of crucial RNA and protein components of the granules, including DEAD-box helicases, Tudor domain proteins, Piwi/Argonaute proteins and piRNA. Collectively, these components function in translational control, remodeling of ribonucleoprotein complexes and transposon silencing. Furthermore, they interact with each other by means of conserved structural modules and post-translationally modified amino acids. These data suggest a widespread use of several protein motifs in germline development and further our understanding of other ribonucleoprotein structures, for example, processing bodies and neuronal granules.
Collapse
Affiliation(s)
- Alexey L Arkov
- Department of Biological Sciences, Murray State University, 2112 Biology Building, Murray, KY 42071, USA.
| | | |
Collapse
|
5
|
Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Dev Biol 2009; 335:276-87. [DOI: 10.1016/j.ydbio.2009.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/21/2009] [Accepted: 09/01/2009] [Indexed: 02/07/2023]
|
6
|
Skern-Mauritzen R, Frost P, Dalvin S, Kvamme BO, Sommerset I, Nilsen F. A trypsin-like protease with apparent dual function in early Lepeophtheirus salmonis (Krøyer) development. BMC Mol Biol 2009; 10:44. [PMID: 19439101 PMCID: PMC2689223 DOI: 10.1186/1471-2199-10-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypsin-like serine proteases are involved in a large number of processes including digestive degradation, regulation of developmental processes, yolk degradation and yolk degradome activation. Trypsin like peptidases considered to be involved in digestion have been characterized in Lepeophtheirus salmonis. During these studies a trypsin-like peptidase which differed in a number of traits were identified. RESULTS An intronless trypsin-like serine peptidase (LsTryp10) from L., salmonis was identified and characterized. LsTryp10 mRNA is evenly distributed in the ovaries and oocytes, but is located along the ova periphery. LsTryp10 protein is deposited in the oocytes and all embryonic cells. LsTryp10 mRNA translation and concurrent degradation after fertilization was found in the embryos demonstrating that LsTryp10 protein is produced both by the embryo and maternally. The results furthermore indicate that LsTryp10 protein of maternal origin has a distribution pattern different to that of embryonic origin. CONCLUSION Based on present data and previous studies of peptidases in oocytes and embryos, we hypothesize that maternally deposited LsTryp10 protein is involved in regulation of the yolk degradome. The function of LsTryp10 produced by the embryonic cells remains unknown. To our knowledge a similar expression pattern has not previously been reported for any protease.
Collapse
Affiliation(s)
- Rasmus Skern-Mauritzen
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
| | - Petter Frost
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
- Intervet Norbio AS, 5008 Bergen, Norway
| | - Sussie Dalvin
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
| | - Bjørn Olav Kvamme
- Department of Health, Institute of Marine Research, 5817 Bergen, Norway
| | | | - Frank Nilsen
- Department of Population Genetics and Ecology, Institute of Marine Research, 5817 Bergen, Norway
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
7
|
Winter F, Edaye S, Hüttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res 2007; 35:6953-62. [PMID: 17933784 PMCID: PMC2175301 DOI: 10.1093/nar/gkm686] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The path Plasmodium takes across the Anopheles midgut constitutes the major bottleneck during the malaria transmission cycle. In the present study, using a combination of shot-gun cloning and bioinformatic analysis, we have identified 18 miRNAs from Anopheles gambiae including three miRNAs unique to mosquito. Twelve of them are expressed ubiquitously across the body, independently of gender, while the other six exhibited an expression pattern restricted to the digestive system. Strikingly, the expression patterns of four miRNAs, including the three unique to mosquito, are affected by the presence of Plasmodium. We also show that knocking down Dicer1 and Ago1 mRNAs led to an increased sensitivity to Plasmodium infection. Altogether, these data support an involvement of miRNAs as new layers in the regulation of Anopheles defence reaction.
Collapse
Affiliation(s)
- Flore Winter
- Architecture et Réactivité de l'ARN, Université Louis Pasteur, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descarte, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
8
|
Abstract
mRNA localization is a common mechanism for targeting proteins to regions of the cell where they are required. It has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion and allowing the local control of protein synthesis in neurons. New methods for in vivo labelling have revealed that several mRNAs are transported by motor proteins, but how most mRNAs are coupled to these proteins remains obscure.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
9
|
Snee MJ, Arn EA, Bullock SL, Macdonald PM. Recognition of the bcd mRNA localization signal in Drosophila embryos and ovaries. Mol Cell Biol 2005; 25:1501-10. [PMID: 15684399 PMCID: PMC548018 DOI: 10.1128/mcb.25.4.1501-1510.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 10/15/2004] [Accepted: 11/29/2004] [Indexed: 11/20/2022] Open
Abstract
The process of mRNA localization, often used for regulation of gene expression in polarized cells, requires recognition of cis-acting signals by components of the localization machinery. Many known RNA signals are active in the contexts of both the Drosophila ovary and the blastoderm embryo, suggesting a conserved recognition mechanism. We used variants of the bicoid mRNA localization signal to explore recognition requirements in the embryo. We found that bicoid stem-loop IV/V, which is sufficient for ovarian localization, was necessary but not sufficient for full embryonic localization. RNAs containing bicoid stem-loops III/IV/V did localize within the embryo, demonstrating a requirement for dimerization and other activities supplied by stem-loop III. Protein complexes that bound specifically to III/IV/V and fushi tarazu localization signals copurified through multiple fractionation steps, suggesting that they are related. Binding to these two signals was competitive but not equivalent. Thus, the binding complexes are not identical but appear to have some components in common. We have proposed a model for a conserved mechanism of localization signal recognition in multiple contexts.
Collapse
Affiliation(s)
- Mark J Snee
- Institute for Cellular and Molecular Biology, Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, 1 University Station, A-4800 Austin, TX 78712-1059, USA
| | | | | | | |
Collapse
|
10
|
Abstract
In many animals, normal development depends on the asymmetric distribution of maternal determinants, including various coding and noncoding RNAs, within the oocyte. The temporal and spatial distribution of localized RNAs is determined by intricate mechanisms that regulate their movement and anchoring. These mechanisms involve cis-acting sequences within the RNA molecules and a multitude of trans-acting factors, as well as a polarized cytoskeleton, molecular motors and specific transporting organelles. The latest studies show that the fates of localized RNAs within the oocyte cytoplasm are predetermined in the nucleus and that nuclear proteins, some of them deposited on RNAs during splicing, together with the components of the RNA-silencing pathway, dictate the proper movement, targeting, anchoring and translatability of localized RNAs.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Molecular Genetics, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|