1
|
Chen G, Wang ZX, Yang Y, Li Y, Zhang T, Ouyang S, Zhang L, Chen Y, Ruan X, Miao M. Elucidation of the mechanism underlying the sequential catalysis of inulin by fructotransferase. Int J Biol Macromol 2024; 277:134446. [PMID: 39098696 DOI: 10.1016/j.ijbiomac.2024.134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Glycoside hydrolase family 91 (GH91) inulin fructotransferase (IFTases) enables biotransformation of fructans into sugar substitutes for dietary intervention in metabolic syndrome. However, the catalytic mechanism underlying the sequential biodegradation of inulin remains unelusive during the biotranformation of fructans. Herein we present the crystal structures of IFTase from Arthrobacter aurescens SK 8.001 in apo form and in complexes with kestose, nystose, or fructosyl nystose, respectively. Two kinds of conserved noncatalytic binding regions are first identified for IFTase-inulin interactions. The conserved interactions of substrates were revealed in the catalytic center that only contained a catalytic residue E205. A switching scaffold was comprised of D194 and Q217 in the catalytic channel, which served as the catalytic transition stabilizer through side chain displacement in the cycling of substrate sliding in/out the catalytic pocket. Such features in GH91 contribute to the catalytic model for consecutive cutting of substrate chain as well as product release in IFTase, and thus might be extended to other exo-active enzymes with an enclosed bottom of catalytic pocket. The study expands the current general catalytic principle in enzyme-substrate complexes and shed light on the rational design of IFTase for fructan biotransformation.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Zhao-Xi Wang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yuqi Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yungao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230027, China.
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road Gulou District, Fuzhou 350001, China.
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Chem Biol Interact 2017; 276:65-74. [PMID: 28212821 DOI: 10.1016/j.cbi.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/09/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.
Collapse
|
3
|
Qiu Y, Wu X, Xie C, Hu Y, Liu D, Ma Y, Yao D. A rational design for improving the trypsin resistance of aflatoxin-detoxifizyme (ADTZ) based on molecular structure evaluation. Enzyme Microb Technol 2016; 86:84-92. [PMID: 26992797 DOI: 10.1016/j.enzmictec.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/26/2016] [Accepted: 02/12/2016] [Indexed: 12/01/2022]
Abstract
The resistance of feed enzymes against proteases is crucial in livestock farming. In this study, the trypsin resistance of aflatoxin-detoxifizyme (ADTZ) is improved. ADTZ possesses 72 lys/arg residue sites, 45 of which are scattered on the outermost layers of the molecule (RSA≧25%). These 45 lys/arg sites could be target sites for trypsin hydrolysis. By considering shape-matching (including physical and secondary bond interactions) and the "induced fit-effect", we hypothesized that some of these lys/arg sites are vulnerable to trypsin. A protein-protein docking simulation method was used to avoid the massive computational requirements and to address the intricacy of selecting candidate sites, as candidate site selection is affected by space displacement. Optimal mutants (K244Q/K213C/K270T and R356E/K357T/R623C) were predicted by computational design with protein folding energy analysis and molecular dynamics simulations. A trypsin digestion assay was performed, and the mutants displayed much higher stability against trypsin hydrolysis compared to the native enzyme. Moreover, temperature- and pH-activity profiles revealed that the designed mutations did not affect the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- Yuxin Qiu
- Institute of Microbial Biotechnology, Jinan University, Guangzhou City, Guangdong Province 510632, China
| | - Xiyang Wu
- Institute of Microbial Biotechnology, Jinan University, Guangzhou City, Guangdong Province 510632, China
| | - Chunfang Xie
- Institute of Microbial Biotechnology, Jinan University, Guangzhou City, Guangdong Province 510632, China; Department of Bioengineering, Jinan University, Guangzhou City, Guangdong Province 510632, China
| | - Yadong Hu
- Institute of Microbial Biotechnology, Jinan University, Guangzhou City, Guangdong Province 510632, China
| | - Daling Liu
- Institute of Microbial Biotechnology, Jinan University, Guangzhou City, Guangdong Province 510632, China; Department of Bioengineering, Jinan University, Guangzhou City, Guangdong Province 510632, China
| | - Yi Ma
- National Engineering Research Center of Genetic Medicine, Guangzhou City, Guangdong Province 510632, China
| | - Dongsheng Yao
- Institute of Microbial Biotechnology, Jinan University, Guangzhou City, Guangdong Province 510632, China; National Engineering Research Center of Genetic Medicine, Guangzhou City, Guangdong Province 510632, China.
| |
Collapse
|
4
|
Role of cysteines in the stability and DNA-binding activity of the hypochlorite-specific transcription factor HypT. PLoS One 2013; 8:e75683. [PMID: 24116067 PMCID: PMC3792123 DOI: 10.1371/journal.pone.0075683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species are important components of the immune response. Hypochlorite (HOCl) is produced by neutrophils to kill invading microorganisms. The bactericidal activity of HOCl is due to proteome-wide unfolding and oxidation of proteins at cysteine and methionine residues. Escherichia coli cells are protected from HOCl-killing by the previously identified dodecameric transcription factor HypT (YjiE). Here, we aimed to unravel whether HOCl activates HypT directly or via a reaction product of HOCl with a cellular component. Bacterial viability assays and analysis of target gene regulation indicate that HypT is highly specific to activation by HOCl and that no reaction products of HOCl such as monochloramine, hydroxyl radicals, or methionine sulfoxide activate HypT in vivo. Surprisingly, purified HypT lost its DNA-binding activity upon incubation with HOCl or reaction products that oxidize HypT to form a disulfide-linked dimer, and regained DNA-binding activity upon reduction. Thus, we postulate that the cysteines in HypT contribute to control the DNA-binding activity of HypT in vitro. HypT contains five cysteine residues; a HypT mutant with all cysteines substituted by serine is aggregation-prone and forms tetramers in addition to the typical dodecamers. Using single and multiple cysteine-to-serine mutants, we identified Cys150 to be required for stability and Cys4 being important for oligomerization of HypT to dodecamers. Further, oxidation of Cys4 is responsible for the loss of DNA-binding of HypT upon oxidation in vitro. It appears that Cys4 oxidation upon conditions that are insufficient to stimulate the DNA-binding activity of HypT prevents unproductive interactions of HypT with DNA. Thus, Cys4 oxidation may be a check point in the activation process of HypT.
Collapse
|
5
|
Li Y, Hu F, Wang X, Cao H, Liu D, Yao D. A rational design for trypsin-resistant improvement of Armillariella tabescens β-mannanase MAN47 based on molecular structure evaluation. J Biotechnol 2013; 163:401-7. [DOI: 10.1016/j.jbiotec.2012.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/27/2022]
|
6
|
Garza-Ramos G, Mújica-Jiménez C, Muñoz-Clares RA. Potassium and ionic strength effects on the conformational and thermal stability of two aldehyde dehydrogenases reveal structural and functional roles of K⁺-binding sites. PLoS One 2013; 8:e54899. [PMID: 23365686 PMCID: PMC3554688 DOI: 10.1371/journal.pone.0054899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Many aldehyde dehydrogenases (ALDHs) have potential potassium-binding sites of as yet unknown structural or functional roles. To explore possible K(+)-specific effects, we performed comparative structural studies on the tetrameric betaine aldehyde dehydrogenase from Pseudomonas aeruginosa (PaBADH) and on the dimeric BADH from spinach (SoBADH), whose activities are K(+)-dependent and K(+)-independent, respectively, although both enzymes contain potassium-binding sites. Size exclusion chromatography, dynamic light scattering, far- and near-UV circular dichroism, and extrinsic fluorescence results indicated that in the absence of K(+) ions and at very low ionic strength, PaBADH remained tetrameric but its tertiary structure was significantly altered, accounting for its inactivation, whereas SoBADH formed tetramers that maintained the native tertiary structure. The recovery of PaBADH native tertiary-structure was hyperbolically dependent on KCl concentration, indicating potassium-specific structuring effects probably arising from binding to a central-cavity site present in PaBADH but not in SoBADH. K(+) ions stabilized the native structure of both enzymes against thermal denaturation more than did tetraethylammonium (TEA(+)) ions. This indicated specific effects of potassium on both enzymes, particularly on PaBADH whose apparent T(m) values showed hyperbolical dependence on potassium concentration, similar to that observed with the tertiary structure changes. Interestingly, we also found that thermal denaturation of both enzymes performed in low ionic-strength buffers led to formation of heat-resistant, inactive soluble aggregates that retain 80% secondary structure, have increased β-sheet content and bind thioflavin T. These structured aggregates underwent further thermal-induced aggregation and precipitation when the concentrations of KCl or TEACl were raised. Given that PaBADH and SoBADH belong to different ALDH families and differ not only in amino acid composition but also in association state and surface electrostatic potential, the formation of this kind of β-sheet pre-fibrillar aggregates, not described before for any ALDH enzyme, appear to be a property of the ALDH fold.
Collapse
Affiliation(s)
- Georgina Garza-Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Carlos Mújica-Jiménez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Rosario A. Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| |
Collapse
|
7
|
Novel NADPH-cysteine covalent adduct found in the active site of an aldehyde dehydrogenase. Biochem J 2011; 439:443-52. [PMID: 21732915 DOI: 10.1042/bj20110376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PaBADH (Pseudomonas aeruginosa betaine aldehyde dehydrogenase) catalyses the irreversible NAD(P)+-dependent oxidation of betaine aldehyde to its corresponding acid, the osmoprotector glycine betaine. This reaction is involved in the catabolism of choline and in the response of this important pathogen to the osmotic and oxidative stresses prevalent in infection sites. The crystal structure of PaBADH in complex with NADPH showed a novel covalent adduct between the C2N of the pyridine ring and the sulfur atom of the catalytic cysteine residue, Cys286. This kind of adduct has not been reported previously either for a cysteine residue or for a low-molecular-mass thiol. The Michael addition of the cysteine thiolate in the 'resting' conformation to the double bond of the α,β-unsaturated nicotinamide is facilitated by the particular conformation of NADPH in the active site of PaBADH (also observed in the crystal structure of the Cys286Ala mutant) and by an ordered water molecule hydrogen bonded to the carboxamide group. Reversible formation of NAD(P)H-Cys286 adducts in solution causes reversible enzyme inactivation as well as the loss of Cys286 reactivity towards thiol-specific reagents. This novel covalent modification may provide a physiologically relevant regulatory mechanism of the irreversible PaBADH-catalysed reaction, preventing deleterious decreases in the intracellular NAD(P)+/NAD(P)H ratios.
Collapse
|
8
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. Enzymes involved in osmolyte synthesis: how does oxidative stress affect osmoregulation in renal cells? Life Sci 2010; 87:515-20. [PMID: 20727361 DOI: 10.1016/j.lfs.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/09/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
Abstract
Kidney medulla cells are exposed to a wide range of changes in the ionic and osmotic composition of their environment as a consequence of the urine concentrating mechanism. During antidiuresis NaCl and urea concentrations increase and an efficient urinary concentrating mechanism is accompanied by medullar hypoxia. Medullar hypotonicity increases reactive oxygen species, a byproduct of mitochondria during ATP production. High intracellular ionic strength, hypoxia and elevated ROS concentration would have deleterious effects on medulla cell function. Medulla cells respond to hypertonicity by accumulating organic osmolytes, such as glycine betaine, glycerophosphorylcholine, sorbitol, inositol, and taurine, the main functions of which are osmoregulation and osmoprotection. The accumulation of compatible osmolytes is thus crucial for the viability of renal medulla cells. Studies about the effects of reactive oxygen species (ROS) on the enzymes involved in the synthesis of osmolytes are scarce. In this review we summarize the information available on the effects of ROS on the enzymes involved in osmolyte synthesis in kidney.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, Sonora, México
| | | |
Collapse
|
9
|
Tylichová M, Kopecný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Sebela M. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 2010; 396:870-82. [PMID: 20026072 DOI: 10.1016/j.jmb.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived omega-aminoaldehydes to the corresponding omega-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with beta-nicotinamide adenine dinucleotide (NAD(+)) at 2.4 and 2.15 A resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD(+) as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD(+) binding site. While the NAD(+) binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into gamma-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, beta-alanine betaine and gamma-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.
Collapse
Affiliation(s)
- Martina Tylichová
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
10
|
Involvement of cysteine 306 and alanine 63 in the thermostability and oligomeric organization of glucose isomerase from Streptomyces sp. SK. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0155-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Reaction of the catalytic cysteine of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa with arsenite-BAL and phenylarsine oxide. Chem Biol Interact 2009; 178:64-9. [DOI: 10.1016/j.cbi.2008.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 11/23/2022]
|
12
|
The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site. J Mol Biol 2008; 385:542-57. [PMID: 19013472 DOI: 10.1016/j.jmb.2008.10.082] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/10/2008] [Accepted: 10/22/2008] [Indexed: 11/23/2022]
Abstract
In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The other--not described before for any ALDH but most likely present in most of them--is located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K(+) ions on the activity and stability of PaBADH.
Collapse
|
13
|
Haliloglu T, Ben-Tal N. Cooperative transition between open and closed conformations in potassium channels. PLoS Comput Biol 2008; 4:e1000164. [PMID: 18769593 PMCID: PMC2528004 DOI: 10.1371/journal.pcbi.1000164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/21/2008] [Indexed: 11/19/2022] Open
Abstract
Potassium (K+) ion channels switch between open and closed conformations. The nature of this important transition was revealed by comparing the X-ray crystal structures of the MthK channel from Methanobacterium thermoautotrophicum, obtained in its open conformation, and the KcsA channel from Streptomyces lividans, obtained in its closed conformation. We analyzed the dynamic characteristics and energetics of these homotetrameric structures in order to study the role of the intersubunit cooperativity in this transition. For this, elastic models and in silico alanine-scanning mutagenesis were used, respectively. Reassuringly, the calculations manifested motion from the open (closed) towards the closed (open) conformation. The calculations also revealed a network of dynamically and energetically coupled residues. Interestingly, the network suggests coupling between the selectivity filter and the gate, which are located at the two ends of the channel pore. Coupling between these two regions was not observed in calculations that were conducted with the monomer, which emphasizes the importance of the intersubunit interactions within the tetrameric structure for the cooperative gating behavior of the channel.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center, Bogazici University, Bebek-Istanbul, Turkey.
| | | |
Collapse
|
14
|
Velasco-García R, Zaldívar-Machorro VJ, Mújica-Jiménez C, González-Segura L, Muñoz-Clares RA. Disulfiram irreversibly aggregates betaine aldehyde dehydrogenase--a potential target for antimicrobial agents against Pseudomonas aeruginosa. Biochem Biophys Res Commun 2006; 341:408-15. [PMID: 16426571 DOI: 10.1016/j.bbrc.2006.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/03/2006] [Indexed: 11/21/2022]
Abstract
In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacterium against the high-osmolality stress prevalent in the infected tissues. This tetrameric enzyme contains four cysteine residues per subunit and is a potential drug target. In our search for specific inhibitors, we mutated the catalytic Cys286 to alanine and chemically modified the recombinant wild-type and the four Cys-->Ala single mutants with thiol reagents. The small methyl-methanethiosulfonate inactivated the enzymes without affecting their stability while the bulkier dithionitrobenzoic acid (DTNB) and bis[diethylthiocarbamyl] disulfide (disulfiram) induced enzyme dissociation--at 23 degrees C--and irreversible aggregation--at 37 degrees C. Of the four Cys-->Ala mutants only C286A retained its tetrameric structure after DTNB or disulfiram treatments, suggesting that steric constraints arising upon the covalent attachment of a bulky group to C286 resulted in distortion of the backbone configuration in the active site region followed by a severe decrease in enzyme stability. Since neither NAD(P)H nor betaine aldehyde prevented disulfiram-induced PaBADH inactivation or aggregation, and reduced glutathione was unable to restore the activity of the modified enzyme, we propose that disulfiram could be a useful drug to combat infection by P. aeruginosa.
Collapse
Affiliation(s)
- Roberto Velasco-García
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios, Tlalnepantla, Estado de México, 54090 México, Mexico
| | | | | | | | | |
Collapse
|