1
|
Alanis E, Aguilar F, Banaei N, Dean FB, Villarreal A, Alanis M, Lozano K, Bullard JM, Zhang Y. A rationally designed antimicrobial peptide from structural and functional insights of Clostridioides difficile translation initiation factor 1. Microbiol Spectr 2024; 12:e0277323. [PMID: 38329351 PMCID: PMC10913371 DOI: 10.1128/spectrum.02773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
A significant increase of hospital-acquired bacterial infections during the COVID-19 pandemic has become an urgent medical problem. Clostridioides difficile is an urgent antibiotic-resistant bacterial pathogen and a leading causative agent of nosocomial infections. The increasing recurrence of C. difficile infection and antibiotic resistance in C. difficile has led to an unmet need for the discovery of new compounds distinctly different from present antimicrobials, while antimicrobial peptides as promising alternatives to conventional antibiotics have attracted growing interest recently. Protein synthesis is an essential metabolic process in all bacteria and a validated antibiotic target. Initiation factor 1 from C. difficile (Cd-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis. Here, we report the solution nuclear magnetic resonance (NMR) structure of Cd-IF1 which adopts a typical β-barrel fold and consists of a five-stranded β-sheet and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. The interaction of Cd-IF1 with the 30S ribosomal subunit was studied by NMR titration for the construction of a structural model of Cd-IF1 binding with the 30S subunit. The short α-helix in IF1 was found to be critical for IF1 ribosomal binding. A peptide derived from this α-helix was tested and displayed a high ability to inhibit the growth of C. difficile and other bacterial strains. These results provide a clue for the rational design of new antimicrobials.IMPORTANCEBacterial infections continue to represent a major worldwide health hazard due to the emergence of drug-resistant strains. Clostridioides difficile is a common nosocomial pathogen and the causative agent in many infections resulting in an increase in morbidity and mortality. Bacterial protein synthesis is an essential metabolic process and an important target for antibiotic development; however, the precise structural mechanism underlying the process in C. difficile remains unknown. This study reports the solution structure of C. difficile translation initiation factor 1 (IF1) and its interaction with the 30S ribosomal subunit. A short α-helix in IF1 structure was identified as critically important for ribosomal binding and function in regulating the translation initiation, which allowed a rational design of a new peptide. The peptide demonstrated a high ability to inhibit bacterial growth with broad-spectrum antibacterial activity. This study provides a new clue for the rational design of new antimicrobials against bacterial infections.
Collapse
Affiliation(s)
- Elvira Alanis
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Faith Aguilar
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Frank B. Dean
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexa Villarreal
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Miguel Alanis
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - James M. Bullard
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Yonghong Zhang
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
2
|
In vitro characterisation of the MS2 RNA polymerase complex reveals host factors that modulate emesviral replicase activity. Commun Biol 2022; 5:264. [PMID: 35338258 PMCID: PMC8956599 DOI: 10.1038/s42003-022-03178-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA phage MS2 is one of the most important model organisms in molecular biology and virology. Despite its comprehensive characterisation, the composition of the RNA replication machinery remained obscure. Here, we characterised host proteins required to reconstitute the functional replicase in vitro. By combining a purified replicase sub-complex with elements of an in vitro translation system, we confirmed that the three host factors, EF-Ts, EF-Tu, and ribosomal protein S1, are part of the active replicase holocomplex. Furthermore, we found that the translation initiation factors IF1 and IF3 modulate replicase activity. While IF3 directly competes with the replicase for template binding, IF1 appears to act as an RNA chaperone that facilitates polymerase readthrough. Finally, we demonstrate in vitro formation of RNAs containing minimal motifs required for amplification. Our work sheds light on the MS2 replication machinery and provides a new promising platform for cell-free evolution.
Collapse
|
3
|
Voigt C, Dobrychlop M, Kruse E, Czerwoniec A, Kasprzak JM, Bytner P, Campo CD, Leeder WM, Bujnicki JM, Göringer HU. The OB-fold proteins of the Trypanosoma brucei editosome execute RNA-chaperone activity. Nucleic Acids Res 2019; 46:10353-10367. [PMID: 30060205 PMCID: PMC6212840 DOI: 10.1093/nar/gky668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
Sequence-deficient mitochondrial pre-mRNAs in African trypanosomes are substrates of a U-nucleotide-specific RNA editing reaction to generate translation-competent mRNAs. The reaction is catalyzed by a macromolecular protein complex termed the editosome. Editosomes execute RNA-chaperone activity to overcome the highly folded nature of pre-edited substrate mRNAs. The molecular basis for this activity is unknown. Here we test five of the OB-fold proteins of the Trypanosoma brucei editosome as candidates. We demonstrate that all proteins execute RNA-chaperone activity albeit to different degrees. We further show that the activities correlate to the surface areas of the proteins and we map the protein-induced RNA-structure changes using SHAPE-chemical probing. To provide a structural context for our findings we calculate a coarse-grained model of the editosome. The model has a shell-like structure: Structurally well-defined protein domains are separated from an outer shell of intrinsically disordered protein domains, which suggests a surface-driven mechanism for the chaperone activity.
Collapse
Affiliation(s)
- Christin Voigt
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Mateusz Dobrychlop
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Elisabeth Kruse
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Anna Czerwoniec
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna M Kasprzak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Patrycja Bytner
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Cristian Del Campo
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Janusz M Bujnicki
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
4
|
Structure and dynamics study of translation initiation factor 1 from Staphylococcus aureus suggests its RNA binding mode. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:65-75. [DOI: 10.1016/j.bbapap.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022]
|
5
|
Duval M, Marenna A, Chevalier C, Marzi S. Site-Directed Chemical Probing to map transient RNA/protein interactions. Methods 2016; 117:48-58. [PMID: 28027957 DOI: 10.1016/j.ymeth.2016.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022] Open
Abstract
RNA-protein interactions are at the bases of many biological processes, forming either tight and stable functional ribonucleoprotein (RNP) complexes (i.e. the ribosome) or transitory ones, such as the complexes involving RNA chaperone proteins. To localize the sites where a protein interacts on an RNA molecule, a common simple and inexpensive biochemical method is the footprinting technique. The protein leaves its footprint on the RNA acting as a shield to protect the regions of interaction from chemical modification or cleavages obtained with chemical or enzymatic nucleases. This method has proven its efficiency to study in vitro the organization of stable RNA-protein complexes. Nevertheless, when the protein binds the RNA very dynamically, with high off-rates, protections are very often difficult to observe. For the analysis of these transient complexes, we describe an alternative strategy adapted from the Site Directed Chemical Probing (SDCP) approach and we compare it with classical footprinting. SDCP relies on the modification of the RNA binding protein to tether an RNA probe (usually Fe-EDTA) to specific protein positions. Local cleavages on the regions of interaction can be used to localize the protein and position its domains on the RNA molecule. This method has been used in the past to monitor stable complexes; we provide here a detailed protocol and a practical example of its application to the study of Escherichia coli RNA chaperone protein S1 and its transitory complexes with mRNAs.
Collapse
Affiliation(s)
- Mélodie Duval
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Alessandra Marenna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Clément Chevalier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France.
| |
Collapse
|
6
|
Habib S, Vaishya S, Gupta K. Translation in Organelles of Apicomplexan Parasites. Trends Parasitol 2016; 32:939-952. [DOI: 10.1016/j.pt.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
|
7
|
Nag JK, Chahar D, Shrivastava N, Gupta CL, Bajpai P, Chandra D, Misra-Bhattacharya S. Functional attributes of evolutionary conserved Arg45 of Wolbachia (Brugia malayi) translation initiation factor-1. Future Microbiol 2016; 11:195-214. [PMID: 26855259 DOI: 10.2217/fmb.15.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Wolbachia is a promising antifilarial chemotherapeutic target. Translation initiation factor-1 (Tl IF-1) is an essential factor in prokaryotes. Functional characterization of Wolbachia's novel proteins/enzymes is necessary for the development of adulticidal drugs. MATERIALS & METHODS Mutant, Wol Tl IF-1 R45D was constructed by site directed mutagenesis. Fluorimetry and size exclusion chromatography were used to determine the biophysical characteristics. Mobility shift assay and fluorescence resonance energy transfer were used to investigate the functional aspect of Wol Tl IF-1 with its mutant. RESULTS Both wild and mutant were in monomeric native conformations. Wild exhibits nonspecific binding with ssRNA/ssDNA fragments under electrostatic conditions and showed annealing and displacement of RNA strands in comparison to mutant. CONCLUSION Point mutation impaired RNA chaperone activity of the mutant and its interaction with nucleotides.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Department of Biochemistry, Lucknow University, Lucknow (UP) 226007, India
| | - Dhanvantri Chahar
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Academy of Scientific & Innovative Research, Coordination Office, Mathura Road, CRRI, Jasola, New Delhi 110020, India
| | - Nidhi Shrivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow (UP) 226026, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow (UP) 226026, India
| | - Deepak Chandra
- Department of Biochemistry, Lucknow University, Lucknow (UP) 226007, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Academy of Scientific & Innovative Research, Coordination Office, Mathura Road, CRRI, Jasola, New Delhi 110020, India
| |
Collapse
|
8
|
Haider A, Allen SM, Jackson KE, Ralph SA, Habib S. Targeting and function of proteins mediating translation initiation in organelles of Plasmodium falciparum. Mol Microbiol 2015; 96:796-814. [PMID: 25689481 DOI: 10.1111/mmi.12972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 01/13/2023]
Abstract
The malaria parasite Plasmodium falciparum has two translationally active organelles - the apicoplast and mitochondrion, which import nuclear-encoded translation factors to mediate protein synthesis. Initiation of translation is a complex step wherein initiation factors (IFs) act in a regulated manner to form an initiation complex. We identified putative organellar IFs and investigated the targeting, structure and function of IF1, IF2 and IF3 homologues encoded by the parasite nuclear genome. A single PfIF1 is targeted to the apicoplast. Apart from its critical ribosomal interactions, PfIF1 also exhibited nucleic-acid binding and melting activities and mediated transcription anti-termination. This suggests a prominent ancillary function for PfIF1 in destabilisation of DNA and RNA hairpin loops encountered during transcription and translation of the A+T rich apicoplast genome. Of the three putative IF2 homologues, only one (PfIF2a) was an organellar protein with mitochondrial localisation. We additionally identified an IF3 (PfIF3a) that localised exclusively to the mitochondrion and another protein, PfIF3b, that was apicoplast targeted. PfIF3a exhibited ribosome anti-association activity, and monosome splitting by PfIF3a was enhanced by ribosome recycling factor (PfRRF2) and PfEF-G(Mit). These results fill a gap in our understanding of organellar translation in Plasmodium, which is the site of action of several anti-malarial compounds.
Collapse
Affiliation(s)
- Afreen Haider
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Stacey M Allen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Katherine E Jackson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic., 3010, Australia
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
9
|
Wolbachia translation initiation factor-1 is copiously expressed by the adult, microfilariae and infective larvae of Brugia malayi and competitively inhibited by tetracycline. Acta Trop 2014; 138:51-9. [PMID: 24929215 DOI: 10.1016/j.actatropica.2014.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
The intracellular alphaproteobacteria, Wolbachia, is considered to be a future antimacrofilarial drug target as it is obligatory for filarial endurance. Characterizing wolbachial proteins is necessary to understand wolbachial mechanisms and also for discovering new drug entities. Translation initiation factor-1 (Tl IF-1) is an indispensable prokaryotic factor concerned with bacterial viability. This factor is prioritized as one of the most potent antibacterial drug target. To investigate its role in filarial biology, recombinant Wol Tl IF-1 was purified on metal ion column. The factor was found folded in its monomeric native conformation, and contained a buried fluorophore. Molecular modeling revealed that the factor belonged to the Oligomer Binding family, and consisted of the highly conserved S1 domain with 81.6% of the amino acids occupying the allowed regions in Ramachandran plot. In addition, Wol Tl IF-1 exhibited selective binding to the 30S ribosomal subunit, which declined progressively with tetracycline addition. Tetracycline perturbs interaction of Thr18 and Asn32 of the factor with ribosomal protein S4. The factor was immune-localized in adult, microfilariae (Mf) and infective larvae (L3) of Brugia malayi by immunoblotting. High expression was also observed in Wolbachia within B. malayi Mf, L3 and female adult parasite along the gravid uteri by the confocal microscopy. Therefore, Wol Tl IF-1 appears to be an essential Wolbachia factor whose inhibition leads to extensive cell apoptosis and premature killing of adult worms, validating the antifilarial potential of the factor.
Collapse
|
10
|
Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA 2014; 5:8. [PMID: 24612670 PMCID: PMC3984707 DOI: 10.1186/1759-8753-5-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed.
Collapse
Affiliation(s)
- Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2 N2, Canada
| | - Mohamed Hafez
- Department of Biochemistry, Faculty of Medicine, University of Montreal, Montréal, QC H3C 3 J7, Canada
- Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
11
|
Nag JK, Shrivastava N, Gupta J, Misra-Bhattacharya S. Recombinant translation initiation factor-1 of Wolbachia is an immunogenic excretory secretory protein that elicits Th2 mediated immune protection against Brugia malayi. Comp Immunol Microbiol Infect Dis 2013; 36:25-38. [DOI: 10.1016/j.cimid.2012.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/28/2012] [Accepted: 09/06/2012] [Indexed: 01/01/2023]
|
12
|
Belotserkovsky JM, Dabbs ER, Isaksson LA. Mutations in 16S rRNA that suppress cold-sensitive initiation factor 1 affect ribosomal subunit association. FEBS J 2011; 278:3508-17. [PMID: 21791000 DOI: 10.1111/j.1742-4658.2011.08272.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.
Collapse
|
13
|
Belotserkovsky JM, Isak GI, Isaksson LA. Suppression of a cold-sensitive mutant initiation factor 1 by alterations in the 23S rRNA maturation region. FEBS J 2011; 278:1745-56. [DOI: 10.1111/j.1742-4658.2011.08099.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
The RNA folding trajectory features numerous off-pathway folding traps, which represent conformations that are often equally as stable as the native functional ones. Therefore, the conversion between these off-pathway structures and the native correctly folded ones is the critical step in RNA folding. This process, referred to as RNA refolding, is slow, and is represented by a transition state that has a characteristic high free energy. Because this kinetically limiting process occurs in vivo, proteins (called RNA chaperones) have evolved that facilitate the (re)folding of RNA molecules. Here, we present an overview of how proteins interact with RNA molecules in order to achieve properly folded states. In this respect, the discrimination between static and transient interactions is crucial, as different proteins have evolved a multitude of mechanisms for RNA remodeling. For RNA chaperones that act in a sequence-unspecific manner and without the use of external sources of energy, such as ATP, transient RNA–protein interactions represent the basis of the mode of action. By presenting stretches of positively charged amino acids that are positioned in defined spatial configurations, RNA chaperones enable the RNA backbone, via transient electrostatic interactions, to sample a wider conformational space that opens the route for efficient refolding reactions.
Collapse
Affiliation(s)
- Martina Doetsch
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
15
|
Doetsch M, Fürtig B, Gstrein T, Stampfl S, Schroeder R. The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation. Nucleic Acids Res 2011; 39:4405-18. [PMID: 21297117 PMCID: PMC3105384 DOI: 10.1093/nar/gkq1339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The annealing of nucleic acids to (partly) complementary RNA or DNA strands is involved in important cellular processes. A variety of proteins have been shown to accelerate RNA/RNA annealing but their mode of action is still mainly uncertain. In order to study the mechanism of protein-facilitated acceleration of annealing we selected a short peptide, HIV-1 Tat(44–61), which accelerates the reaction efficiently. The activity of the peptide is strongly regulated by mono- and divalent cations which hints at the importance of electrostatic interactions between RNA and peptide. Mutagenesis of the peptide illustrated the dominant role of positively charged amino acids in RNA annealing—both the overall charge of the molecule and a precise distribution of basic amino acids within the peptide are important. Additionally, we found that Tat(44–61) drives the RNA annealing reaction via entropic rather than enthalpic terms. One-dimensional-NMR data suggest that the peptide changes the population distribution of possible RNA structures to favor an annealing-prone RNA conformation, thereby increasing the fraction of colliding RNA molecules that successfully anneal.
Collapse
Affiliation(s)
- Martina Doetsch
- Max F Perutz Laboratories, Dr Bohrgasse 9/5, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
16
|
Proteins with RNA chaperone activity: a world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int 2010; 2011:532908. [PMID: 21234377 PMCID: PMC3017892 DOI: 10.1155/2011/532908] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Proteins with RNA chaperone activity are ubiquitous proteins that play important roles in cellular mechanisms. They prevent RNA from misfolding by loosening misfolded structures without ATP consumption. RNA chaperone activity is studied in vitro and in vivo using oligonucleotide- or ribozyme-based assays. Due to their functional as well as structural diversity, a common chaperoning mechanism or universal motif has not yet been identified. A growing database of proteins with RNA chaperone activity has been established based on evaluation of chaperone activity via the described assays. Although the exact mechanism is not yet understood, it is more and more believed that disordered regions within proteins play an important role. This possible mechanism and which proteins were found to possess RNA chaperone activity are discussed here.
Collapse
|
17
|
Surkov S, Nilsson H, Rasmussen LCV, Sperling-Petersen HU, Isaksson LA. Translation initiation region dependency of translation initiation in Escherichia coli by IF1 and kasugamycin. FEBS J 2010; 277:2428-39. [DOI: 10.1111/j.1742-4658.2010.07657.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Phadtare S, Severinov K. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family. Genes Cells 2009; 14:1227-39. [PMID: 19840122 DOI: 10.1111/j.1365-2443.2009.01346.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kapralou S, Fabbretti A, Garulli C, Gualerzi CO, Pon CL, Spurio R. Characterization of Bacillus stearothermophilus infA and of its product IF1. Gene 2008; 428:31-5. [PMID: 18951960 DOI: 10.1016/j.gene.2008.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
Bacillus stearothermophilus infA encoding translation initiation factor IF1 was cloned and expressed in Escherichia coli and its transcript and protein product characterized. Although the functional properties of B. stearothermophilus and E. coli IF1, compared in several translational tests in the presence of both homologous and heterologous components, are not entirely identical, the two proteins are interchangeable in an in vitro translational system programmed with a natural mRNA. The availability of purified B. stearothermophilus IF1 now allows us to analyze the translation initiation pathway using efficient in vitro tests based entirely on purified components derived from this thermophilic Gram-positive bacterium.
Collapse
Affiliation(s)
- Stavroula Kapralou
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
20
|
Colombo N, Emanuel C, Lainez V, Maldonado S, Prina AR, Börner T. The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner. Mol Genet Genomics 2008; 279:403-14. [PMID: 18317810 DOI: 10.1007/s00438-008-0321-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
The barley plastome mutant CL2 (cytoplasmic line 2) carries a point mutation in the infA gene, a homologue of the bacterial gene for the conserved translation initiator factor 1 (IF1). The function of infA in plastids is not known. The mutation in CL2 leads to a temporal chlorophyll deficiency in the primary leaf blade that is normalised in the basal and middle parts during further development. We have compared the expression of selected nuclear and plastid genes in different parts of primary leaves of CL2 and wild-type and found no indication for an adverse effect of the mutation on plastidial transcription. We observed an enhanced expression of RpoTp (encoding the phage-type nuclear-encoded plastid RNA polymerase) suggested to be caused by retrograde plastid signalling. Decreased amounts of plastid rRNA in basal and top sections are in agreement with the idea that the mutation in infA leads to a time- and position-dependent defect of plastid translation that causes a delay in plastid development. The normalisation of the phenotype in the middle section of CL2 leaves correlates with wild-type levels of chloroplast 16S rRNA and RbcL and increased expression of plastid housekeeping genes. The normalisation was not observed in cells at the tip of CL2 leaves suggesting different ways of regulating chloroplast development in cells at the tip of primary barley leaves as compared with other leaf sections.
Collapse
Affiliation(s)
- Noemí Colombo
- Instituto de Genética Ewald A. Favret, CICVyA, CNIA, INTA, CC 25, B1712WAA Castelar, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
21
|
Rasmussen LCV, Jensen JM, Croitoru V, Sperling-Petersen HU, Mortensen KK. Production and epitope characterization of mAbs specific for translation factor IF1. Biochem Biophys Res Commun 2007; 364:72-8. [DOI: 10.1016/j.bbrc.2007.09.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 11/15/2022]
|
22
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
23
|
Kwon SH, Lee IH, Kim NY, Choi DH, Oh YM, Bae SH. Translation initiation factor eIF1A possesses RNA annealing activity in its oligonucleotide-binding fold. Biochem Biophys Res Commun 2007; 361:681-6. [PMID: 17673174 DOI: 10.1016/j.bbrc.2007.07.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 11/17/2022]
Abstract
Translation initiation factor eIF1A is highly conserved among all eukaryotes, and performs essential functions in the formation of 43S preinitiation complex and mRNA scanning. In this study, we found that RNA annealing activity is intrinsically associated with eIF1A. Schizosaccharomyces pombe, Saccharomyces cerevisiae, and human eIF1As were isolated in their recombinant forms in order to determine their RNA annealing activities. A truncated eIF1A devoid of both N- and C-terminal domains proved most active, indicating that the activity is localized in the OB-fold domain. Some N- or C-terminal His tag fusions were shown to make the proteins inactive. This is probably caused by shielding of the RNA binding surface, as the proteins were activated via partial proteolytic digestion. We also found that eIF1A formed a stable complex with a short double-stranded RNA in gel mobility shift assays. Our results indicate that eIF1A may function as an RNA chaperone, inducing conformational changes in rRNA in the 43S preinitiation complex.
Collapse
Affiliation(s)
- Sung-Hun Kwon
- Department of Biological Sciences, College of Natural Science, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Prenninger S, Schroeder R, Semrad K. Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap. Nat Protoc 2007; 1:1273-7. [PMID: 17406411 DOI: 10.1038/nprot.2006.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here, we report an assay to evaluate the intracellular RNA chaperone activity of a protein of interest in vivo in bacterial cells. The method is based on self-splicing of the group I intron, which is located in the thymidylate synthase (td) gene of phage T4. A previously described td mutant (tdSH1) has significantly impaired splicing due to formation of splicing-incompetent alternative structures. In this procedure, overexpression of RNA chaperones in the presence of the td mutant SH1 is used to evaluate whether the putative RNA chaperone is able to rescue the incorrectly folded group I intron. The ability of the RNA chaperone to assist during folding is measured indirectly by assessing the difference between the splicing efficiencies of the td mutant in the absence and in the presence of the RNA chaperone. This procedure can be completed in 5-6 d, not including the time needed to clone the putative RNA chaperone.
Collapse
Affiliation(s)
- Silvia Prenninger
- Max F. Perutz Laboratories, University of Vienna, Dept. of Biochemistry, Dr. Bohrgasse 9/5, A-1030 Vienna, Austria
| | | | | |
Collapse
|
25
|
Phadtare S, Kazakov T, Bubunenko M, Court DL, Pestova T, Severinov K. Transcription antitermination by translation initiation factor IF1. J Bacteriol 2007; 189:4087-93. [PMID: 17384193 PMCID: PMC1913383 DOI: 10.1128/jb.00188-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial translation initiation factor IF1 is an S1 domain protein that belongs to the oligomer binding (OB) fold proteins. Cold shock domain (CSD)-containing proteins such as CspA (the major cold shock protein of Escherichia coli) and its homologues also belong to the OB fold protein family. The striking structural similarity between IF1 and CspA homologues suggests a functional overlap between these proteins. Certain members of the CspA family of cold shock proteins act as nucleic acid chaperones: they melt secondary structures in nucleic acids and act as transcription antiterminators. This activity may help the cell to acclimatize to low temperatures, since cold-induced stabilization of secondary structures in nascent RNA can impede transcription elongation. Here we show that the E. coli translation initiation factor, IF1, also has RNA chaperone activity and acts as a transcription antiterminator in vivo and in vitro. We further show that the RNA chaperone activity of IF1, although critical for transcription antitermination, is not essential for its role in supporting cell growth, which presumably functions in translation. The results thus indicate that IF1 may participate in transcription regulation and that cross talk and/or functional overlap may exist between the Csp family proteins, known to be involved in transcription regulation at cold shock, and S1 domain proteins, known to function in translation.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|