1
|
Das A, Kunwar A. Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease. J Cell Biochem 2025; 126:e30660. [PMID: 39324363 DOI: 10.1002/jcb.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.
Collapse
Affiliation(s)
- Aurosikha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
de Freitas Fernandes A, Leonardo DA, Cavini IA, Rosa HVD, Vargas JA, D'Muniz Pereira H, Nascimento AS, Garratt RC. Conservation and divergence of the G-interfaces of Drosophila melanogaster septins. Cytoskeleton (Hoboken) 2023; 80:153-168. [PMID: 36576069 DOI: 10.1002/cm.21740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Septins possess a conserved guanine nucleotide-binding (G) domain that participates in the stabilization of organized hetero-oligomeric complexes which assemble into filaments, rings and network-like structures. The fruit fly, Drosophila melanogaster, has five such septin genes encoding Sep1, Sep2, Sep4, Sep5 and Pnut. Here, we report the crystal structure of the heterodimer formed between the G-domains of Sep1 and Sep2, the first from an insect to be described to date. A G-interface stabilizes the dimer (in agreement with the expected arrangement for the Drosophila hexameric particle) and this bears significant resemblance to its human counterparts, even down to the level of individual amino acid interactions. On the other hand, a model for the G-interface formed between the two copies of Pnut which occupy the centre of the hexamer, shows important structural differences, including the loss of a highly favourable bifurcated salt-bridge network. Whereas wild-type Pnut purifies as a monomer, the reintroduction of the salt-bridge network results in stabilizing the dimeric interface in solution as shown by size exclusion chromatography and thermal stability measurements. Adaptive steered molecular dynamics reveals an unzipping mechanism for dimer dissociation which initiates at a point of electrostatic repulsion within the switch II region. Overall, the data contribute to a better understanding of the molecular interactions involved in septin assembly/disassembly.
Collapse
Affiliation(s)
| | | | | | | | - Jhon Antoni Vargas
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | | | | |
Collapse
|
3
|
Miske R, Scharf M, Borowski K, Rieckhoff N, Teegen B, Denno Y, Probst C, Guthke K, Didrihsone I, Wildemann B, Ruprecht K, Komorowski L, Jarius S. Septin-3 autoimmunity in patients with paraneoplastic cerebellar ataxia. J Neuroinflammation 2023; 20:88. [PMID: 36997937 PMCID: PMC10061979 DOI: 10.1186/s12974-023-02718-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Septins are cytoskeletal proteins with filament forming capabilities, which have multiple roles during cell division, cellular polarization, morphogenesis, and membrane trafficking. Autoantibodies against septin-5 are associated with non-paraneoplastic cerebellar ataxia, and autoantibodies against septin-7 with encephalopathy with prominent neuropsychiatric features. Here, we report on newly identified autoantibodies against septin-3 in patients with paraneoplastic cerebellar ataxia. We also propose a strategy for anti-septin autoantibody determination. METHODS Sera from three patients producing similar immunofluorescence staining patterns on cerebellar and hippocampal sections were subjected to immunoprecipitation followed by mass spectrometry. The identified candidate antigens, all of which were septins, were expressed recombinantly in HEK293 cells either individually, as complexes, or combinations missing individual septins, for use in recombinant cell-based indirect immunofluorescence assays (RC-IIFA). Specificity for septin-3 was further confirmed by tissue IIFA neutralization experiments. Finally, tumor tissue sections were analyzed immunohistochemically for septin-3 expression. RESULTS Immunoprecipitation with rat cerebellum lysate revealed septin-3, -5, -6, -7, and -11 as candidate target antigens. Sera of all three patients reacted with recombinant cells co-expressing septin-3/5/6/7/11, while none of 149 healthy control sera was similarly reactive. In RC-IIFAs the patient sera recognized only cells expressing septin-3, individually and in complexes. Incubation of patient sera with five different septin combinations, each missing one of the five septins, confirmed the autoantibodies' specificity for septin-3. The tissue IIFA reactivity of patient serum was abolished by pre-incubation with HEK293 cell lysates overexpressing the septin-3/5/6/7/11 complex or septin-3 alone, but not with HEK293 cell lysates overexpressing septin-5 as control. All three patients had cancers (2 × melanoma, 1 × small cell lung cancer), presented with progressive cerebellar syndromes, and responded poorly to immunotherapy. Expression of septin-3 was demonstrated in resected tumor tissue available from one patient. CONCLUSIONS Septin-3 is a novel autoantibody target in patients with paraneoplastic cerebellar syndromes. Based on our findings, RC-IIFA with HEK293 cells expressing the septin-3/5/6/7/11 complex may serve as a screening tool to investigate anti-septin autoantibodies in serological samples with a characteristic staining pattern on neuronal tissue sections. Autoantibodies against individual septins can then be confirmed by RC-IIFA expressing single septins.
Collapse
Affiliation(s)
- Ramona Miske
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Madeleine Scharf
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany.
| | - Kathrin Borowski
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Lübeck, Germany
| | - Nicole Rieckhoff
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Bianca Teegen
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Lübeck, Germany
| | - Yvonne Denno
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Kersten Guthke
- Department of Neurology, Städtisches Klinikum Görlitz, Görlitz, Germany
| | - Ieva Didrihsone
- Department of Neurology, Hermann-Josef-Krankenhaus, Erkelenz, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN AG, Lübeck, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Cavini IA, Leonardo DA, Rosa HVD, Castro DKSV, D'Muniz Pereira H, Valadares NF, Araujo APU, Garratt RC. The Structural Biology of Septins and Their Filaments: An Update. Front Cell Dev Biol 2021; 9:765085. [PMID: 34869357 PMCID: PMC8640212 DOI: 10.3389/fcell.2021.765085] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Danielle K S V Castro
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | | | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
5
|
Biophysical Analysis of Schistosoma mansoni Septins. Methods Mol Biol 2021; 2151:197-210. [PMID: 32452006 DOI: 10.1007/978-1-0716-0635-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Septins are dynamic filament-forming proteins that are recognized as important components of the cytoskeleton and are involved in numerous functions inside the cells, such as cytokinesis, exocytosis, and ciliogenesis and even in defense against pathogenic bacteria. Despite being highly conserved in eukaryotes, there is scarce literature on the role of septins in organisms other than humans and yeast. Therefore, septins from Schistosoma mansoni represent an interesting model to study an unexplored branch of this protein family. Here we described standard protocols for recombinant production and initial characterization of septins from S. mansoni. Septins are notably difficult to purify, mostly due to their tendency to assemble into filaments. Therefore, specific protocols to stabilize these proteins have been developed. In this chapter, we systematically describe protocols to clone, express, and purify schistosome septins. We also describe the use of circular dichroism to assess the folding and stability of septins and use of chromatography to characterize their oligomeric state, bound guanine nucleotide, and GTP hydrolysis. We expect that these protocols may help researchers involved in the study of schistosome septins as well as assist to establish protocols for septins from other organisms.
Collapse
|
6
|
McMurray MA, Thorner J. Turning it inside out: The organization of human septin heterooligomers. Cytoskeleton (Hoboken) 2019; 76:449-456. [PMID: 31614074 PMCID: PMC6872917 DOI: 10.1002/cm.21571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023]
Abstract
Septin family proteins are quite similar to each other both within and between eukaryotic species. Typically, multiple discrete septins co-assemble into linear heterooligomers (usually hexameric or octameric rods) with a variety of cellular functions. We know little about how incorporation of different septins confers different properties to such complexes. This issue is especially acute in human cells where 13 separate septin gene products (often produced in multiple forms arising from alternative start codons and differential splicing) are expressed in a tissue-specific manner. Based on sequence alignments and phylogenetic criteria, human septins fall into four distinct groups predictive of their interactions, that is, members of the same group appear to occupy the same position within oligomeric septin protomers, which are "palindromic" (have twofold rotational symmetry about a central homodimeric pair). Many such protomers are capable of end-to-end polymerization, generating filaments. Over a decade ago, a study using X-ray crystallography and single-particle electron microscopy deduced the arrangement within recombinant heterohexamers comprising representatives of three human septin groups-SEPT2, SEPT6, and SEPT7. This model greatly influenced subsequent studies of human and other septin complexes, including how incorporating a septin from a fourth group forms heterooctamers, as first observed in budding yeast. Two recent studies, including one in this issue of Cytoskeleton, provide clear evidence that, in fact, the organization of subunits within human septin heterohexamers and heterooctamers is inverted relative to the original model. These findings are discussed here in a broader context, including possible causes for the initial confusion.
Collapse
Affiliation(s)
- Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics & Structural Biology, University of California, Berkeley, California
- Division of Cell & Developmental Biology, University of California, Berkeley, California
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| |
Collapse
|
7
|
Kumagai PS, Martins CS, Sales EM, Rosa HV, Mendonça DC, Damalio JCP, Spinozzi F, Itri R, Araujo APU. Correct partner makes the difference: Septin G-interface plays a critical role in amyloid formation. Int J Biol Macromol 2019; 133:428-435. [DOI: 10.1016/j.ijbiomac.2019.04.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
|
8
|
Mendonca P, Taka E, Soliman KFA. Proteomic analysis of the effect of the polyphenol pentagalloyl glucose on proteins involved in neurodegenerative diseases in activated BV‑2 microglial cells. Mol Med Rep 2019; 20:1736-1746. [PMID: 31257500 PMCID: PMC6625426 DOI: 10.3892/mmr.2019.10400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
Neuroinflammation and microglial activation are two important hallmarks of neurodegenerative diseases. Continuous microglial activation may cause the release of several cytotoxic molecules, including many cytokines that are involved in the inflammatory process. Therefore, attenuating inflammation caused by activated microglia may be an approach for the therapeutic management of neurodegenerative diseases. In addition, many studies have reported that polyphenol pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-β-D-glucose; PGG) is a molecule with potent anti-inflammatory effects, such as inhibiting the release of proinflammatory cytokines. Our previous studies revealed that PGG attenuated the expression of two inflammatory cytokines (murine monocyte chemoattractant protein-5 and pro-metalloproteinase-9) in lipopolysaccharide/interferon γ-activated BV-٢ microglial cells. Additionally, PGG modulated the NF-κB and MAPK signaling pathways by altering genes and proteins, which may affect the MAPK cascade and NF-κB activation. The aim of the present study was to investigate the ability of PGG to modulate the expression of proteins released in activated BV-2 microglial cells, which may be involved in the pathological process of inflammation and neurodegeneration. Proteomic analysis of activated BV-2 cells identified 17 proteins whose expression levels were significantly downregulated by PGG, including septin-7, ataxin-2, and adenylosuccinate synthetase isozyme 2 (ADSS). These proteins were previously described as being highly expressed in neurodegenerative diseases and/or involved in the signaling pathways associated with the formation and growth of neuronal connections and the control of Alzheimer's disease pathogenesis. The inhibitory effect of PGG on ataxin-2, septin-7 and ADSS was further confirmed at the protein and transcriptional levels. Therefore, the obtained results suggest that PGG, with its potent inhibitory effects on ataxin-2, septin-7 and ADSS, may have potential use in the therapeutic management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
9
|
Kappel S, Borgström A, Stokłosa P, Dörr K, Peinelt C. Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol 2019; 94:66-73. [PMID: 30630032 DOI: 10.1016/j.semcdb.2019.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Precise intracellular calcium signaling is crucial to numerous cellular functions. In non-excitable cells, store-operated calcium entry (SOCE) is a key step in the generation of intracellular calcium signals. Tight regulation of SOCE is important, and dysregulation is involved in several pathophysiological cellular malfunctions. The current underlying SOCE, calcium release-activated calcium current (ICRAC), was first discovered almost three decades ago. Since its discovery, the molecular components of ICRAC, Orai1 and stromal interaction molecule 1 (STIM1), have been extensively investigated. Several regulatory mechanisms and proteins contribute to alterations in SOCE and cellular malfunctions in cancer, immune and neurodegenerative diseases, inflammation, and neuronal disorders. This review summarizes these regulatory mechanisms, including glycosylation, pH sensing, and the regulatory proteins golli, α-SNAP, SARAF, ORMDL3, CRACR2A, and TRPM4 channels.
Collapse
Affiliation(s)
- Sven Kappel
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Anna Borgström
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
10
|
Valadares NF, d' Muniz Pereira H, Ulian Araujo AP, Garratt RC. Septin structure and filament assembly. Biophys Rev 2017; 9:481-500. [PMID: 28905266 DOI: 10.1007/s12551-017-0320-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Septins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four. Comprehending the structural basis for the spontaneous assembly of such filaments requires a deeper understanding of the interfaces between individual GTP-binding domains than is currently available. Nevertheless, in this review we will summarize the considerable progress which has been made over the course of the last 10 years. We will provide a brief description of each structure determined to date and comment on how it has added to the body of knowledge which is rapidly growing. Rather than simply repeat data which have already been described in the literature, as far as is possible we will try to take advantage of the full set of information now available (mostly derived from human septins) and draw the reader's attention to some of the details of the structures themselves and the filaments they form which have not be commented on previously. An additional aim is to clarify some misconceptions.
Collapse
Affiliation(s)
| | - Humberto d' Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil
| | - Ana Paula Ulian Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sancarlense, 400, São Carlos, SP, 13560-590, Brazil.
| |
Collapse
|
11
|
Abstract
Septins are GTP-binding and membrane-interacting proteins with a highly conserved domain structure involved in various cellular processes, including cytoskeleton organization, cytokinesis, and membrane dynamics. To date, 13 different septin genes have been identified in mammals (SEPT1 to SEPT12 and SEPT14), which can be classified into four distinct subgroups based on the sequence homology of their domain structure (SEPT2, SEPT3, SEPT6, and SEPT7 subgroup). The family members of these subgroups have a strong affinity for other septins and form apolar tri-, hexa-, or octameric complexes consisting of multiple septin polypeptides. The first characterized core complex is the hetero-trimer SEPT2-6-7. Within these complexes single septins can be exchanged in a subgroup-specific manner. Hexamers contain SEPT2 and SEPT6 subgroup members and SEPT7 in two copies each whereas the octamers additionally comprise two SEPT9 subgroup septins. The various isoforms seem to determine the function and regulation of the septin complex. Septins self-assemble into higher-order structures, including filaments and rings in orders, which are typical for different cell types. Misregulation of septins leads to human diseases such as neurodegenerative and bleeding disorders. In non-dividing cells such as neuronal tissue and platelets septins have been associated with exocytosis. However, many mechanistic details and roles attributed to septins are poorly understood. We describe here some important mammalian septin interactions with a special focus on the clinically relevant septin interactions.
Collapse
Affiliation(s)
- Katharina Neubauer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg Freiburg, Germany
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg Freiburg, Germany
| |
Collapse
|
12
|
Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo APU, DeMarco R. Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 2016; 131:96-105. [PMID: 27687162 DOI: 10.1016/j.biochi.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/24/2016] [Indexed: 01/22/2023]
Abstract
Septins are GTP-binding proteins that are highly conserved among eukaryotes and which are usually membrane-associated. They have been linked to several critical cellular functions such as exocytosis and ciliogenesis, but little mechanistic detail is known. Their assembly into filaments and membrane binding properties are incompletely understood and that is specially so for non-human septins where such information would offer therapeutic potential. In this study we use Schistosoma mansoni, exhibiting just four septin genes, as a simpler model for characterizing the septin structure and organization. We show that the biochemical and biophysical proprieties of its SmSEPT5 and SmSEPT10 septins are consistent with their human counterparts of subgroups SEPT2 and SEPT6, respectively. By succeeding to isolate stable constructs comprising distinct domains of SmSEPT5 and SmSEPT10 we were able to infer the influence of terminal interfaces in the oligomerization and membrane binding properties. For example, both proteins tended to form oligomers interacting by the N- and C-terminal interfaces in a nucleotide independent fashion but form heterodimers via the G interface, which are nucleotide dependent. Furthermore, we report for the first time that it is the C-terminus of SmSETP10, rather than the N-terminal polybasic region found in other septins, that mediates its binding to liposomes. Upon binding we observe formation of discrete lipo-protein clusters and higher order septin structures, making our system an exciting model to study interactions of septins with biological membranes.
Collapse
Affiliation(s)
- Ana Eliza Zeraik
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Marina Gabriel Fontes
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Roy Quinlan
- School of Biological and Biomedical Sciences, University of Durham, UK
| | | | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Kurkinen KMA, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, Sarajärvi T, Gabbouj S, Kurki M, Paananen J, Koivisto AM, Rauramaa T, Leinonen V, Tanila H, Soininen H, Lucas FR, Haapasalo A, Hiltunen M. SEPT8 modulates β-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci 2016; 129:2224-38. [PMID: 27084579 DOI: 10.1242/jcs.185215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Abstract
Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-β (Aβ) peptides is the cleavage of amyloid precursor protein (APP) by β-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aβ generation. SEPT8 was found to reduce soluble APPβ and Aβ levels in neuronal cells through a post-translational mechanism leading to decreased levels of BACE1 protein. In the human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in a manner that correlated with Alzheimer's-disease-related neurofibrillary pathology. These changes were associated with altered β-secretase activity. We also discovered that the overexpression of a specific Alzheimer's-disease-associated SEPT8 transcript variant increased the levels of BACE1 and Aβ peptides in neuronal cells. These changes were related to an increased half-life of BACE1 and the localization of BACE1 in recycling endosomes. These data suggest that SEPT8 modulates β-amyloidogenic processing of APP through a mechanism affecting the intracellular sorting and accumulation of BACE1.
Collapse
Affiliation(s)
- Kaisa M A Kurkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Laura Turner
- Eisai Ltd., Bernard Katz Building, University College London, London WC1E 6BT, UK
| | - Teemu Natunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Fanni Haapalinna
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Timo Sarajärvi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mitja Kurki
- Institute of Clinical Medicine - Neurosurgery, School of Medicine, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Jussi Paananen
- Institute of Clinical Medicine - Neurosurgery, School of Medicine, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Anne M Koivisto
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine - Pathology, School of Medicine, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, School of Medicine, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Heikki Tanila
- Department of Neurobiology, A.I. Virtanen, Institute for Molecular Sciences, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Fiona R Lucas
- Eisai Ltd., Bernard Katz Building, University College London, London WC1E 6BT, UK
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland Department of Neurobiology, A.I. Virtanen, Institute for Molecular Sciences, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
14
|
Berberine-induced changes in protein expression and antioxidant enzymes in melanoma cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0008-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Ortore MG, Macedo JNA, Araujo APU, Ferrero C, Mariani P, Spinozzi F, Itri R. Structural and Thermodynamic Properties of Septin 3 Investigated by Small-Angle X-Ray Scattering. Biophys J 2016; 108:2896-902. [PMID: 26083929 DOI: 10.1016/j.bpj.2015.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Septins comprise a family of proteins involved in a variety of cellular processes and related to several human pathologies. They are constituted by three structural domains: the N- and C-terminal domains, highly variable in length and composition, and the central domain, involved in the guanine nucleotide (GTP) binding. Thirteen different human septins are known to form heterogeneous complexes or homofilaments, which are stabilized by specific interactions between the different interfaces present in the domains. In this work, we have investigated by in-solution small-angle x-ray scattering the structural and thermodynamic properties of a human septin 3 construct, SEPT3-GC, which contains both of both interfaces (G and NC) responsible for septin-septin interactions. In order to shed light on the role of these interactions, small-angle x-ray scattering measurements were performed in a wide range of temperatures, from 2 up to 56°C, both with and without a nonhydrolysable form of GTP (GTPγS). The acquired data show a temperature-dependent coexistence of monomers, dimers, and higher-order aggregates that were analyzed using a global fitting approach, taking into account the crystallographic structure of the recently reported SEPT3 dimer, PDB:3SOP. As a result, the enthalpy, entropy, and heat capacity variations that control the dimer-monomer dissociation equilibrium in solution were derived and GTPγS was detected to increase the enthalpic stability of the dimeric species. Moreover, a temperature increase was observed to induce dissociation of SEPT3-GC dimers into monomers just preceding their reassembling into amyloid aggregates, as revealed by the Thioflavin-T fluorescence assays.
Collapse
Affiliation(s)
- Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy
| | - Joci N A Macedo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | - Paolo Mariani
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Spinozzi
- Dipartimento di Scienze della Vita e dell'Ambiente and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Università Politecnica delle Marche, Ancona, Italy.
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Triplett JC, Swomley AM, Cai J, Klein JB, Butterfield DA. Quantitative phosphoproteomic analyses of the inferior parietal lobule from three different pathological stages of Alzheimer's disease. J Alzheimers Dis 2016; 49:45-62. [PMID: 26444780 DOI: 10.3233/jad-150417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is clinically characterized by progressive neuronal loss resulting in loss of memory and dementia. AD is histopathologically characterized by the extensive distribution of senile plaques and neurofibrillary tangles, and synapse loss. Amnestic mild cognitive impairment (MCI) is generally accepted to be an early stage of AD. MCI subjects have pathology and symptoms that fall on the scale intermediately between 'normal' cognition with little or no pathology and AD. A rare number of individuals, who exhibit normal cognition on psychometric tests but whose brains show widespread postmortem AD pathology, are classified as 'asymptomatic' or 'preclinical' AD (PCAD). In this study, we evaluated changes in protein phosphorylation states in the inferior parietal lobule of subjects with AD, MCI, PCAD, and control brain using a 2-D PAGE proteomics approach in conjunction with Pro-Q Diamond phosphoprotein staining. Statistically significant changes in phosphorylation levels were found in 19 proteins involved in energy metabolism, neuronal plasticity, signal transduction, and oxidative stress response. Changes in the disease state phosphoproteome may provide insights into underlying mechanisms for the preservation of memory with expansive AD pathology in PCAD and the progressive memory loss in amnestic MCI that escalates to the dementia and the characteristic pathology of AD brain.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Aaron M Swomley
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 2015; 10:16. [PMID: 25888325 PMCID: PMC4391194 DOI: 10.1186/s13024-015-0013-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Cognitive decline and disease progression in different neurodegenerative diseases typically involves synaptic dysfunction preceding the neuronal loss. The synaptic dysfunction is suggested to be caused by imbalanced synaptic plasticity i.e. enhanced induction of long-term depression and concomitantly decreased long-term potentiation accompanied with excess stimulation of extrasynaptic N-Methyl-D-aspartate (NMDA) receptors due to various disturbances in pre- and postsynaptic sites. Recent research has identified neurodegenerative disease-related changes in protein accumulation and aggregation, gene expression, and protein functions, which may contribute to imbalanced synaptic function. Nevertheless, a comprehensive understanding of the mechanisms regulating synaptic plasticity in health and disease is still lacking and therefore characterization of new candidates involved in these mechanisms is needed. Septins, a highly conserved group of guanosine-5'-triphosphate (GTP)-binding proteins, show high neuronal expression and are implicated in the regulation of synaptic vesicle trafficking and neurotransmitter release. In this review, we first summarize the evidence how synaptic dysfunction is related to the pathogenesis of Alzheimer's, Parkinson's and Huntington's disease and frontotemporal lobar degeneration. Then, we discuss different aspects of the potential involvement of the septin family members in the regulation of synaptic function in relation to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Kaisa Ma Kurkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
18
|
Johnson CR, Weems AD, Brewer JM, Thorner J, McMurray MA. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. Mol Biol Cell 2015; 26:1323-44. [PMID: 25673805 PMCID: PMC4454179 DOI: 10.1091/mbc.e14-11-1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases.
Collapse
Affiliation(s)
- Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer M Brewer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
19
|
Sutinen EM, Korolainen MA, Häyrinen J, Alafuzoff I, Petratos S, Salminen A, Soininen H, Pirttilä T, Ojala JO. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells. Front Cell Neurosci 2014; 8:214. [PMID: 25147500 PMCID: PMC4124869 DOI: 10.3389/fncel.2014.00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/16/2014] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation and oxidative stress (OS) are present in Alzheimer's disease (AD) brains in addition to neuronal loss, Amyloid-β (Aβ) plaques and hyperphosphorylated tau-protein neurofibrillary tangles (NFTs). Previously we showed that levels of the pro-inflammatory cytokine, interleukin-18 (IL-18), are elevated in post-mortem AD brains. IL-18 can modulate the tau kinases, Cdk5 and GSK3β, as well as Aβ-production. IL-18 levels are also increased in AD risk diseases, including type-2 diabetes and obesity. Here, we explored other IL-18 regulated proteins in neuron-like SH-SY5Y cells. Differentiated SH-SY5Y cells, incubated with IL-18 for 24, 48, or 72 h, were analyzed by two-dimensional gel electrophoresis (2D-DIGE). Specific altered protein spots were chosen and identified with mass spectrometry (MS) and verified by western immunoblotting (WIB). IL-18 had time-dependent effects on the SH-SY5Y proteome, modulating numerous protein levels/modifications. We concentrated on those related to OS (DDAH2, peroxiredoxins 2, 3, and 6, DJ-1, BLVRA), Aβ-degradation (MMP14, TIMP2), Aβ-aggregation (Septin-2), and modifications of axon growth and guidance associated, collapsin response mediator protein 2 (CRMP2). IL-18 significantly increased antioxidative enzymes, indicative of OS, and altered levels of glycolytic α- and γ-enolase and multifunctional 14-3-3γ and -ε, commonly affected in neurodegenerative diseases. MMP14, TIMP2, α-enolase and 14-3-3ε, indirectly involved in Aβ metabolism, as well as Septin-2 showed changes that increase Aβ levels. Increased 14-3-3γ may contribute to GSK3β driven tau hyperphosphorylation and CRMP2 Thr514 and Ser522 phosphorylation with the Thr555-site, a target for Rho kinase, showing time-dependent changes. IL-18 also increased caspase-1 levels and vacuolization of the cells. Although our SH-SY5Y cells were not aged, as neurons in AD, our work suggests that heightened or prolonged IL-18 levels can drive protein changes of known relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Elina M Sutinen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland Kuopio, Finland ; Brain Research Unit, Clinical Research Centre, University of Eastern Finland Kuopio, Finland
| | | | - Jukka Häyrinen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland Kuopio, Finland
| | - Irina Alafuzoff
- Rudbecklaboratoriet, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology, Uppsala University Uppsala, Sweden
| | - Steven Petratos
- Regenerative Neuroscience and Development Laboratory, Department of Medicine, Central Clinical School, Monash University Prahran, VIC, Australia
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland Kuopio, Finland ; Department of Neurology, Kuopio University Hospital Kuopio, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland Kuopio, Finland ; Brain Research Unit, Clinical Research Centre, University of Eastern Finland Kuopio, Finland ; Department of Neurology, Kuopio University Hospital Kuopio, Finland
| | - Tuula Pirttilä
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland Kuopio, Finland ; Brain Research Unit, Clinical Research Centre, University of Eastern Finland Kuopio, Finland ; Department of Neurology, Kuopio University Hospital Kuopio, Finland
| | - Johanna O Ojala
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland Kuopio, Finland ; Brain Research Unit, Clinical Research Centre, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
20
|
Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:294-303. [PMID: 24766537 DOI: 10.3109/10409238.2014.914151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract others complementary, to resolve mis-folded proteins when they arise, ranging from refolding through the action of molecular chaperones to elimination through regulated proteolytic mechanisms. These protein quality control pathways are sufficient, under normal conditions, to maintain a functioning proteome, but in response to diverse environmental, genetic and/or stochastic events, protein mis-folding exceeds the corrective capacity of these pathways, leading to the accumulation of aggregates and ultimately toxicity. Particularly devastating examples of these effects include certain neurodegenerative diseases, such as Huntington's Disease, which are associated with the expansion of polyglutamine tracks in proteins. In these cases, protein mis-folding and aggregation are clear contributors to pathogenesis, but uncovering the precise mechanistic links between the two events remains an area of active research. Studies in the yeast Saccharomyces cerevisiae and other model systems have uncovered previously unanticipated complexity in aggregation pathways, the contributions of protein quality control processes to them and the cellular perturbations that result from them. Together these studies suggest that aggregate interactions and localization, rather than their size, are the crucial considerations in understanding the molecular basis of toxicity.
Collapse
Affiliation(s)
- William M Holmes
- Biology Department, College of the Holy Cross , Worcester, MA , USA and
| | | | | |
Collapse
|
21
|
Structural and thermodynamic studies of two centrin isoforms from Blastocladiella emersonii upon calcium binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2823-31. [DOI: 10.1016/j.bbapap.2013.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 11/22/2022]
|
22
|
de Val N, McMurray MA, Lam LH, Hsiung CCS, Bertin A, Nogales E, Thorner J. Native cysteine residues are dispensable for the structure and function of all five yeast mitotic septins. Proteins 2013; 81:1964-79. [PMID: 23775754 PMCID: PMC3880206 DOI: 10.1002/prot.24345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/19/2023]
Abstract
Budding yeast septins assemble into hetero-octamers and filaments required for cytokinesis. Solvent-exposed cysteine (Cys) residues provide sites for attaching substituents useful in assessing assembly kinetics and protein interactions. To introduce Cys at defined locations, site-directed mutagenesis was used, first, to replace the native Cys residues in Cdc3 (C124 C253 C279), Cdc10 (C266), Cdc11 (C43 C137 C138), Cdc12 (C40 C278), and Shs1 (C29 C148) with Ala, Ser, Val, or Phe. When plasmid-expressed, each Cys-less septin mutant rescued the cytokinesis defects caused by absence of the corresponding chromosomal gene. When integrated and expressed from its endogenous promoter, the same mutants were fully functional, except Cys-less Cdc12 mutants (which were viable, but exhibited slow growth and aberrant morphology) and Cdc3(C124V C253V C279V) (which was inviable). No adverse phenotypes were observed when certain pairs of Cys-less septins were co-expressed as the sole source of these proteins. Cells grew less well when three Cys-less septins were co-expressed, suggesting some reduction in fitness. Nonetheless, cells chromosomally expressing Cys-less Cdc10, Cdc11, and Cdc12, and expressing Cys-less Cdc3 from a plasmid, grew well at 30°C. Moreover, recombinant Cys-less septins--or where one of the Cys-less septins contained a single Cys introduced at a new site--displayed assembly properties in vitro indistinguishable from wild-type.
Collapse
Affiliation(s)
- Natalia de Val
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Michael A. McMurray
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Lisa H. Lam
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Chris C.-S. Hsiung
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Aurélie Bertin
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eva Nogales
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815–6789
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
23
|
The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem J 2013; 450:95-105. [PMID: 23163726 DOI: 10.1042/bj20120851] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human genome codes for 13 members of a family of filament-forming GTP-binding proteins known as septins. These have been divided into four different subgroups on the basis of sequence similarity. The differences between the subgroups are believed to control their correct assembly into heterofilaments which have specific roles in membrane remodelling events. Many different combinations of the 13 proteins are theoretically possible and it is therefore important to understand the structural basis of specific filament assembly. However, three-dimensional structures are currently available for only three of the four subgroups. In the present study we describe the crystal structure of a construct of human SEPT3 which belongs to the outstanding subgroup. This construct (SEPT3-GC), which includes the GTP-binding and C-terminal domains, purifies as a nucleotide-free monomer, allowing for its characterization in terms of GTP-binding and hydrolysis. In the crystal structure, SEPT3-GC forms foreshortened filaments which employ the same NC and G interfaces observed in the heterotrimeric complex of human septins 2, 6 and 7, reinforcing the notion of 'promiscuous' interactions described previously. In the present study we describe these two interfaces and relate the structure to its tendency to form monomers and its efficiency in the hydrolysis of GTP. The relevance of these results is emphasized by the fact that septins from the SEPT3 subgroup may be important determinants of polymerization by occupying the terminal position in octameric units which themselves form the building blocks of at least some heterofilaments.
Collapse
|