1
|
Nappi F, Nassif A, Schoell T. External Scaffold for Strengthening the Pulmonary Autograft in the Ross Procedure. Biomimetics (Basel) 2024; 9:674. [PMID: 39590246 PMCID: PMC11591583 DOI: 10.3390/biomimetics9110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors, and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrices could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sinotubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.N.); (T.S.)
| | | | | |
Collapse
|
2
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
4
|
Devine AJ, Smith NJ, Joshi R, Brooks-Patton B, Dunham J, Varisco AN, Goodman EM, Fan Q, Zingarelli B, Varisco BM. KF4 anti-CELA1 Antibody and Purified α1-Antitrypsin Have Similar but Not Additive Efficacy in Preventing Emphysema in Murine α1-Antitrypsin Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592994. [PMID: 38766202 PMCID: PMC11100728 DOI: 10.1101/2024.05.07.592994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alpha-1 antitrypsin (AAT) deficiency is the most common genetic cause of emphysema. Chymotrypsin-like Elastase 1 (CELA1) is a serine protease neutralized by AAT and is important in emphysema progression. Cela1-deficiency is protective in a murine models of AAT-deficient emphysema. KF4 anti-CELA1 antibody prevented emphysema in PPE and cigarette smoke models in wild type mice. We evaluated potential toxicities of KF4 and its ability to prevent emphysema in AAT deficiency. We found Cela1 protein expression in mouse lung, pancreas, small intestine, and spleen. In toxicity studies, mice treated with KF4 25 mg/kg weekly for four weeks showed an elevation in blood urea nitrogen and slower weight gain compared to lower doses or equivalent dose IgG. In histologic grading of tissue injury of the lung, kidney, liver, and heart, there was some evidence of liver injury with KF4 25 mg/kg, but in all tissues, injury was less than in control mice subjected to cecal ligation and puncture. In efficacy studies, KF4 doses as low as 0.5 mg/kg reduced the lung elastase activity of AAT-/- mice treated with 0.2 units of PPE. In this injury model, AAT-/- mice treated with KF4 1 mg/kg weekly, human purified AAT 60 mg/kg weekly, and combined KF4 and AAT treatment had less emphysema than mice treated with IgG 1 mg/kg weekly. However, the efficacy of KF4, AAT, or KF4 & AAT was similar. While KF4 might be an alternative to AAT replacement, combined KF4 and AAT replacement does not confer additional benefit.
Collapse
Affiliation(s)
- Andrew J. Devine
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
| | - Noah J. Smith
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rashika Joshi
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jenna Dunham
- Northern Kentucky University, Covington, KY, USA
| | | | - Emily M. Goodman
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Qiang Fan
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Basilia Zingarelli
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Brian M. Varisco
- Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| |
Collapse
|
5
|
Cai J, Nielsen MW, Kalogeropoulos K, auf dem Keller U, van der Plas MJ. Peptidomic analysis of endogenous and bacterial protease activity in human plasma and wound fluids. iScience 2024; 27:109005. [PMID: 38333691 PMCID: PMC10850760 DOI: 10.1016/j.isci.2024.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
Endogenous and bacterial proteases play important roles in wound healing and infection. Analysis of alterations in the low-molecular-weight peptidome by individual enzymes could therefore provide insight into proteolytic events occurring in wounds and may aid in the discovery of biomarkers. Using liquid chromatography with tandem mass spectrometry, we characterized the peptidome of plasma and acute wound fluids digested ex vivo with human (neutrophil elastase and cathepsin G) and bacterial proteases (Pseudomonas aeruginosa LasB and Staphyloccocus aureus V8). We identified over 100 protein targets for each enzyme and characterized enzyme specific peptides and cleavage patterns. Moreover, we found unique peptide regions in V8 digested samples that were also present in dressing extracts from S. aureus infected wounds. Finally, the work indicates that peptidomic analysis of qualitative differences of proteolytic activity of individual enzymes may aid in the discovery of potential diagnostic biomarkers for wound healing status.
Collapse
Affiliation(s)
- Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Maike W. Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mariena J.A. van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Noddeland HK, Lind M, Petersson K, Caruso F, Malmsten M, Heinz A. Protease-Responsive Hydrogel Microparticles for Intradermal Drug Delivery. Biomacromolecules 2023. [PMID: 37307231 DOI: 10.1021/acs.biomac.3c00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protease-responsive multi-arm polyethylene glycol-based microparticles with biscysteine peptide crosslinkers (CGPGG↓LAGGC) were obtained for intradermal drug delivery through inverse suspension photopolymerization. The average size of the spherical hydrated microparticles was ∼40 μm after crosslinking, making them attractive as a skin depot and suitable for intradermal injections, as they are readily dispensable through 27G needles. The effects of exposure to matrix metalloproteinase 9 (MMP-9) on the microparticles were evaluated by scanning electron microscopy and atomic force microscopy, demonstrating partial network destruction and decrease in elastic moduli. Given the recurring course of many skin diseases, the microparticles were exposed to MMP-9 in a flare-up mimicking fashion (multiple-time exposure), showing a significant increase in release of tofacitinib citrate (TC) from the MMP-responsive microparticles, which was not seen for the non-responsive microparticles (polyethylene glycol dithiol crosslinker). It was found that the degree of multi-arm complexity of the polyethylene glycol building blocks can be utilized to tune not only the release profile of TC but also the elastic moduli of the hydrogel microparticles, with Young's moduli ranging from 14 to 140 kPa going from 4-arm to 8-arm MMP-responsive microparticles. Finally, cytotoxicity studies conducted with skin fibroblasts showed no reduction in metabolic activity after 24 h exposure to the microparticles. Overall, these findings demonstrate that protease-responsive microparticles exhibit the properties of interest for intradermal drug delivery.
Collapse
Affiliation(s)
- Heidi K Noddeland
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Wensvoort G. Human C-peptide is a ligand of the elastin-receptor-complex and therewith central to human vascular remodelling and disease in metabolic syndrome. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Itoh Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol 2022; 12:935231. [PMID: 36132127 PMCID: PMC9483212 DOI: 10.3389/fonc.2022.935231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, the cellular microenvironment is optimized for the proper functioning of the tissues and organs. Cells recognize and communicate with the surrounding cells and extracellular matrix to maintain homeostasis. When cancer arises, the cellular microenvironment is modified to optimize its malignant growth, evading the host immune system and finding ways to invade and metastasize to other organs. One means is a proteolytic modification of the microenvironment and the signaling molecules. It is now well accepted that cancer progression relies on not only the performance of cancer cells but also the surrounding microenvironment. This mini-review discusses the current understanding of the proteolytic modification of the microenvironment signals during cancer progression.
Collapse
|
10
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
11
|
Capuana F, Phinikaridou A, Stefania R, Padovan S, Lavin B, Lacerda S, Almouazen E, Chevalier Y, Heinrich-Balard L, Botnar RM, Aime S, Digilio G. Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin. J Med Chem 2021; 64:15250-15261. [PMID: 34661390 PMCID: PMC8558862 DOI: 10.1021/acs.jmedchem.1c01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 μM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Federico Capuana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, Torino 10126, Italy
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans Cedex 2 45071, France
| | - Eyad Almouazen
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Yves Chevalier
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Laurence Heinrich-Balard
- INSA Lyon, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna, Santiago 4860, Chile
| | | | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale ″Amedeo Avogadro″, Viale T. Michel 11, Alessandria 15121, Italy
| |
Collapse
|
12
|
Schmelzer CEH, Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J 2021; 289:3704-3730. [PMID: 33896108 DOI: 10.1111/febs.15899] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Sante, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
13
|
Ozols M, Eckersley A, Platt CI, Stewart-McGuinness C, Hibbert SA, Revote J, Li F, Griffiths CEM, Watson REB, Song J, Bell M, Sherratt MJ. Predicting Proteolysis in Complex Proteomes Using Deep Learning. Int J Mol Sci 2021; 22:3071. [PMID: 33803033 PMCID: PMC8002881 DOI: 10.3390/ijms22063071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be key effectors of tissue remodeling. We have previously shown that comparison of amino acid composition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting protein susceptibility to endogenous proteases remains challenging. Here, we aim to develop bioinformatics tools to (i) predict cleavage site locations (and hence putative protein susceptibilities) and (ii) compare the predicted vulnerabilities of skin proteins to protease- and ROS-mediated proteolysis. The first goal of this study was to experimentally evaluate the ability of existing protease cleavage site prediction models (PROSPER and DeepCleave) to identify experimentally determined MMP9 cleavage sites in two purified proteins and in a complex human dermal fibroblast-derived extracellular matrix (ECM) proteome. We subsequently developed deep bidirectional recurrent neural network (BRNN) models to predict cleavage sites for 14 tissue proteases. The predictions of the new models were tested against experimental datasets and combined with amino acid composition analysis (to predict ultraviolet radiation (UVR)/ROS susceptibility) in a new web app: the Manchester proteome susceptibility calculator (MPSC). The BRNN models performed better in predicting cleavage sites in native dermal ECM proteins than existing models (DeepCleave and PROSPER), and application of MPSC to the skin proteome suggests that: compared with the elastic fiber network, fibrillar collagens may be susceptible primarily to protease-mediated proteolysis. We also identify additional putative targets of oxidative damage (dermatopontin, fibulins and defensins) and protease action (laminins and nidogen). MPSC has the potential to identify potential targets of proteolysis in disparate tissues and disease states.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Christopher I. Platt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Callum Stewart-McGuinness
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Sarah A. Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Jerico Revote
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3800, Australia;
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Mike Bell
- Research and Development, Walgreens Boots Alliance, Thane Road, Nottingham NG90 1BS, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| |
Collapse
|
14
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
15
|
Valois MV, de Oliveira C, Lapa AJ, Souccar C, Oliva MLV. Bauhinia Protease Inhibitors Attenuate Gastric Ulcer by Blocking Neutrophil Enzymes. PLANTA MEDICA 2021; 87:169-176. [PMID: 32663895 DOI: 10.1055/a-1202-4799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proteases play a pivotal role in many signaling pathways; inhibitors of well-established proteases have shown a substantial therapeutic success. This study aimed to examine the in vivo effects of 3 protease inhibitors isolated from Bauhinia species: i) Bauhinia mollis elastase inhibitor, which blocks human neutrophil elastase (Kiapp 2.8 nM) and cathepsin G (Kiapp 1.0 nM) activities; ii) Bauhinia mollis trypsin inhibitor, a trypsin inhibitor (Kiapp 5.0 nM); and iii) Bauhinia bauhinioides cruzipain inhibitor, which inhibits elastase (Kiapp 2.6 nM), cathepsin G (Kiapp 160.0 nM), and the cysteine proteases cathepsin L (Kiapp 0.2 nM). Bauhinia bauhinioides cruzipain inhibitor, Bauhinia mollis elastase inhibitor, and Bauhinia mollis trypsin inhibitor were isolated using acetone and ammonium sulfate fractionations, DEAE-Sephadex, trypsin-Sepharose, and Resource-Q chromatographies. Mice and rats were treated intraperitoneally with 1 dose of inhibitor; gastric mucosal lesions were induced by cold-restraint stress. Oral pretreatment of mice with Bauhinia mollis elastase inhibitor or Bauhinia mollis trypsin inhibitor (1 - 10 mg/kg) did not show anti-ulcer effect, while Bauhinia bauhinioides cruzipain inhibitor (0.1 - 1.0 mg/kg) produced a similar reduction of the index of mucosal damage at all effective doses (30 to 33% < control). In rats at doses lower than those used in mice, Bauhinia mollis elastase inhibitor and Bauhinia bauhinioides cruzipain inhibitor reduced the index of mucosal damage by 66% and 54% of controls, respectively. The results indicate a protective effect against gastric mucosal lesions associated with elastase inhibition but not inhibition of trypsin activities. Moreover, the lack of Bauhinia mollis elastase inhibitor efficacy observed in mice may possibly be related to the reported structural differences of elastase in mice and rats.
Collapse
Affiliation(s)
- Mayara Vioto Valois
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Cleide de Oliveira
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Antonio José Lapa
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Caden Souccar
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| | - Maria Luiza Vilela Oliva
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, SP, Brazil
| |
Collapse
|
16
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 2020; 55:252-273. [PMID: 32530323 DOI: 10.1080/10409238.2020.1768208] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elastin is an important protein of the extracellular matrix of higher vertebrates, which confers elasticity and resilience to various tissues and organs including lungs, skin, large blood vessels and ligaments. Owing to its unique structure, extensive cross-linking and durability, it does not undergo significant turnover in healthy tissues and has a half-life of more than 70 years. Elastin is not only a structural protein, influencing the architecture and biomechanical properties of the extracellular matrix, but also plays a vital role in various physiological processes. Bioactive elastin peptides termed elastokines - in particular those of the GXXPG motif - occur as a result of proteolytic degradation of elastin and its non-cross-linked precursor tropoelastin and display several biological activities. For instance, they promote angiogenesis or stimulate cell adhesion, chemotaxis, proliferation, protease activation and apoptosis. Elastin-degrading enzymes such as matrix metalloproteinases, serine proteases and cysteine proteases slowly damage elastin over the lifetime of an organism. The destruction of elastin and the biological processes triggered by elastokines favor the development and progression of various pathological conditions including emphysema, chronic obstructive pulmonary disease, atherosclerosis, metabolic syndrome and cancer. This review gives an overview on types of human elastases and their action on human elastin, including the formation, structure and biological activities of elastokines and their role in common biological processes and severe pathological conditions.
Collapse
Affiliation(s)
- Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
19
|
Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochim Biophys Acta Gen Subj 2020; 1864:129544. [PMID: 32007579 DOI: 10.1016/j.bbagen.2020.129544] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Skin ageing is associated with structure-functional changes in the extracellular matrix, which is in part caused by proteolytic degradation. Since cysteine cathepsins are major matrix protein-degrading proteases, we investigated the age-dependent expression of elastolytic cathepsins K, S, and V in human skin, their in vitro impact on the integrity of the elastic fibre network, their cleavage specificities, and the release of bioactive peptides. METHODS Cathepsin-mediated degradation of human skin elastin samples was assessed from young to very old human donors using immunohistochemical and biochemical assays, scanning electron microscopy, and mass spectrometry. RESULTS Elastin samples derived from patients between 10 and 86 years of age were analysed and showed an age-dependent deterioration of the fibre structure from a dense network of thinner fibrils into a beaded and porous mesh. Reduced levels of cathepsins K, S, and V were observed in aged skin with a predominant epidermal expression. Cathepsin V was the most potent elastase followed by cathepsin K and S. Biomechanical analysis of degraded elastin fibres corroborated the destructive activity of cathepsins. Mass spectrometric determination of the cleavage sites in elastin revealed that all three cathepsins predominantly cleaved in hydrophobic domains. The degradation of elastin was efficiently inhibited by an ectosteric inhibitor. Furthermore, the degradation of elastin fibres resulted in the release of bioactive peptides, which have previously been associated with various pathologies. CONCLUSION Cathepsins are powerful elastin-degrading enzymes and capable of generating a multitude of elastokines. They may represent a viable target for intervention strategies to reduce skin ageing.
Collapse
|
20
|
Daamen WF, Quaglino D. Signaling pathways in elastic tissues. Cell Signal 2019; 63:109364. [DOI: 10.1016/j.cellsig.2019.109364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
|
21
|
The role of elastin-derived peptides in human physiology and diseases. Matrix Biol 2019; 84:81-96. [PMID: 31295577 DOI: 10.1016/j.matbio.2019.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Once considered as inert, the extracellular matrix recently revealed to be biologically active. Elastin is one of the most important components of the extracellular matrix. Many vital organs including arteries, lungs and skin contain high amounts of elastin to assure their correct function. Physiologically, the organism contains a determined quantity of elastin from the early development which may remain physiologically constant due to its very long half-life and very low turnover. Taking into consideration the continuously ongoing challenges during life, there is a physiological degradation of elastin into elastin-derived peptides which is accentuated in several disease states such as obstructive pulmonary diseases, atherosclerosis and aortic aneurysm. These elastin-derived peptides have been shown to have various biological effects mediated through their interaction with their cognate receptor called elastin receptor complex eliciting several signal transduction pathways. In this review, we will describe the production and the biological effects of elastin-derived peptides in physiology and pathology.
Collapse
|
22
|
Andrault PM, Panwar P, Mackenzie NCW, Brömme D. Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep 2019; 9:9682. [PMID: 31273243 PMCID: PMC6609650 DOI: 10.1038/s41598-019-45918-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Elastin plays an important role in maintaining blood vessel integrity. Proteolytic degradation of elastin in the vascular system promotes the development of atherosclerosis, including blood vessel calcification. Cysteine cathepsins have been implicated in this process, however, their role in disease progression and associated complications remains unclear. Here, we showed that the degradation of vascular elastin by cathepsins (Cat) K, S, and V directly stimulates the mineralization of elastin and that mineralized insoluble elastin fibers were ~25–30% more resistant to CatK, S, and V degradation when compared to native elastin. Energy dispersive X-ray spectroscopy investigations showed that insoluble elastin predigested by CatK, S, or V displayed an elemental percentage in calcium and phosphate up to 8-fold higher when compared to non-digested elastin. Cathepsin-generated elastin peptides increased the calcification of MOVAS-1 cells acting through the ERK1/2 pathway by 34–36%. We made similar observations when cathepsin-generated elastin peptides were added to ex vivo mouse aorta rings. Altogether, our data suggest that CatK-, S-, and V-mediated elastolysis directly accelerates the mineralization of the vascular matrix by the generation of nucleation points in the elastin matrix and indirectly by elastin-derived peptides stimulating the calcification by vascular smooth muscle cells. Both processes inversely protect against further extracellular matrix degradation.
Collapse
Affiliation(s)
- Pierre-Marie Andrault
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Neil C W Mackenzie
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T1Z3, Canada. .,Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
23
|
Bennasroune A, Romier-Crouzet B, Blaise S, Laffargue M, Efremov RG, Martiny L, Maurice P, Duca L. Elastic fibers and elastin receptor complex: Neuraminidase-1 takes the center stage. Matrix Biol 2019; 84:57-67. [PMID: 31226402 DOI: 10.1016/j.matbio.2019.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) has for a long time being considered as a simple architectural support for cells. It is now clear that ECM presents a fundamental influence on cells driving their phenotype and fate. This complex network is highly specialized and the different classes of macromolecules that comprise the ECM determine its biological functions. For instance, collagens are responsible for the tensile strength of tissues, proteoglycans and glycosaminoglycans are essential for hydration and resistance to compression, and glycoproteins such as laminins facilitate cell attachment. The largest structures of the ECM are the elastic fibers found in abundance in tissues suffering high mechanical constraints such as skin, lungs or arteries. These structures present a very complex composition whose core is composed of elastin surrounded by a microfibrils mantle. Elastogenesis is a tightly regulated process involving the sialidase activity of the Neuraminidase-1 (Neu-1) sub-unit of the Elastin Receptor Complex. Interestingly, Neu-1 subunit also serves as a sensor of elastin degradation via its ability to transmit elastin-derived peptides signaling. Finally, reports showing that neuraminidase activity is able to regulate TGF-β activation raises questions about a possible role for Neu-1 in elastic fibers remodeling. In this mini review, we develop the concept of the regulation of the whole life of elastic fibers through an original scope, the key role of Neu-1 sialidase enzymatic activity.
Collapse
Affiliation(s)
- Amar Bennasroune
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Muriel Laffargue
- UMR INSERM 1048 I2MC, Université Paul Sabatier, Toulouse, France
| | - Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, Reims, France.
| |
Collapse
|
24
|
Thorlacius-Ussing J, Kehlet SN, Rønnow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol 2019; 145:383-392. [PMID: 30467633 DOI: 10.1007/s00432-018-2799-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Elastin is a signature protein of lungs. Increased elastin turnover driven by altered proteolytic activity is an important part of lung tumorigenesis. Elastin-derived fragments have been shown to be pro-tumorigenic, however, little is known regarding the biomarker potential of such elastin fragments. Here, we present an elastin turnover profile by non-invasively quantifying five specific elastin degradation fragments generated by different proteases. METHODS Elastin fragments were assessed in serum from patients with stage I-IV non-small cell lung cancer (NSCLC) (n = 40) and healthy controls (n = 30) using competitive ELISAs targeting different protease-generated fragments of elastin: ELM12 (generated by matrix metalloproteinase MMP-9 and -12), ELM7 (MMP-7), EL-NE (neutrophil elastase), EL-CG (cathepsin G) and ELP-3 (proteinase 3). RESULTS ELM12, ELM7, EL-NE and EL-CG were all significantly elevated in NSCLC patients (n = 40) when compared to healthy controls (n = 30) (ELM12, p = 0.0191; ELM7, p < 0.0001; EL-NE, p < 0.0001; EL-CG, p < 0.0001). ELP-3 showed no significant difference between patients and controls (p = 0.8735). All fragments correlated positively (Spearman, r: 0.69-0.81) when compared pairwise, except ELM12 (Spearman, r: 0.042-0.097). In general, all fragments were detectable across all stages of the disease. CONCLUSIONS Elastin fragments generated by different proteases are elevated in lung cancer patients compared to healthy controls but differ in their presence. This demonstrates non-invasive biomarker potential of elastin fragments in serum from lung cancer patients and suggests that different pathological mechanisms may be responsible for the elastin turnover, warranting further validation in clinical trials.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Stephanie Nina Kehlet
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Sarah Rank Rønnow
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
25
|
Ngai D, Lino M, Bendeck MP. Cell-Matrix Interactions and Matricrine Signaling in the Pathogenesis of Vascular Calcification. Front Cardiovasc Med 2018; 5:174. [PMID: 30581820 PMCID: PMC6292870 DOI: 10.3389/fcvm.2018.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.
Collapse
Affiliation(s)
- David Ngai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Marsel Lino
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Phinikaridou A, Lacerda S, Lavin B, Andia ME, Smith A, Saha P, Botnar RM. Tropoelastin: A novel marker for plaque progression and instability. Circ Cardiovasc Imaging 2018; 11. [PMID: 30214669 DOI: 10.1161/circimaging.117.007303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Elastolysis and ineffective elastogenesis favor the accumulation of tropoelastin, rather than cross-linked elastin, in atherosclerotic plaques. We developed gadolinium-labeled tropoelastin-specific magnetic resonance contrast agents (Gd-TESMAs) for tropoelastin imaging in animal models. Methods and Results Two peptides, VVGSPSAQDEASPLS and YPDHVQYTHY were selected to target tropoelastin. In vitro binding, relaxivity, and biodistribution experiments enabled characterization of the probes and selecting the best candidate for in vivo MRI. MRI was performed in atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice and New Zealand white rabbits with stable and rupture-prone plaques using Gd-TESMA. Additionally, human carotid endarterectomy specimens were imaged ex vivo. The VVGSPSAQDEASPLS-based probe discriminated between tropoelastin and cross-linked elastin (64±7% vs 1±2%, P=0.001), had high in vitro relaxivity in solution (r1-free=11.7±0.6mM-1s-1, r1-bound to tropoelastin = 44±1mM-1s-1) and favorable pharmacokinetics. In vivo mice vascular enhancement (4wks=0.13±0.007mm2, 8wks=0.22±0.01mm2, 12wks=0.33±0.01mm2, P<0.001) and R1 relaxation rate (4wks=0.90±0.01 s-1, 8wks=1.40±0.03 s-1, 12wks=1.87±0.04s-1, P<0.001) increased with atherosclerosis progression after Gd-TESMA injection. Conversely, statin-treated (0.13±0.01mm2, R1 =1.37±0.03s-1) and control (0.10±0.005mm2, R1 =0.87±0.05s-1) mice showed less enhancement. Rupture-prone rabbit plaques had higher R1 relaxation rate compared with stale plaques (R1=2.26±0.1s-1vs R1=1.43±0.02s-1, P=0.001), after administration of Gd-TESMA that allowed detection of rupture-prone plaques with high sensitivity (84.4%) and specificity (92.3%). Increased vascular R1 relaxation rate was observed in carotid endarterectomy plaques after soaking (R1pre= 1.1±0.26 s-1 vs R1post= 3.0±0.1s-1, P=0.01). Ex vivo analyses confirmed the MRI findings and showed uptake of the contrast agent to be specific for tropoelastin. Conclusions MRI of tropoelastin provides a novel biomarker for atherosclerotic plaque progression and instability.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.,BHF Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Sara Lacerda
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.,BHF Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Begoña Lavin
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.,BHF Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Marcelo E Andia
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.,Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto Smith
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, London, UK
| | - Prakash Saha
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, London, UK
| | - René M Botnar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.,BHF Centre of Excellence, Cardiovascular Division, King's College London, London, UK.,Wellcome Trust and EPSRC Medical Engineering Center, King's College London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
27
|
Schräder CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH. Elastin is heterogeneously cross-linked. J Biol Chem 2018; 293:15107-15119. [PMID: 30108173 DOI: 10.1074/jbc.ra118.004322] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/12/2018] [Indexed: 01/30/2023] Open
Abstract
Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure.
Collapse
Affiliation(s)
- Christoph U Schräder
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Andrea Heinz
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany.,the Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Petra Majovsky
- the Proteome Analytics Research Group, Leibniz Institute for Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Berin Karaman Mayack
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Jürgen Brinckmann
- the Institute of Virology and Cell Biology, Department of Dermatology, University of Lübeck, Lübeck 23538, Germany, and
| | - Wolfgang Sippl
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Christian E H Schmelzer
- From the Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany, .,the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale) 06120, Germany
| |
Collapse
|
28
|
Gudmann NS, Manon-Jensen T, Sand JMB, Diefenbach C, Sun S, Danielsen A, Karsdal MA, Leeming DJ. Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease. Biochem Biophys Res Commun 2018; 503:1284-1290. [PMID: 30017196 DOI: 10.1016/j.bbrc.2018.07.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by high levels of protease activity leading to degradation of elastin followed by loss of elasticity of the lung and the development of emphysema. Elastin is an essential structural component of the lung parenchyma to support the expansion and recoil of the alveoli during breathing. The lung extracellular matrix is vulnerable to pathological structural changes upon upregulation of serine proteases, including cathepsin G (CG) and proteinase 3 (PR3). In this study, we explored the diagnostic features of elastin neo-epitopes generated by CG and PR3. Two novel competitive enzyme-linked immunosorbent assays (ELISA) measuring CG and PR3 generated elastin fragments (EL-CG and ELP-3 respectively) were developed for assessment in serum. Both assays were technically robust and biologically validated in serum from patients with COPD. Serological levels of both elastin fragments were significantly elevated in patients with COPD compared to healthy controls. These data suggest that EL-CG and ELP-3 may serve as plausible biologic markers of destructive changes in COPD.
Collapse
Affiliation(s)
| | | | | | | | - Shu Sun
- Nordic Bioscience, Herlev, Denmark
| | | | | | | |
Collapse
|
29
|
Mora Huertas AC, Schmelzer CE, Luise C, Sippl W, Pietzsch M, Hoehenwarter W, Heinz A. Degradation of tropoelastin and skin elastin by neprilysin. Biochimie 2018; 146:73-78. [DOI: 10.1016/j.biochi.2017.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/25/2017] [Indexed: 02/01/2023]
|
30
|
Swedberg JE, Li CY, de Veer SJ, Wang CK, Craik DJ. Design of Potent and Selective Cathepsin G Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold. J Med Chem 2017; 60:658-667. [PMID: 28045523 DOI: 10.1021/acs.jmedchem.6b01509] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neutrophils are directly responsible for destroying invading pathogens via reactive oxygen species, antimicrobial peptides, and neutrophil serine proteases (NSPs). Imbalance between NSP activity and endogenous protease inhibitors is associated with chronic inflammatory disorders, and engineered inhibitors of NSPs are a potential therapeutic pathway. In this study we characterized the extended substrate specificity (P4-P1) of the NSP cathepsin G using a peptide substrate library. Substituting preferred cathepsin G substrate sequences into sunflower trypsin inhibitor-1 (SFTI-1) produced a potent cathepsin G inhibitor (Ki = 0.89 nM). Cathepsin G's P2' preference was determined by screening against a P2' diverse SFTI-based library, and the most preferred residue at P2' was combined in SFTI-1 with a preferred substrate sequence (P4-P2) and a nonproteinogenic P1 residue (4-guanidyl-l-phenylalanine) to produce a potent (Ki = 1.6 nM) and the most selective (≥360-fold) engineered cathepsin G inhibitor reported to date. This compound is a promising lead for further development of cathepsin G inhibitors targeting chronic inflammatory disorders.
Collapse
Affiliation(s)
- Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Treatment of Burn and Surgical Wounds With Recombinant Human Tropoelastin Produces New Elastin Fibers in Scars. J Burn Care Res 2017; 38:e859-e867. [DOI: 10.1097/bcr.0000000000000507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Mora Huertas AC, Schmelzer CEH, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie 2016; 128-129:163-73. [PMID: 27569260 DOI: 10.1016/j.biochi.2016.08.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin.
Collapse
Affiliation(s)
- Angela C Mora Huertas
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | | | - Frank Heyroth
- Interdisciplinary Center of Material Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
33
|
Heinz A, Huertas ACM, Schräder CU, Pankau R, Gosch A, Schmelzer CEH. Elastins from patients with Williams-Beuren syndrome and healthy individuals differ on the molecular level. Am J Med Genet A 2016; 170:1832-42. [DOI: 10.1002/ajmg.a.37638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/10/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Andrea Heinz
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Angela C. Mora Huertas
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Christoph U. Schräder
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Rainer Pankau
- Finkelstein-Klinik für Kinder-und Jugendmedizin; Heidekreis-Klinikum; Walsrode Germany
| | - Angela Gosch
- Fakultät für angewandte Sozialwissenschaften FK 11; Hochschule München; München Germany
| | - Christian E. H. Schmelzer
- Faculty of Natural Sciences I, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
34
|
Duca L, Blaise S, Romier B, Laffargue M, Gayral S, El Btaouri H, Kawecki C, Guillot A, Martiny L, Debelle L, Maurice P. Matrix ageing and vascular impacts: focus on elastin fragmentation. Cardiovasc Res 2016; 110:298-308. [DOI: 10.1093/cvr/cvw061] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/07/2016] [Indexed: 12/17/2022] Open
|
35
|
Scandolera A, Odoul L, Salesse S, Guillot A, Blaise S, Kawecki C, Maurice P, El Btaouri H, Romier-Crouzet B, Martiny L, Debelle L, Duca L. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential. Front Pharmacol 2016; 7:32. [PMID: 26973522 PMCID: PMC4777733 DOI: 10.3389/fphar.2016.00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDPs), named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although, several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3), their main receptor remains the elastin receptor complex (ERC). This heterotrimer comprises a peripheral subunit, named elastin binding protein (EBP), associated to the protective protein/cathepsin A (PPCA). The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1). The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered.
Collapse
Affiliation(s)
- Amandine Scandolera
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Ludivine Odoul
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Stéphanie Salesse
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Alexandre Guillot
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Sébastien Blaise
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Charlotte Kawecki
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Pascal Maurice
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Hassan El Btaouri
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Laurent Martiny
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Laurent Debelle
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| | - Laurent Duca
- UMR CNRS/URCA 7369, SFR CAP Santé, Université de Reims Champagne Ardenne, Faculté des Sciences Reims, France
| |
Collapse
|
36
|
Wu W, Liu R, Chen L, Chen H, Zhang S. Disequilibrium of Blood Coagulation and Fibrinolytic System in Patients With Coronary Artery Ectasia. Medicine (Baltimore) 2016; 95:e2779. [PMID: 26937905 PMCID: PMC4779002 DOI: 10.1097/md.0000000000002779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Thrombus formation and myocardial infarction are not uncommon in patients with coronary artery ectasia (CAE). In light of this, the present study aims to systemically evaluate the blood coagulation and fibrinolytic systems in CAE patients. In this study, we enrolled 30 patients with CAE, 30 patients with coronary atherosclerosis disease (CAD), and 29 subjects with normal coronary arteries (control). The coagulation system was evaluated using a routine coagulation function test performed in the hospital laboratory before coronary angiography, and measurements included prothrombin time, international normalized ratio, activated partial thromboplastin time, fibrinogen time, and thrombin time. The evaluation of the fibrinolytic system included measurements of D-dimer, euglobulin lysis time, plasminogen activator inhibitor 1, plasminogen, plasminogen activity assay, α1-antitrypsin (α1-AT), α2 plasmin inhibitor (α2-PI), and α2-macroglobulin (α2-MG). Alpha1-AT, α2-PI, and α2-MG also inhibit activities of 3 neutrophil serine proteases, namely human neutrophil elastase (HNE), cathepsin G (CG), and proteinase 3 (PR3); therefore, the plasma levels of these 3 proteinases were also evaluated.In CAE patients, the circulating coagulation system was normal. For the fibrinolytic system, a decrease of plasminogen activity was observed (P = 0.029) when compared with CAD patients, and the concentrations of α1-AT (both P < 0.001), α2-PI (P = 0.002 and P = 0.025), and α2-MG (P = 0.034 and P < 0.001) were significantly elevated when compared with CAD patients and normal controls. Moreover, the plasma levels of HNE (both P < 0.001) and CG (P = 0.027 and 0.016) in CAE patients were also significantly higher than those of the CAD and control groups. There was no difference in plasma PR3 concentration among these 3 groups.Disequilibrium of the coagulation/fibrinolytic system may contribute to thrombus formation and clinical coronary events in patients with CAE. The increased plasma concentrations of α1-AT, α2-PI, and α2-MG might provide beneficial effects by inhibiting the proteinases and restraining the ectatic process; on other hand, they led to unfavorable results by inhibiting plasmin and decreasing thrombus degradation in CAE patients.
Collapse
Affiliation(s)
- Wei Wu
- From the Department of Cardiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital (WW, RL, LC, SZ); and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College (HC), Beijing, China
| | | | | | | | | |
Collapse
|
37
|
Schulenburg C, Faccio G, Jankowska D, Maniura-Weber K, Richter M. A FRET-based biosensor for the detection of neutrophil elastase. Analyst 2016; 141:1645-8. [DOI: 10.1039/c5an01747e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The direct and specific detection of biomarkers activity is crucial as it can allow monitoring the state of tissue or wound, as well as the progression of the inflammatory process.
Collapse
Affiliation(s)
- C. Schulenburg
- Department of Biointerfaces
- Empa - Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen (CH)
- Switzerland
| | - G. Faccio
- Department of Biointerfaces
- Empa - Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen (CH)
- Switzerland
| | - D. Jankowska
- Department of Biointerfaces
- Empa - Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen (CH)
- Switzerland
| | - K. Maniura-Weber
- Department of Biointerfaces
- Empa - Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen (CH)
- Switzerland
| | - M. Richter
- Department of Biointerfaces
- Empa - Swiss Federal Laboratories for Materials Science and Technology
- 9014 St. Gallen (CH)
- Switzerland
| |
Collapse
|
38
|
Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie 2015; 122:300-13. [PMID: 26382969 DOI: 10.1016/j.biochi.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022]
Abstract
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | - Sylvain D Vallet
- UMR 5086 CNRS - Université Lyon 1, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
39
|
Qin Z. Soluble elastin peptides in cardiovascular homeostasis: Foe or ally. Peptides 2015; 67:64-73. [PMID: 25794852 DOI: 10.1016/j.peptides.2015.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/23/2022]
Abstract
Elastin peptides, also known as elastin-derived peptides or elastokines, are soluble polypeptides in blood and tissue. The blood levels of elastin peptides are usually low but can increase during cardiovascular diseases, such as atherosclerosis, aortic aneurysm and diabetes with vascular complications. Generally, elastin peptides are derived from the degradation of insoluble elastic polymers. The biological activities of elastin peptides are bidirectional, e.g., a pro-inflammatory effect on monocyte migration induction vs. a protective effect on vasodilation promotion. However, recent in vivo studies have demonstrated that elastin peptides promote the formation of atherosclerotic plaques in hypercholesterolemic mice and induce hyperglycemia and elevations in plasma lipid levels in fasted mice. More important, the detrimental effects induced by elastin peptides can be largely inhibited by genetic or pharmacological blockade of the elastin receptor complex or by neutralization of an antibody against elastin peptides. These studies indicate new therapeutic strategies for the treatment of cardiovascular diseases by targeting elastin peptide metabolism. Therefore, the goal of this review is to summarize current knowledge about elastin peptides relevant to cardiovascular pathologies to further delineate their potential application in cardiovascular disease.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
40
|
Schräder CU, Heinz A, Majovsky P, Schmelzer CEH. Fingerprinting desmosine-containing elastin peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:762-773. [PMID: 25604393 DOI: 10.1007/s13361-014-1075-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/21/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Elastin is a vital protein of the extracellular matrix of jawed vertebrates and provides elasticity to numerous tissues. It is secreted in the form of its soluble precursor tropoelastin, which is subsequently cross-linked in the course of the elastic fiber assembly. The process involves the formation of the two tetrafunctional amino acids desmosine (DES) and isodesmosine (IDES), which are unique to elastin. The resulting high degree of cross-linking confers remarkable properties, including mechanical integrity, insolubility, and long-term stability to the protein. These characteristics hinder the structural elucidation of mature elastin. However, MS(2) data of linear and cross-linked peptides released by proteolysis can provide indirect insights into the structure of elastin. In this study, we performed energy-resolved collision-induced dissociation experiments of DES, IDES, their derivatives, and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type CxHyN, suggesting that the pyridinium core of DES/IDES remains intact even at relatively high collision energies. The finding of these specific product ions enabled the development of a similarity-based scoring algorithm that was successfully applied on LC-MS/MS data of bovine elastin digests for the identification of DES-/IDES-cross-linked peptides. This approach facilitates the straightforward investigation of native cross-links in elastin.
Collapse
Affiliation(s)
- Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
41
|
Unopposed Cathepsin G, Neutrophil Elastase, and Proteinase 3 Cause Severe Lung Damage and Emphysema. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2197-210. [DOI: 10.1016/j.ajpath.2014.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
|
42
|
Heinz A, Schräder CU, Baud S, Keeley FW, Mithieux SM, Weiss AS, Neubert RHH, Schmelzer CEH. Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biol 2014; 38:12-21. [PMID: 25068896 DOI: 10.1016/j.matbio.2014.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS(2) data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.
Collapse
Affiliation(s)
- Andrea Heinz
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Christoph U Schräder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stéphanie Baud
- Laboratoire SiRMa, FRE CNRS/URCA 3481, Université de Reims Champagne-Ardenne, Reims, France; Plateforme de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France
| | - Fred W Keeley
- Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada
| | | | - Anthony S Weiss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia; Bosch Institute, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Reinhard H H Neubert
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
43
|
Blaise S, Romier B, Kawecki C, Ghirardi M, Rabenoelina F, Baud S, Duca L, Maurice P, Heinz A, Schmelzer CE, Tarpin M, Martiny L, Garbar C, Dauchez M, Debelle L, Durlach V. Elastin-derived peptides are new regulators of insulin resistance development in mice. Diabetes 2013; 62:3807-16. [PMID: 23919962 PMCID: PMC3806616 DOI: 10.2337/db13-0508] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although it has long been established that the extracellular matrix acts as a mechanical support, its degradation products, which mainly accumulate during aging, have also been demonstrated to play an important role in cell physiology and the development of cardiovascular and metabolic diseases. In the current study, we show that elastin-derived peptides (EDPs) may be involved in the development of insulin resistance (IRES) in mice. In chow-fed mice, acute or chronic intravenous injections of EDPs induced hyperglycemic effects associated with glucose uptake reduction and IRES in skeletal muscle, liver, and adipose tissue. Based on in vivo, in vitro, and in silico approaches, we propose that this IRES is due to interaction between the insulin receptor (IR) and the neuraminidase-1 subunit of the elastin receptor complex triggered by EDPs. This interplay was correlated with decreased sialic acid levels on the β-chain of the IR and reduction of IR signaling. In conclusion, this is the first study to demonstrate that EDPs, which mainly accumulate with aging, may be involved in the insidious development of IRES.
Collapse
Affiliation(s)
- Sébastien Blaise
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
- Corresponding author: Sébastien Blaise,
| | - Béatrice Romier
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Charlotte Kawecki
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Maxime Ghirardi
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Fanja Rabenoelina
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphanie Baud
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Michel Tarpin
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Martiny
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Christian Garbar
- Département de Biopathologie, Institut Jean-Godinot, Centre Régional de Lutte Contre le Cancer, Reims, France
| | - Manuel Dauchez
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Debelle
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Vincent Durlach
- Formations de Recherche en Evolution CNRS 3481, Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
- Pôle Thoracique et Cardio-Vasculaire, Hôpital Robert-Debré, Centre Hospitalier Universitaire de Reims, Reims, France
| |
Collapse
|
44
|
Maurice P, Blaise S, Gayral S, Debelle L, Laffargue M, Hornebeck W, Duca L. Elastin fragmentation and atherosclerosis progression: The elastokine concept. Trends Cardiovasc Med 2013; 23:211-21. [DOI: 10.1016/j.tcm.2012.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023]
|
45
|
Blanchevoye C, Floquet N, Scandolera A, Baud S, Maurice P, Bocquet O, Blaise S, Ghoneim C, Cantarelli B, Delacoux F, Dauchez M, Efremov RG, Martiny L, Duca L, Debelle L. Interaction between the elastin peptide VGVAPG and human elastin binding protein. J Biol Chem 2012; 288:1317-28. [PMID: 23166321 DOI: 10.1074/jbc.m112.419929] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The elastin binding protein (EBP), a spliced variant of lysosomal β-galactosidase, is the primary receptor of elastin peptides that have been linked to emphysema, aneurysm and cancer progression. The sequences recognized by EBP share the XGXXPG consensus pattern found in numerous matrix proteins, notably in elastin where the VGVAPG motif is repeated. To delineate the elastin binding site of human EBP, we built a homology model of this protein and docked VGVAPG on its surface. Analysis of this model suggested that Gln-97 and Asp-98 were required for interaction with VGVAPG because they contribute to the definition of a pocket thought to represent the elastin binding site of EBP. Additionally, we proposed that Leu-103, Arg-107, and Glu-137 were essential residues because they could interact with VGVAPG itself. Site-directed mutagenesis experiments at these key positions validated our model. This work therefore provides the first structural data concerning the interaction of the VGVAPG with its cognate receptor. The present structural data should now allow the development of EBP-specific antagonists.
Collapse
Affiliation(s)
- Charlotte Blanchevoye
- Laboratoire de Signalisation et Récepteurs Matriciels, FRE CNRS 3184, Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schmelzer CEH, Jung MC, Wohlrab J, Neubert RHH, Heinz A. Does human leukocyte elastase degrade intact skin elastin? FEBS J 2012; 279:4191-200. [PMID: 23006486 DOI: 10.1111/febs.12012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/16/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the susceptibility of intact fibrillar human elastin to human leukocyte elastase and cathepsin G. Elastin is a vital protein of the extracellular matrix of vertebrates, and provides exceptional properties including elasticity and tensile strength to many tissues and organs, including the aorta, lung, cartilage, elastic ligaments and skin, and is thus critical for their long-term function. Mature elastin is an insoluble and extremely durable protein that undergoes very little turnover, but sustained exposure to proteases may lead to irreversible and severe damage, and thus to functional loss of the elastic fiber network. Hence, it is a key issue to understand which enzymes actually initiate elastolysis under certain pathological conditions or during intrinsic aging. In this paper, we provide a complete workflow for isolation of pure and intact elastin from very small tissue samples to test enzymes for their elastolytic potential. This workflow was applied to skin samples from variously aged individuals, and it was found that strong differences exist in the degradability of the elastins investigated. In summary, human leukocyte elastase was unable to degrade intact elastin fibers but hydrolyzed elastin derived from the skin of old people. However, cathepsin G cleaved all elastin samples, even those derived from younger individuals. These results indicate that human leukocyte elastase is not a driving force for elastolysis, but may nevertheless promote further breakdown of elastic fibers after the action of other enzymes such as cathepsin G.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ. Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2012; 11:70-92. [PMID: 23046407 DOI: 10.1089/adt.2012.474] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased attention is paid to the structural components of tissues. These components are mostly collagens and various proteoglycans. Emerging evidence suggests that altered components and noncoded modifications of the matrix may be both initiators and drivers of disease, exemplified by excessive tissue remodeling leading to tissue stiffness, as well as by changes in the signaling potential of both intact matrix and fragments thereof. Although tissue structure until recently was viewed as a simple architecture anchoring cells and proteins, this complex grid may contain essential information enabling the maintenance of the structure and normal functioning of tissue. The aims of this review are to (1) discuss the structural components of the matrix and the relevance of their mutations to the pathology of diseases such as fibrosis and cancer, (2) introduce the possibility that post-translational modifications (PTMs), such as protease cleavage, citrullination, cross-linking, nitrosylation, glycosylation, and isomerization, generated during pathology, may be unique, disease-specific biochemical markers, (3) list and review the range of simple enzyme-linked immunosorbent assays (ELISAs) that have been developed for assessing the extracellular matrix (ECM) and detecting abnormal ECM remodeling, and (4) discuss whether some PTMs are the cause or consequence of disease. New evidence clearly suggests that the ECM at some point in the pathogenesis becomes a driver of disease. These pathological modified ECM proteins may allow insights into complicated pathologies in which the end stage is excessive tissue remodeling, and provide unique and more pathology-specific biochemical markers.
Collapse
|
48
|
Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ, Allan SM. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:381-92. [PMID: 22661091 PMCID: PMC3381844 DOI: 10.4049/jimmunol.1200409] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.
Collapse
Affiliation(s)
- Charlotte Allen
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Adam Denes
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
,To whom correspondence should be addressed: Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | - Adam Pierozynski
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marc Monestier
- Department of Microbiology and Immunity, School of Medicine, Temple University, PA 19140
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Nancy J. Rothwell
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Stuart M. Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
49
|
Reddel CJ, Weiss AS, Burgess JK. Elastin in asthma. Pulm Pharmacol Ther 2012; 25:144-53. [PMID: 22366197 DOI: 10.1016/j.pupt.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/19/2012] [Accepted: 02/08/2012] [Indexed: 12/15/2022]
Abstract
Extracellular matrix is generally increased in asthma, causing thickening of the airways which may either increase or decrease airway responsiveness, depending on the mechanical requirements of the deposited matrix. However, in vitro studies have shown that the altered extracellular matrix produced by asthmatic airway smooth muscle cells is able to induce increased proliferation of non-asthmatic smooth muscle cells, which is a process believed to contribute to airway hyper-responsiveness in asthma. Elastin is an extracellular matrix protein that is altered in asthmatic airways, but there has been no systematic investigation of the functional effect of these changes. This review reveals divergent reports of the state of elastin in the airway wall in asthma. In some layers of the airway it has been described as increased, decreased and/or fragmented, or unchanged. There is also considerable evidence for an imbalance of matrix metalloproteinases, which degrade elastin, and their respective inhibitors the tissue inhibitors of metalloproteinases, which collectively help to explain observations of both increased elastin and elastin fragments. A loss of lung elastic recoil in asthma suggests a mechanical role for disordered elastin in the aetiology of the disease, but extensive studies of elastin in other tissues show that elastin fragments elicit cellular effects such as increased proliferation and inflammation. This review summarises the current understanding of the role of elastin in the asthmatic airway.
Collapse
Affiliation(s)
- Caroline J Reddel
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|