1
|
Tamazawa A, Naganuma T, Otsuka K, Takahashi T, Sassa T, Kihara A. Fatty acyl-CoA reductase FAR1 is essential for the testicular seminolipid synthesis required for spermatogenesis and male fertility. J Biol Chem 2025; 301:108538. [PMID: 40288649 DOI: 10.1016/j.jbc.2025.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Seminolipids are testis-specific ether glycolipids that are important for spermatogenesis. The fatty alcohol (ether-linked alkyl moiety) in ether lipids is generated from an acyl-CoA by fatty acyl-CoA reductase (FAR). To date, the diversity of the alkyl and acyl moieties in seminolipids, the specific stage of spermatogenesis during which seminolipids are produced, and the FAR isozyme (FAR1 or FAR2) involved in the synthesis of the alkyl moieties have remained largely unclear. Here, we demonstrated that Far1 is expressed in the mouse testis via quantitative RT-PCR analysis, whereas Far2 was barely detectable. In situ hybridization and quantitative RT-PCR analysis of spermatogenic cells separated via FACS revealed that Far1 is expressed in spermatogonia, spermatocytes, and spermatids. We generated Far1 KO mice and found that male Far1 KO mice were infertile. In these mice, sperms were absent in the epididymides and the testes were small, with multinucleated cells and vacuoles in the seminiferous tubules. LC-MS/MS analysis showed that the vast majority of seminolipids (>90%) in WT mouse testes contained C16:0 in both the alkyl and the acyl moieties. Seminolipids were present in all subclasses of spermatogenic cells in WT mice, but they were absent in Far1 KO mice. Instead, the production of nonether, diacyl-type sulfogalactosyl lipids (sulfogalactosyl diacylglycerols) was induced in Far1 KO mice. In conclusion, the alkyl and acyl moieties of seminolipids in the testis are low in diversity, and Far1 is essential for seminolipid synthesis and spermatogenesis.
Collapse
Affiliation(s)
- Ayano Tamazawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuro Naganuma
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kento Otsuka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tenga Takahashi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Papin M, Bouchet AM, Chantôme A, Vandier C. Ether-lipids and cellular signaling: A differential role of alkyl- and alkenyl-ether-lipids? Biochimie 2023; 215:50-59. [PMID: 37678745 DOI: 10.1016/j.biochi.2023.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Ether-lipids (EL) are specific lipids bearing a characteristic sn-1 ether bond. Depending on the ether or vinyl-ether nature of this bond, they are present as alkyl- or alkenyl-EL, respectively. Among EL, alkenyl-EL, also referred as plasmalogens in the literature, attract most of the scientific interest as they are the predominant EL species in eukaryotic cells, thus less is known about alkyl-EL. EL have been implicated in various signaling pathways and alterations in their quantity are frequently observed in pathologies such as neurodegenerative and cardiovascular diseases or cancer. However, it remains unknown whether both alkyl- and alkenyl-EL play the same roles in these processes. This review summarizes the roles and mechanisms of action of EL in cellular signaling and tries to discriminate between alkyl- and alkenyl-EL. We also focus on the involvement of EL-mediated alterations of cellular signaling in diseases and discuss the potential interest for EL in therapy.
Collapse
Affiliation(s)
- Marion Papin
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France.
| | | | - Aurélie Chantôme
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France
| | - Christophe Vandier
- Nutrition, Croissance, Cancer (N2C) UMR 1069, University of Tours, INSERM, 37000, Tours, France; Lifesome Therapeutics, López de Hoyos 42, 28006, Madrid, Spain
| |
Collapse
|
3
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
4
|
Padmanabhan S, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Del Rey Navalón I, Pérez-Castaño R, Galbis-Martínez ML, Fontes M, Elías-Arnanz M. Plasmalogens and Photooxidative Stress Signaling in Myxobacteria, and How it Unmasked CarF/TMEM189 as the Δ1'-Desaturase PEDS1 for Human Plasmalogen Biosynthesis. Front Cell Dev Biol 2022; 10:884689. [PMID: 35646900 PMCID: PMC9131029 DOI: 10.3389/fcell.2022.884689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond that endows them with unique physical-chemical properties. They have proposed biological roles in membrane organization, fluidity, signaling, and antioxidative functions, and abnormal plasmalogen levels correlate with various human pathologies, including cancer and Alzheimer’s disease. The presence of plasmalogens in animals and in anaerobic bacteria, but not in plants and fungi, is well-documented. However, their occurrence in the obligately aerobic myxobacteria, exceptional among aerobic bacteria, is often overlooked. Tellingly, discovery of the key desaturase indispensable for vinyl ether bond formation, and therefore fundamental in plasmalogen biogenesis, emerged from delving into how the soil myxobacterium Myxococcus xanthus responds to light. A recent pioneering study unmasked myxobacterial CarF and its human ortholog TMEM189 as the long-sought plasmanylethanolamine desaturase (PEDS1), thus opening a crucial door to study plasmalogen biogenesis, functions, and roles in disease. The findings demonstrated the broad evolutionary sweep of the enzyme and also firmly established a specific signaling role for plasmalogens in a photooxidative stress response. Here, we will recount our take on this fascinating story and its implications, and review the current state of knowledge on plasmalogens, their biosynthesis and functions in the aerobic myxobacteria.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Irene Del Rey Navalón
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
5
|
Tamiya-Koizumi K, Otoki Y, Nakagawa K, Kannagi R, Mizutani N, Suzuki M, Kyogashima M, Iwaki S, Aoyama M, Murate T, Kitatani K, Kuga T, Mizutani Y, Tokumura A. Cellular concentrations of plasmalogen species containing a polyunsaturated fatty acid significantly increase under hypoxia in human colorectal cancer, Caco2 cells. Biochem Biophys Res Commun 2022; 611:1-7. [DOI: 10.1016/j.bbrc.2022.04.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
|
6
|
Xiao Y, Liu H, Lu Q, Li H, Liu Q, Li S, Liu H, Varshney RK, Liang X, Hong Y, Chen X. Lipid profile variations in high olecic acid peanuts by following different cooking processes. Food Res Int 2022; 155:110993. [DOI: 10.1016/j.foodres.2022.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
|
7
|
Röszer T. Co-Evolution of Breast Milk Lipid Signaling and Thermogenic Adipose Tissue. Biomolecules 2021; 11:1705. [PMID: 34827703 PMCID: PMC8615456 DOI: 10.3390/biom11111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Breastfeeding is a unique and defining behavior of mammals and has a fundamental role in nourishing offspring by supplying a lipid-rich product that is utilized to generate heat and metabolic fuel. Heat generation from lipids is a feature of newborn mammals and is mediated by the uncoupling of mitochondrial respiration in specific fat depots. Breastfeeding and thermogenic adipose tissue have a shared evolutionary history: both have evolved in the course of homeothermy evolution; breastfeeding mammals are termed "thermolipials", meaning "animals with warm fat". Beyond its heat-producing capacity, thermogenic adipose tissue is also necessary for proper lipid metabolism and determines adiposity in offspring. Recent advances have demonstrated that lipid metabolism in infants is orchestrated by breast milk lipid signals, which establish mother-to-child signaling and control metabolic development in the infant. Breastfeeding rates are declining worldwide, and are paralleled by an alarming increase in childhood obesity, which at least in part may have its roots in the impaired metabolic control by breast milk lipid signals.
Collapse
Affiliation(s)
- Tamás Röszer
- Institute of Neurobiology, Faculty of Science, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
8
|
Abstract
Background Cardiorespiratory fitness (CRF) is a potent health marker, the improvement of which is associated with a reduced incidence of non-communicable diseases and all-cause mortality. Identifying metabolic signatures associated with CRF could reveal how CRF fosters human health and lead to the development of novel health-monitoring strategies. Objective This article systematically reviewed reported associations between CRF and metabolites measured in human tissues and body fluids. Methods PubMed, EMBASE, and Web of Science were searched from database inception to 3 June, 2021. Metabolomics studies reporting metabolites associated with CRF, measured by means of cardiopulmonary exercise test, were deemed eligible. Backward and forward citation tracking on eligible records were used to complement the results of database searching. Risk of bias at the study level was assessed using QUADOMICS. Results Twenty-two studies were included and 667 metabolites, measured in plasma (n = 619), serum (n = 18), skeletal muscle (n = 16), urine (n = 11), or sweat (n = 3), were identified. Lipids were the metabolites most commonly positively (n = 174) and negatively (n = 274) associated with CRF. Specific circulating glycerophospholipids (n = 85) and cholesterol esters (n = 17) were positively associated with CRF, while circulating glycerolipids (n = 152), glycerophospholipids (n = 42), acylcarnitines (n = 14), and ceramides (n = 12) were negatively associated with CRF. Interestingly, muscle acylcarnitines were positively correlated with CRF (n = 15). Conclusions Cardiorespiratory fitness was associated with circulating and muscle lipidome composition. Causality of the revealed associations at the molecular species level remains to be investigated further. Finally, included studies were heterogeneous in terms of participants’ characteristics and analytical and statistical approaches. PROSPERO Registration Number CRD42020214375. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01590-y.
Collapse
|
9
|
Shangguan W, Wang L, Cheng R, Liu T, Cai J, Zhang B, Liu E, Liang X. Screening and functional analysis of differentially expressed lncRNAs in rapid atrial pacing dog atrial tissue. J Interv Card Electrophysiol 2021; 61:375-384. [PMID: 32671717 DOI: 10.1007/s10840-020-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Atrial fibrillation (AF) is one of the most commonly sustained arrhythmias in clinical practice. Long non-coding RNAs (lncRNAs) are gene regulatory elements involved in the development of several diseases. We aimed to explore the expression characteristics of lncRNAs associated with AF. METHODS We randomly assigned 12 adult healthy mongrel dogs into a control group and an atrial pacing group. Atrial pacing stimulation was performed at a high frequency of 500 beats per min for 14 consecutive days in the atrial pacing group. HE and Masson staining were used to detect rapid atrial pacing induced atrial fibrosis. Total RNA extraction was performed on dog atrial tissues and was used for high-throughput sequencing of lncRNAs. RESULTS A total of 10,310 lncRNAs were detected, and 33 differentially expressed lncRNAs were screened. Among them, 19 lncRNAs were upregulated in the atrial pacing group, and 14 lncRNAs were downregulated. Gene Ontology (GO) classification, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and interaction networks showed that AF-related lncRNAs participate in the regulation of AF in diverse biological processes, cellular components, molecular functions, signaling pathways, and complex interactions with miRNAs and mRNAs. Five differentially expressed lncRNAs were selected for RT-PCR validation, and the verification results were consistent with the results of lncRNA sequencing. CONCLUSIONS In summary, our study enhances our understanding of the biological functions of AF-related lncRNAs by screening and analyzing differentially expressed lncRNAs, and the results help to enrich the theoretical basis for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China
| | - Lijun Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China
| | - Rukun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China
| | - Jiageng Cai
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China
| | - Baoshuai Zhang
- Department of Scientific research, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Enzhao Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China.
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
10
|
Paul S, Rasmiena AA, Huynh K, Smith AAT, Mellett NA, Jandeleit-Dahm K, Lancaster GI, Meikle PJ. Oral Supplementation of an Alkylglycerol Mix Comprising Different Alkyl Chains Effectively Modulates Multiple Endogenous Plasmalogen Species in Mice. Metabolites 2021; 11:metabo11050299. [PMID: 34066368 PMCID: PMC8148155 DOI: 10.3390/metabo11050299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmalogens or alkenylphospholipids are a sub-class of glycerophospholipids with numerous biological functions and are thought to have protective effects against metabolic disease. Dietary supplementation with alkylglycerols (AKGs) has been shown to increase endogenous plasmalogen levels, however effective modulation of different molecular plasmalogen species has not yet been demonstrated. In this study, the effects of an orally-administered AKG mix (a mixture of chimyl, batyl and selachyl alcohol at a 1:1:1 ratio) on plasma and tissue lipids, including plasmalogens, was evaluated. Mice on a Western-type diet were treated with either an AKG mix or vehicle (lecithin) for 1, 2, 4, 8 and 12 weeks. Treatment with the AKG mix significantly increased the total plasmalogen content of plasma, liver and adipose tissue as a result of elevations in multiple plasmalogen species with different alkenyl chains. Alkylphospholipids, the endogenous precursors of plasmalogens, showed a rapid and significant increase in plasma, adipose tissue, liver and skeletal muscle. A significant accumulation of alkyl-diacylglycerol and lyso-ether phospholipids was also observed in plasma and tissues. Additionally, the dynamics of plasmalogen-level changes following AKG mix supplementation differed between tissues. These findings indicate that oral supplementation with an AKG mix is capable of upregulating and maintaining stable expression of multiple molecular plasmalogen species in circulation and tissues.
Collapse
Affiliation(s)
- Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Aliki A. Rasmiena
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Adam Alexander T. Smith
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Natalie A. Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
| | - Karin Jandeleit-Dahm
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Graeme I. Lancaster
- Hematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia;
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (S.P.); (A.A.R.); (K.H.); (A.A.T.S.); (N.A.M.)
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
- Correspondence: ; Tel.: +61-3-8532-1770
| |
Collapse
|
11
|
Carrard J, Gallart-Ayala H, Infanger D, Teav T, Wagner J, Knaier R, Colledge F, Streese L, Königstein K, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Metabolic View on Human Healthspan: A Lipidome-Wide Association Study. Metabolites 2021; 11:metabo11050287. [PMID: 33946321 PMCID: PMC8146132 DOI: 10.3390/metabo11050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years, 43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was investigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach. Compared to their younger counterparts, aged females and males exhibited significant higher levels in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphingolipid and glycerophospholipid species, previously described as cardiometabolically favourable, were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more favourable lipidome evolution in females. Altogether, age determined the circulating lipidome composition, while lipid species analysis revealed additional findings that were not observed at the subclass level.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
- Correspondence: (J.I.); (A.S.-T.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
- Correspondence: (J.I.); (A.S.-T.)
| |
Collapse
|
12
|
Chaverra Daza KE, Silva Gómez E, Moreno Murillo BD, Mayorga Wandurraga H. Natural and Enantiopure Alkylglycerols as Antibiofilms Against Clinical Bacterial Isolates and Quorum Sensing Inhibitors of Chromobacterium violaceum ATCC 12472. Antibiotics (Basel) 2021; 10:antibiotics10040430. [PMID: 33924401 PMCID: PMC8070063 DOI: 10.3390/antibiotics10040430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022] Open
Abstract
Resistance mechanisms occur in almost all clinical bacterial isolates and represent one of the most worrisome health problems worldwide. Bacteria can form biofilms and communicate through quorum sensing (QS), which allow them to develop resistance against conventional antibiotics. Thus, new therapeutic candidates are sought. We focus on alkylglycerols (AKGs) because of their recently discovered quorum sensing inhibition (QSI) ability and antibiofilm potential. Fifteen natural enantiopure AKGs were tested to determine their effect on the biofilm formation of other clinical bacterial isolates, two reference strains and their QSI was determined using Chromobacterium violaceum ATCC 12472. The highest biofilm inhibition rates (%) and minimum QS inhibitory concentration were determined by a microtiter plate assay and ciprofloxacin was used as the standard antibiotic. At subinhibitory concentrations, each AKG reduced biofilm formation in a concentration-dependent manner against seven bacterial isolates, with values up to 97.2%. Each AKG displayed QSI at different levels of ability without affecting the growth of C. violaceum. AKG (2S)-3-O-(cis-13’-docosenyl)-1,2-propanediol was the best QS inhibitor (20 μM), while (2S)-3-O-(cis-9’-hexadecenyl)-1,2-propanediol was the least effective (795 μM). The results showed for the first time the QSI activity of this natural AKG series and suggest that AKGs could be promising candidates for further studies on preventing antimicrobial resistance.
Collapse
Affiliation(s)
- Klauss E. Chaverra Daza
- Posgrado Interfacultades de Microbiología, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 224, Bogotá 11011, Colombia;
- Grupo de Productos Naturales Vegetales Bioactivos y Química Ecológica, Laboratorio de Asesorías e Investigaciones en Microbiología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 450, Bogotá 11011, Colombia;
| | - Edelberto Silva Gómez
- Grupo de Productos Naturales Vegetales Bioactivos y Química Ecológica, Laboratorio de Asesorías e Investigaciones en Microbiología, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 450, Bogotá 11011, Colombia;
| | - Bárbara D. Moreno Murillo
- Grupo de Productos Naturales Vegetales Bioactivos y Química Ecológica, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 451, Bogotá 11011, Colombia;
| | - Humberto Mayorga Wandurraga
- Grupo de Productos Naturales Vegetales Bioactivos y Química Ecológica, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Av. Carrera 30 # 45-03, Edif. 451, Bogotá 11011, Colombia;
- Correspondence: ; Tel.: +57-1-316-5000 (ext. 14440)
| |
Collapse
|
13
|
West AL, Michaelson LV, Miles EA, Haslam RP, Lillycrop KA, Georgescu R, Han L, Napier JA, Calder PC, Burdge GC. Lipidomic Analysis of Plasma from Healthy Men and Women Shows Phospholipid Class and Molecular Species Differences between Sexes. Lipids 2020; 56:229-242. [PMID: 33284478 PMCID: PMC8048887 DOI: 10.1002/lipd.12293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
The phospholipid composition of lipoproteins is determined by the specificity of hepatic phospholipid biosynthesis. Plasma phospholipid 20:4n‐6 and 22:6n‐3 concentrations are higher in women than in men. We used this sex difference in a lipidomics analysis of the impact of endocrine factors on the phospholipid class and molecular species composition of fasting plasma from young men and women. Diester species predominated in all lipid classes measured. 20/54 Phosphatidylcholine (PtdCho) species were alkyl ester, 15/48 phosphatidylethanolamine (PtdEtn) species were alkyl ester, and 12/48 PtdEtn species were alkenyl ester. There were no significant differences between sexes in the proportions of alkyl PtdCho species. The proportion of alkyl ester PtdEtn species was greater in women than men, while the proportion of alkenyl ester PtdEtn species was greater in men than women. None of the phosphatidylinositol (PtdIns) or phosphatidylserine (PtdSer) molecular species contained ether‐linked fatty acids. The proportion of PtdCho16:0_22:6, and the proportions of PtdEtn O‐16:0_20:4 and PtdEtn O‐18:2_20:4 were greater in women than men. There were no sex differences in PtdIns and PtdSer molecular species compositions. These findings show that plasma phospholipids can be modified by sex. Such differences in lipoprotein phospholipid composition could contribute to sexual dimorphism in patterns of health and disease.
Collapse
Affiliation(s)
- Annette L West
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Louise V Michaelson
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Richard P Haslam
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Ramona Georgescu
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Lihua Han
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
14
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
15
|
Jiao L, Dai T, Cao T, Jin M, Sun P, Zhou Q. New insight into the molecular basis of chromium exposure of Litopenaeus vannamei by transcriptome analysis. MARINE POLLUTION BULLETIN 2020; 160:111673. [PMID: 33181946 DOI: 10.1016/j.marpolbul.2020.111673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/05/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution arising from agricultural and industrial activities poses a significant threat to the aquatic environment, especially the increasing levels of chromium (Cr) that is exacerbating marine pollution. Given the economic importance of the Pacific white shrimp Litopenaeus vannamei (L. vannamei), understanding the impact of marine Cr pollution is deemed to be significant. In this study, we used the transcriptome sequencing (RNA-seq) technique to characterize the molecular mechanism of Cr exposure in L. vannamei. Gene ontology enrichment analysis showed substrate-specific and ion transport-related functions were mainly influenced by Cr exposure. We further identified genes involved in protein digestion and absorption (PEPT1, BAT1, MDU1), chemical carcinogenesis (GST and UGTs), ABC transporters (ABCC2), apoptosis (CAPN1, CASP10, PARP), implying the potentially Cr disintoxication mechanisms in L. vannamei. Genes within pancreatic secretion (ALT, LDH), lysosome (CTSL and HEXB), and peroxisome (ACOX1, ECI2, NUDT12) pathways implied the potentially Cr toxicity mechanisms in L. vannamei.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China.
| |
Collapse
|
16
|
Huang Y, Zhang C, Wang Y, Sun X. Identification and analysis of miRNAs in the normal and fatty liver from the Holstein dairy cow. Anim Biotechnol 2020; 33:468-479. [PMID: 32838638 DOI: 10.1080/10495398.2020.1804919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding short RNAs with ∼22 nts in length, which play important roles in the regulation of numerous biological processes in animals. In this study, two small RNA libraries from fatty (S01) and normal livers (S02) from Holstein Dairy Cow (HDC) were sequenced through deep sequencing. A total of 12,964,411 and 15,426,289 clean reads were obtained, representing 370 known and 182 novel miRNAs, respectively. The characterization, expression pattern, potential functions and target genes of these miRNAs were investigated. Analysis identified 66 upregulated and seven downregulated differentially expressed miRNAs (DIE-miRNAs). To verify the sequencing results, 10 DIE-miRNAs were selected for qRT-PCR, and the results were confirmed to be consistent with the miRNA sequencing. In addition, a total of 5,578 targets of the 73 DIE-miRNAs were predicted. GO analysis revealed that DIE-miRNAs targets are associated with cellular process, cell part and molecular transducer activity. KEGG pathway analysis showed that Arrhythmogenic right ventricular cardiomyopathy, Axon guidance, Ether lipid metabolism and Cocaine addiction were closely associated with liver metabolism. These findings will provide valuable information for further functional verification of miRNAs between normal and fatty liver, as might exploit new attractive miRNAs biomarkers for diseases detection in HDC.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yanli Wang
- Development Planning Office, Henan University of Science and Technology, Luoyang, China
| | - Xihong Sun
- Development Planning Office, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Gallego-García A, Monera-Girona AJ, Pajares-Martínez E, Bastida-Martínez E, Pérez-Castaño R, Iniesta AA, Fontes M, Padmanabhan S, Elías-Arnanz M. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science 2020; 366:128-132. [PMID: 31604315 DOI: 10.1126/science.aay1436] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2023]
Abstract
Plasmalogens are glycerophospholipids with a hallmark sn-1 vinyl ether bond. These lipids are found in animals and some bacteria and have proposed membrane organization, signaling, and antioxidant roles. We discovered the plasmanylethanolamine desaturase activity that is essential for vinyl ether bond formation in a bacterial enzyme, CarF, which is a homolog of the human enzyme TMEM189. CarF mediates light-induced carotenogenesis in Myxococcus xanthus, and plasmalogens participate in sensing photooxidative stress through singlet oxygen. TMEM189 and other animal homologs could functionally replace CarF in M. xanthus, and knockout of TMEM189 in a human cell line eliminated plasmalogens. Discovery of the human plasmanylethanolamine desaturase will spur further study of plasmalogen biogenesis, functions, and roles in disease.
Collapse
Affiliation(s)
- Aránzazu Gallego-García
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Elena Pajares-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain.
| |
Collapse
|
18
|
Abstract
The adaptogenic properties of alkylglycerols (AGs) after 1 month's treatment were investigated in a rat model of acute immobilization stress (AIS). The animals receiving AGs 157 mg/kg showed a body weight (BW) decrease in addition to a more pronounced increase in the adrenal glands index under stress conditions. Also, AGs at this dose prevented AIS-induced catalase inhibition. In addition, antiulcerative AG effects were already detected at a dose of 15 mg/kg. The data indicate that AGs promote adrenal gland activation in AIS. At the same time, AGs neutralize some of negative effects of stressful conditions, which include restoration of the oxidation-reduction balance, reduction of gastric mucosal stress lesion formation.LAY SUMMARYThe effect of alkylglycerols, ether lipids from marine organisms, was studied in stressed animals. AGs have antioxidant activity and can be useful in the complex therapy of stomach lesions.
Collapse
Affiliation(s)
- Tatiana S Poleschuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Pacific State Medical University, Vladivostok, Russia
| | - Ruslan M Sultanov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Ekaterina V Ermolenko
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Lidiya V Shulgina
- School of Biomedicine, Far Eastern Federal University (FEFU), Vladivostok, Russia
- Pacific Research Fisheries Center (TINRO-Center), Vladivostok, Russia
| | - Sergey P Kasyanov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- School of Biomedicine, Far Eastern Federal University (FEFU), Vladivostok, Russia
| |
Collapse
|
19
|
Röszer T. Signal Mechanisms of M2 Macrophage Activation. PROGRESS IN INFLAMMATION RESEARCH 2020:73-97. [DOI: 10.1007/978-3-030-50480-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem 2019; 166:423-432. [PMID: 31236591 DOI: 10.1093/jb/mvz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Ether glycerolipids, plasmalogens are found in various mammalian cells and tissues. However, physiological role of plasmalogens in epithelial cells remains unknown. We herein show that synthesis of ethanolamine-containing plasmalogens, plasmenylethanolamine (PlsEtn), is deficient in MCF7 cells, an epithelial cell line, with severely reduced expression of alkyl-dihydroxyacetonephosphate synthase (ADAPS), the second enzyme in the PlsEtn biosynthesis. Moreover, expression of ADAPS or supplementation of PlsEtn containing C18-alkenyl residue delays the migration of MCF7 cells as compared to that mock-treated MCF7 and C16-alkenyl-PlsEtn-supplemented MCF7 cells. Localization of E-cadherin to cell-cell junctions is highly augmented in cells containing C18-alkenyl-PlsEtn. Together, these results suggest that PlsEtn containing C18-alkenyl residue plays a distinct role in the integrity of E-cadherin-mediated adherens junction.
Collapse
Affiliation(s)
- Takanori Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yuichi Abe
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
21
|
Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Dev Biol 2019; 456:1-7. [PMID: 31398317 DOI: 10.1016/j.ydbio.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
Congenital heart disease (CHD) is a major cause of morbidity in the pediatric population yet its genetic and molecular causes remain poorly defined. Previously, we identified AGMO as a candidate heterotaxy disease gene, a disorder of left-right (LR) patterning that can have a profound effect on cardiac function. AGMO is the only known alkylglycerol monooxygenase, an orphan tetrahydrobiopterin dependent enzyme that cleaves the ether linkage in alkylglycerols. However, whether AGMO plays a role in LR patterning was unexplored. Here we reveal that Agmo is required for correct development of the embryonic LR axis in Xenopus embryos recapitulating the patient's heterotaxy phenotype. Mechanistically, we demonstrate that Agmo is a regulator of canonical Wnt signaling, required during gastrulation for normal formation of the left - right organizer. Mutational analysis demonstrates that this function is dependent on Agmo's alkylglycerol monooxygenase activity. Together, our findings identify Agmo as a regulator of canonical Wnt signaling, demonstrate a role for Agmo in embryonic axis formation, and provide insight into the poorly understood developmental requirements for ether lipid cleavage.
Collapse
|
22
|
Yu H, Dilbaz S, Coßmann J, Hoang AC, Diedrich V, Herwig A, Harauma A, Hoshi Y, Moriguchi T, Landgraf K, Körner A, Lucas C, Brodesser S, Balogh L, Thuróczy J, Karemore G, Kuefner MS, Park EA, Rapp C, Travers JB, Röszer T. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest 2019; 129:2485-2499. [PMID: 31081799 PMCID: PMC6546455 DOI: 10.1172/jci125646] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Prevalence of obesity among infants and children below 5 years of age is rising dramatically, and early childhood obesity is a forerunner of obesity and obesity-associated diseases in adulthood. Childhood obesity is hence one of the most serious public health challenges today. Here, we have identified a mother-to-child lipid signaling that protects from obesity. We have found that breast milk-specific lipid species, so-called alkylglycerol-type (AKG-type) ether lipids, which are absent from infant formula and adult-type diets, maintain beige adipose tissue (BeAT) in the infant and impede the transformation of BeAT into lipid-storing white adipose tissue (WAT). Breast milk AKGs are metabolized by adipose tissue macrophages (ATMs) to platelet-activating factor (PAF), which ultimately activates IL-6/STAT3 signaling in adipocytes and triggers BeAT development in the infant. Accordingly, lack of AKG intake in infancy leads to a premature loss of BeAT and increases fat accumulation. AKG signaling is specific for infants and is inactivated in adulthood. However, in obese adipose tissue, ATMs regain their ability to metabolize AKGs, which reduces obesity. In summary, AKGs are specific lipid signals of breast milk that are essential for healthy adipose tissue development.
Collapse
Affiliation(s)
| | - Sedat Dilbaz
- Institute of Neurobiology, and
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | | | | | | | - Akiko Harauma
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukino Hoshi
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Toru Moriguchi
- Department of Food and Life Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kathrin Landgraf
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Christina Lucas
- Lipidomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Lipidomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Lajos Balogh
- Department of Nuclear Medicine, National Public Health Center (NPHC), Budapest, Hungary
| | - Julianna Thuróczy
- Department of Nuclear Medicine, National Public Health Center (NPHC), Budapest, Hungary
| | - Gopal Karemore
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael Scott Kuefner
- Veterans Affairs Medical Center and the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Edwards A. Park
- Veterans Affairs Medical Center and the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christine Rapp
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
23
|
Robino P, Ferrocino I, Rossi G, Dogliero A, Alessandria V, Grosso L, Galosi L, Tramuta C, Cocolin L, Nebbia P. Changes in gut bacterial communities in canaries infected by Macrorhabdus ornithogaster. Avian Pathol 2018; 48:111-120. [PMID: 30499334 DOI: 10.1080/03079457.2018.1553294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macrorhabdus ornithogaster is an opportunistic yeast that colonizes the gastric mucosa of many avian species. Until now, no studies have focused on the influence of a gastric infection on the balance of the intestinal microbiota of birds. In this study, 44 faecal samples from individual canaries, with and without M. ornithogaster infection, were analysed. The detection of the yeast was evaluated by 18S rRNA PCR. In order to evaluate the impact of the Macrorhabdus infection on the bacterial communities, culture-independent methods, by the use of amplicon-based sequencing as well as 16S rRNA-DGGE, were adopted. The different health status of animals affected the relative abundance of the main OTUs, with a greater diversification of the gut microbiota in healthy animals compared to the infected. In particular, Lactococcus, Pseudomonas, Acinetobacter, Lachnospiraceae, Propionibacterium and Weissella were found to be characteristic of uninfected animals (FDR < 0.05), while Lactobacillus and Candidatus Arthromitus were characteristic of infected animals (FDR < 0.05). Both these taxa have been reported as immunostimulatory, involved in immunological disorders. In infected animals the inferred metagenome assessed by PICRUST clearly showed a positive correlation between the presence of M. ornithogaster and KEGG genes related to ether lipid metabolism, already reported to be immunostimulatory by activation of macrophages and to play a pathophysiological role in several immunological disorders. Finally, our results show an interaction between infection of the digestive tract and intestinal microbiota of pet birds and provide insight into the changing of the complex enteric bacterial community. HIGHLIGHTS Macrorabdus ornithogaster is a gastric yeast that colonizes a wide range of birds. Differences were found between infected and healthy animals in gut microbiota. Candidatus Arthromitus was closely associated with infected birds. M. ornithogaster can affect intestinal microbiota composition of canaries.
Collapse
Affiliation(s)
- Patrizia Robino
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Ilario Ferrocino
- b Department of Agriculture, Forestry and Food Science , University of Torino , Grugliasco , Italy
| | - Giacomo Rossi
- c School of Biosciences and Veterinary Medicine University of Camerino , Matelica , Italy
| | - Andrea Dogliero
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Valentina Alessandria
- b Department of Agriculture, Forestry and Food Science , University of Torino , Grugliasco , Italy
| | - Lisa Grosso
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Livio Galosi
- c School of Biosciences and Veterinary Medicine University of Camerino , Matelica , Italy
| | - Clara Tramuta
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| | - Luca Cocolin
- b Department of Agriculture, Forestry and Food Science , University of Torino , Grugliasco , Italy
| | - Patrizia Nebbia
- a Department of Veterinary Sciences , University of Torino , Grugliasco , Italy
| |
Collapse
|
24
|
Maeba R, Araki A, Fujiwara Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv Clin Chem 2018; 87:69-111. [PMID: 30342713 DOI: 10.1016/bs.acc.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that metabolic disorders, particularly type 2 diabetes mellitus (T2DM), and dementia, including Alzheimer's disease (AD), were linked at the clinical and molecular levels. Brain insulin deficiency and resistance may be key events in AD pathology mechanistically linking AD to T2DM. Ethanolamine plasmalogens (PlsEtns) are abundant in the brain and play essential roles in neuronal function and myelin formation. As such, PlsEtn deficiency may be pathologically relevant in some neurodegenerative disorders such as AD. Decreased brain PlsEtn associated with dementia may reflect serum PlsEtn deficiency. We hypothesized that myo-inositol plays a role in myelin formation through its facilitation of PlsEtn biosynthesis. Excessive urinary myo-inositol (UMI) loss would likely result in PlsEtn deficiency potentially leading to demyelinating diseases such as dementia. Accordingly, measurement of both serum PlsEtn and baseline UMI excretion could improve the detection of cognitive impairment (CI) in a more specific and reliable manner. To verify our hypothesis, we conducted a clinical observational study of memory clinic outpatients (MCO) and cognitively normal elderly (NE) for nearly 4.5years. We demonstrated that serum PlsEtn concentration associated with UMI excretion was useful for predicting advancing dementia in patients with mild CI. Because hyperglycemia and associated insulin resistance might be a leading cause of increased baseline UMI excretion, serum PlsEtn quantitation would be useful in detecting CI among the elderly with hyperglycemia. Our findings suggest that myo-inositol is a novel candidate molecule linking T2DM to AD.
Collapse
Affiliation(s)
- Ryouta Maeba
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsushi Araki
- Department of Diabetes, Metabolism and Endocrinology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
25
|
Werner ER, Keller MA, Sailer S, Seppi D, Golderer G, Werner-Felmayer G, Zoeller RA, Watschinger K. A novel assay for the introduction of the vinyl ether double bond into plasmalogens using pyrene-labeled substrates. J Lipid Res 2018; 59:901-909. [PMID: 29540573 PMCID: PMC5928432 DOI: 10.1194/jlr.d080283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/02/2018] [Indexed: 11/30/2022] Open
Abstract
Plasmanylethanolamine desaturase (PEDS) (EC 1.14.99.19) introduces the 1-prime double bond into plasmalogens, one of the most abundant phospholipids in the human body. This labile membrane enzyme has not been purified and its coding sequence is unknown. Previous assays for this enzyme used radiolabeled substrates followed by multistep processing. We describe here a straight-forward method for the quantification of PEDS in enzyme incubation mixtures using pyrene-labeled substrates and reversed-phase HPLC with fluorescence detection. After stopping the reaction with hydrochloric acid in acetonitrile, the mixture was directly injected into the HPLC system without the need of lipid extraction. The substrate, 1-O-pyrenedecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and the lyso-substrate, 1-O-pyrenedecyl-sn-glycero-3-phosphoethanolamine, were prepared from RAW-12 cells deficient in PEDS activity and were compared for their performance in the assay. Plasmalogen levels in mouse tissues and in cultured cells did not correlate with PEDS levels, indicating that the desaturase might not be the rate limiting step for plasmalogen biosynthesis. Among selected mouse organs, the highest activities were found in kidney and in spleen. Incubation of intact cultivated mammalian cells with 1-O-pyrenedecyl-sn-glycerol, extraction of lipids, and treatment with hydrochloric or acetic acid in acetonitrile allowed sensitive monitoring of PEDS activity in intact cells.
Collapse
Affiliation(s)
- Ernst R Werner
- Division of Biological Chemistry, Biocenter Medical University of Innsbruck, Innsbruck, Austria;
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Sabrina Sailer
- Division of Biological Chemistry, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | - Daniele Seppi
- Division of Biological Chemistry, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | | | - Raphael A Zoeller
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston MA
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter Medical University of Innsbruck, Innsbruck, Austria;
| |
Collapse
|
26
|
Ellens KW, Christian N, Singh C, Satagopam VP, May P, Linster CL. Confronting the catalytic dark matter encoded by sequenced genomes. Nucleic Acids Res 2017; 45:11495-11514. [PMID: 29059321 PMCID: PMC5714238 DOI: 10.1093/nar/gkx937] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023] Open
Abstract
The post-genomic era has provided researchers with a deluge of protein sequences. However, a significant fraction of the proteins encoded by sequenced genomes remains without an identified function. Here, we aim at determining how many enzymes of uncertain or unknown function are still present in the Saccharomyces cerevisiae and human proteomes. Using information available in the Swiss-Prot, BRENDA and KEGG databases in combination with a Hidden Markov Model-based method, we estimate that >600 yeast and 2000 human proteins (>30% of their proteins of unknown function) are enzymes whose precise function(s) remain(s) to be determined. This illustrates the impressive scale of the ‘unknown enzyme problem’. We extensively review classical biochemical as well as more recent systematic experimental and computational approaches that can be used to support enzyme function discovery research. Finally, we discuss the possible roles of the elusive catalysts in light of recent developments in the fields of enzymology and metabolism as well as the significance of the unknown enzyme problem in the context of metabolic modeling, metabolic engineering and rare disease research.
Collapse
Affiliation(s)
- Kenneth W Ellens
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nils Christian
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Charandeep Singh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
27
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
28
|
Zufferey R, Pirani K, Cheung-See-Kit M, Lee S, Williams TA, Chen DG, Hossain MF. The Trypanosoma brucei dihydroxyacetonephosphate acyltransferase TbDAT is dispensable for normal growth but important for synthesis of ether glycerophospholipids. PLoS One 2017; 12:e0181432. [PMID: 28715456 PMCID: PMC5513551 DOI: 10.1371/journal.pone.0181432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/30/2017] [Indexed: 01/28/2023] Open
Abstract
Glycerophospholipids are the most abundant constituents of biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans and nagana in cattle. They are essential cellular components that fulfill various important functions beyond their structural role in biological membranes such as in signal transduction, regulation of membrane trafficking or control of cell cycle progression. Our previous studies have established that the glycerol-3-phosphate acyltransferase TbGAT is dispensable for growth, viability, and ester lipid biosynthesis suggesting the existence of another initial acyltransferase(s). This work presents the characterization of the alternative, dihydroxyacetonephosphate acyltransferase TbDAT, which acylates primarily dihydroxyacetonephosphate and prefers palmitoyl-CoA as an acyl-CoA donor. TbDAT restores the viability of a yeast double null mutant that lacks glycerol-3-phosphate and dihydroxyacetonephosphate acyltransferase activities. A conditional null mutant of TbDAT in T. brucei procyclic form was created and characterized. TbDAT was important for survival during stationary phase and synthesis of ether lipids. In contrast, TbDAT was dispensable for normal growth. Our results show that in T. brucei procyclic forms i) TbDAT but not TbGAT is the physiologically relevant initial acyltransferase and ii) ether lipid precursors are primarily made by TbDAT.
Collapse
Affiliation(s)
- Rachel Zufferey
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America.,Department of Biological Sciences, St. John's University, Queens, New York, United States of America
| | - Karim Pirani
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Melanie Cheung-See-Kit
- Department of Biological Sciences, St. John's University, Queens, New York, United States of America
| | - Sungsu Lee
- Department of Biological Sciences, St. John's University, Queens, New York, United States of America
| | - Tyler A Williams
- Department of Biological Sciences, St. John's University, Queens, New York, United States of America
| | - Daniel G Chen
- Department of Biological Sciences, St. John's University, Queens, New York, United States of America
| | - Md Faruk Hossain
- Department of Biological Sciences, St. John's University, Queens, New York, United States of America
| |
Collapse
|
29
|
Islam MA, Hadadi N, Ataman M, Hatzimanikatis V, Stephanopoulos G. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas. Metab Eng 2017; 41:173-181. [PMID: 28433737 DOI: 10.1016/j.ymben.2017.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/28/2016] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
Abstract
Mono-ethylene glycol (MEG) is an important petrochemical with widespread use in numerous consumer products. The current industrial MEG-production process relies on non-renewable fossil fuel-based feedstocks, such as petroleum, natural gas, and naphtha; hence, it is useful to explore alternative routes of MEG-synthesis from gases as they might provide a greener and more sustainable alternative to the current production methods. Technologies of synthetic biology and metabolic engineering of microorganisms can be deployed for the expression of new biochemical pathways for MEG-synthesis from gases, provided that such promising alternative routes are first identified. We used the BNICE.ch algorithm to develop novel and previously unknown biological pathways to MEG from synthesis gas by leveraging the Wood-Ljungdahl pathway of carbon fixation of acetogenic bacteria. We developed a set of useful pathway pruning and analysis criteria to systematically assess thousands of pathways generated by BNICE.ch. Published genome-scale models of Moorella thermoacetica and Clostridium ljungdahlii were used to perform the pathway yield calculations and in-depth analyses of seven (7) newly developed biological MEG-producing pathways from gases, including CO2, CO, and H2. These analyses helped identify not only better candidate pathways, but also superior chassis organisms that can be used for metabolic engineering of the candidate pathways. The pathway generation, pruning, and detailed analysis procedures described in this study can also be used to develop biochemical pathways for other commodity chemicals from gaseous substrates.
Collapse
Affiliation(s)
- M Ahsanul Islam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Noushin Hadadi
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Meric Ataman
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
30
|
Piano V, Nenci S, Magnani F, Aliverti A, Mattevi A. Recombinant human dihydroxyacetonephosphate acyl-transferase characterization as an integral monotopic membrane protein. Biochem Biophys Res Commun 2016; 481:51-58. [PMID: 27836547 PMCID: PMC5146282 DOI: 10.1016/j.bbrc.2016.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 11/26/2022]
Abstract
Although the precise functions of ether phospholipids are still poorly understood, significant alterations in their physiological levels are associated either to inherited disorders or to aggressive metastatic cancer. The essential precursor, alkyl-dihydroxyacetone phosphate (DHAP), for all ether phospholipids species is synthetized in two consecutive reactions performed by two enzymes sitting on the inner side of the peroxisomal membrane. Here, we report the characterization of the recombinant human DHAP acyl-transferase, which performs the first step in alkyl-DHAP synthesis. By exploring several expression systems and designing a number of constructs, we were able to purify the enzyme in its active form and we found that it is tightly bound to the membrane through the N-terminal residues. Human DHAPAT is associated to peroxisomal membrane through the N-terminal region. Recombinant human DHAPAT expressed and purified from P. pastoris cells is active. Evidence of the in vitro reconstitution of DHAPAT/ADPS enzymatic complex.
Collapse
Affiliation(s)
- Valentina Piano
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy
| | - Simone Nenci
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy
| | - Alessandro Aliverti
- Department of Biosciences, University of Milan, V. Celoria 26, 20133, Milan, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
31
|
Drechsler R, Chen SW, Dancy BCR, Mehrabkhani L, Olsen CP. HPLC-Based Mass Spectrometry Characterizes the Phospholipid Alterations in Ether-Linked Lipid Deficiency Models Following Oxidative Stress. PLoS One 2016; 11:e0167229. [PMID: 27893806 PMCID: PMC5125691 DOI: 10.1371/journal.pone.0167229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022] Open
Abstract
Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions.
Collapse
Affiliation(s)
- Robin Drechsler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shaw-Wen Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Blair C R Dancy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lena Mehrabkhani
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Carissa Perez Olsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
32
|
Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:472726. [PMID: 26880868 PMCID: PMC4736080 DOI: 10.1155/2015/472726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022]
Abstract
Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fatty acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota, Sulfolobus solfataricus and Ignicoccus hospitalis. This is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry.
Collapse
|
33
|
Ermolenko E, Latyshev N, Sultanov R, Kasyanov S. Technological approach of 1-O-alkyl-sn-glycerols separation from Berryteuthis magister squid liver oil. Journal of Food Science and Technology 2015; 53:1722-6. [PMID: 27570298 DOI: 10.1007/s13197-015-2148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Biological active compounds, 1-O-alkyl-sn-glycerols (AG), were isolated from liver oil of the squid Berryteuthis magister. The main components of the initial lipids were 1-O-alkyl-2,3-diacyl-sn-glycerols (38.50 %) and triacylglycerols (24.26 %). The first step of separation was the alkaline hydrolysis of oil to form a lipid mixture consisting of AG, free fatty acids and cholesterol. AG were separated by double recrystallization from acetone at -20 °C and 1 °C. A simple procedure is proposed for obtaining AG with a purity of 99.22 %, the main component of which is chimyl alcohol (94.39 %). Purity and structure of the obtained products were confirmed by GC and GC-MS technique. Isolated AG may be used in nutrition and cosmetics.
Collapse
Affiliation(s)
- Ekaterina Ermolenko
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia
| | - Nikolay Latyshev
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690041 17 Palchevskogo St., Vladivostok, Russia ; Far Eastern Federal University (FEFU), 690950 8 Suhanova St., Vladivostok, Russia
| |
Collapse
|
34
|
Martínez Díaz Y, Vanegas Laverde G, Reina Gamba L, Mayorga Wandurraga H, Arévalo-Ferro C, Ramos Rodríguez F, Duque Beltrán C, Castellanos Hernández L. Biofilm inhibition activity of compounds isolated from two Eunicea species collected at the Caribbean Sea. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Xu Z, Gan L, Li T, Xu C, Chen K, Wang X, Qin JG, Chen L, Li E. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus. PLoS One 2015; 10:e0136506. [PMID: 26305564 PMCID: PMC4548949 DOI: 10.1371/journal.pone.0136506] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/04/2015] [Indexed: 12/14/2022] Open
Abstract
Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu). Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1), steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2), ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3), protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis—keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.
Collapse
Affiliation(s)
- Zhixin Xu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Lei Gan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Tongyu Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Chang Xu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Ke Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Jian G. Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
- * E-mail: (EL); (LC)
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China
- * E-mail: (EL); (LC)
| |
Collapse
|
36
|
Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy. Invest New Drugs 2015; 33:992-1001. [PMID: 26095786 PMCID: PMC4491345 DOI: 10.1007/s10637-015-0263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although DNA-directed alkylating agents and related compounds have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of malignant cells, their clinical utility is limited by DNA repair mechanisms and immunosuppression. However, the same destructive nature of alkylation can be reciprocated at the cell surface using novel plasma membrane alkylating agents. RESULTS Plasma membrane alkylating agents have elicited long term survival in mammalian models challenged with carcinomas, sarcomas, and leukemias. Further, a specialized group of plasma membrane alkylating agents known as tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) potentiates a substantial leukocyte influx at the administration and primary tumor site, indicative of a potent immune response. The effects of plasma membrane alkylating agents may be further potentiated through the use of another novel class of chemotherapeutic agents, known as dihydroxyacetone phosphate (DHAP) inhibitors, since many cancer types are known to rely on the DHAP pathway for lipid synthesis. CONCLUSION Despite these compelling data, preliminary clinical trials for plasma membrane-directed agents have yet to be considered. Therefore, this review is intended for academics and clinicians to postulate a novel approach of chemotherapy; altering critical malignant cell signaling at the plasma membrane surface through alkylation, thereby inducing irreversible changes to functions needed for cell survival.
Collapse
|
37
|
Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T. Appl Environ Microbiol 2015; 81:3157-68. [PMID: 25724965 DOI: 10.1128/aem.03794-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/22/2015] [Indexed: 11/20/2022] Open
Abstract
Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria.
Collapse
|
38
|
Watschinger K, Keller MA, McNeill E, Alam MT, Lai S, Sailer S, Rauch V, Patel J, Hermetter A, Golderer G, Geley S, Werner-Felmayer G, Plumb RS, Astarita G, Ralser M, Channon KM, Werner ER. Tetrahydrobiopterin and alkylglycerol monooxygenase substantially alter the murine macrophage lipidome. Proc Natl Acad Sci U S A 2015; 112:2431-6. [PMID: 25675482 PMCID: PMC4345615 DOI: 10.1073/pnas.1414887112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tetrahydrobiopterin is a cofactor synthesized from GTP with well-known roles in enzymatic nitric oxide synthesis and aromatic amino acid hydroxylation. It is used to treat mild forms of phenylketonuria. Less is known about the role of tetrahydrobiopterin in lipid metabolism, although it is essential for irreversible ether lipid cleavage by alkylglycerol monooxygenase. Here we found intracellular alkylglycerol monooxygenase activity to be an important regulator of alkylglycerol metabolism in intact murine RAW264.7 macrophage-like cells. Alkylglycerol monooxygenase was expressed and active also in primary mouse bone marrow-derived monocytes and "alternatively activated" M2 macrophages obtained by interleukin 4 treatment, but almost missing in M1 macrophages obtained by IFN-γ and lipopolysaccharide treatment. The cellular lipidome of RAW264.7 was markedly changed in a parallel way by modulation of alkylglycerol monooxygenase expression and of tetrahydrobiopterin biosynthesis affecting not only various ether lipid species upstream of alkylglycerol monooxygenase but also other more complex lipids including glycosylated ceramides and cardiolipins, which have no direct connection to ether lipid pathways. Alkylglycerol monooxygenase activity manipulation modulated the IFN-γ/lipopolysaccharide-induced expression of inducible nitric oxide synthase, interleukin-1β, and interleukin 1 receptor antagonist but not transforming growth factor β1, suggesting that alkylglycerol monooxygenase activity affects IFN-γ/lipopolysaccharide signaling. Our results demonstrate a central role of tetrahydrobiopterin and alkylglycerol monooxygenase in ether lipid metabolism of murine macrophages and reveal that alteration of alkylglycerol monooxygenase activity has a profound impact on the lipidome also beyond the class of ether lipids.
Collapse
Affiliation(s)
- Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Markus A Keller
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eileen McNeill
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Mohammad T Alam
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | - Sabrina Sailer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Veronika Rauch
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jyoti Patel
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Robert S Plumb
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Giuseppe Astarita
- Waters Corporation, Milford, MA 01757; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057-1468; and
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, United Kingdom; Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
39
|
Maeba R, Nishimukai M, Sakasegawa SI, Sugimori D, Hara H. Plasma/Serum Plasmalogens: Methods of Analysis and Clinical Significance. Adv Clin Chem 2015; 70:31-94. [PMID: 26231485 DOI: 10.1016/bs.acc.2015.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Age-related diseases, such as atherosclerosis and dementia, are associated with oxidative stress and chronic inflammation. Peroxisome dysfunction may be related to aging and age-related pathologies, possibly through the derangement of redox homeostasis. The biosyntheses of plasmalogens (Pls), a subclass of glycerophospholipids, are primarily regulated by peroxisomes. Thus, plasma Pls may reflect the systemic functional activity of peroxisomes and serve as potential biomarkers for diseases related to oxidative stress and aging. Recently, we have established three promising analytical methods for plasma/serum Pls using high-performance liquid chromatography with radioactive iodine, liquid chromatography-tandem mass spectrometry, and enzymatic assay. These methods were validated and used to obtain detailed molecular information regarding these molecules. In cross-sectional studies on asymptomatic, coronary artery disease, and elderly dementia individuals, we found that serum choline Pls, particularly those containing oleic and linoleic acid in the sn-2 position of the glycerol backbone, may serve as reliable antiatherogenic biomarkers. Furthermore, we also found that serum ethanolamine Pls were effective in discriminating cognitive impairment. These results support our hypothesis and further studies are clearly needed to elucidate Pls pathophysiologic significance.
Collapse
|
40
|
Bergan J, Skotland T, Lingelem ABD, Simm R, Spilsberg B, Lindbäck T, Sylvänne T, Simolin H, Ekroos K, Sandvig K. The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cell Mol Life Sci 2014; 71:4285-300. [PMID: 24740796 PMCID: PMC11113769 DOI: 10.1007/s00018-014-1624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
Abstract
Shiga toxin-producing Escherichia coli bacteria cause hemorrhagic colitis and hemolytic uremic syndrome in humans. Currently, only supportive treatment is available for diagnosed patients. We show here that 24-h pretreatment with an ether lipid precursor, the alkylglycerol sn-1-O-hexadecylglycerol (HG), protects HEp-2 cells against Shiga toxin and Shiga toxin 2. Also the endothelial cell lines HMEC-1 and HBMEC are protected against Shiga toxins after HG pretreatment. In contrast, the corresponding acylglycerol, DL-α-palmitin, has no effect on Shiga toxicity. Although HG treatment provides a strong protection (~30 times higher IC₅₀) against Shiga toxin, only a moderate reduction in toxin binding was observed, suggesting that retrograde transport of the toxin from the plasma membrane to the cytosol is perturbed. Furthermore, endocytosis of Shiga toxin and retrograde sorting from endosomes to the Golgi apparatus remain intact, but transport from the Golgi to the endoplasmic reticulum is inhibited by HG treatment. As previously described, HG reduces the total level of all quantified glycosphingolipids to 50-70% of control, including the Shiga toxin receptor globotriaosylceramide (Gb3), in HEp-2 cells. In accordance with this, we find that interfering with Gb3 biosynthesis by siRNA-mediated knockdown of Gb3 synthase for 24 h causes a similar cytotoxic protection and only a moderate reduction in toxin binding (to 70% of control cells). Alkylglycerols, including HG, have been administered to humans for investigation of therapeutic roles in disorders where ether lipid biosynthesis is deficient, as well as in cancer therapy. Further studies may reveal if HG can also have a therapeutic potential in Shiga toxin-producing E. coli infections.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Roger Simm
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Bjørn Spilsberg
- Section of Bacteriology-Food and GMO, Norwegian Veterinary Institute, Oslo, Norway
| | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Jacobson MP, Kalyanaraman C, Zhao S, Tian B. Leveraging structure for enzyme function prediction: methods, opportunities, and challenges. Trends Biochem Sci 2014; 39:363-71. [PMID: 24998033 DOI: 10.1016/j.tibs.2014.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023]
Abstract
The rapid growth of the number of protein sequences that can be inferred from sequenced genomes presents challenges for function assignment, because only a small fraction (currently <1%) has been experimentally characterized. Bioinformatics tools are commonly used to predict functions of uncharacterized proteins. Recently, there has been significant progress in using protein structures as an additional source of information to infer aspects of enzyme function, which is the focus of this review. Successful application of these approaches has led to the identification of novel metabolites, enzyme activities, and biochemical pathways. We discuss opportunities to elucidate systematically protein domains of unknown function, orphan enzyme activities, dead-end metabolites, and pathways in secondary metabolism.
Collapse
Affiliation(s)
- Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA.
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
| | - Suwen Zhao
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
| | - Boxue Tian
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
42
|
Sorokina M, Stam M, Médigue C, Lespinet O, Vallenet D. Profiling the orphan enzymes. Biol Direct 2014; 9:10. [PMID: 24906382 PMCID: PMC4084501 DOI: 10.1186/1745-6150-9-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/29/2014] [Indexed: 11/10/2022] Open
Abstract
The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called "orphan enzymes". The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to "local orphan enzymes" that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new activities.
Collapse
Affiliation(s)
- Maria Sorokina
- Direction des Sciences du Vivant, Commissariat à l'Energie Atomique (CEA), Institut de Génomique, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France.
| | | | | | | | | |
Collapse
|
43
|
A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat Chem Biol 2014; 10:425-7. [DOI: 10.1038/nchembio.1526] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 04/14/2014] [Indexed: 11/09/2022]
|
44
|
Nishimukai M, Maeba R, Yamazaki Y, Nezu T, Sakurai T, Takahashi Y, Hui SP, Chiba H, Okazaki T, Hara H. Serum choline plasmalogens, particularly those with oleic acid in sn-2, are associated with proatherogenic state. J Lipid Res 2014; 55:956-65. [PMID: 24616482 DOI: 10.1194/jlr.p045591] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Serum plasmalogens (Pls) (1-O-alk-1'-enyl-2-acyl glycerophospholipids) are of particular interest for studies on metabolic disorders associated with oxidative stress and chronic inflammation. Serum levels of Pls are known to correlate positively with HDL-cholesterol (HDL-C); however, few studies have examined serum Pls molecular species in association with pathophysiological conditions and their clinical significance. To clarify these, we determined serum levels of individual ether glycerophospholipids in Japanese asymptomatic cohorts (n = 428; 362 male and 66 female subjects) by LC/MS/MS, and examined their correlations with clinical parameters. We found that the proportion of choline Pls (PlsCho) among total serum phospholipids was significantly lower in the male group over 40 years old and was associated with multiple risk parameters more strongly than HDL-C. The abundance of serum PlsCho with oleic acid (18:1) in sn-2 exhibited the strongest positive correlation with serum concentrations of adiponectin and HDL-C, while being inversely associated with waist circumference and the serum levels of TG and small dense LDL-cholesterol. The characterization of serum ether glycerophospholipids verified the specificity of PlsCho, particularly the ones with 18:1 in sn-2, as a sensitive biomarker for the atherogenic state.
Collapse
Affiliation(s)
- Megumi Nishimukai
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Alkylglycerol monooxygenase (E.C. 1.14.16.5), also called glyceryl ether monooxygenase, is a tetrahydrobiopterin-dependent enzyme. It is the only enzyme known to cleave the ether bond of alkylglycerols and lyso-alkylglycerol phospholipids, including lyso-platelet activating factor. Although it has been first described already in 1964, it was not possible so far to purify the protein. It took until 2010 to assign a sequence to this labile integral membrane enzyme by bioinformatic selection of candidate genes, recombinant expression of these, and sensitive monitoring of the enzymatic activity by a fluorescence-based assay. The sequence shows no significant similarity with the other known tetrahydrobiopterin-dependent enzymes but contains the fatty acid hydroxylase protein motif signature. Proteins containing this signature are all labile and catalyze reactions similar to the alkylglycerol monooxygenase reaction. They are thought to use a di-iron centre for catalysis. Site directed mutagenesis of alkylglycerol monooxygenase defined a region of the active site and a conserved glutamate residue important for tetrahydrobiopterin interaction. Current research now focuses on defining a physiological role of this enzyme which occurs not only in mammals but also in commonly used model organisms such as zebrafish and the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical UniversityInnsbruck, Austria
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical UniversityInnsbruck, Austria
| |
Collapse
|