1
|
Kushwaha V, Saini S, Capalash N. Gene silencing of Histidyl-tRNA synthetase in Leishmania donovani promastigotes inhibits parasite growth and reduces virulence: A comprehensive computational and in vitro study. Microb Pathog 2025; 198:107138. [PMID: 39571830 DOI: 10.1016/j.micpath.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The majority of anti-leishmanial drugs used for treating trypanosomatid parasites help to reduce human morbidity and mortality. However, parasites have developed drug resistance, which has made it challenging to treat leishmaniasis. Therefore, new drugs and drug targets need to be identified. Protein synthesis is a crucial anabolic mechanism necessary for parasite survival. Histidyl-tRNA synthetase (HisRS) is an essential enzyme that is required for histidine incorporation into proteins. Recent studies on HisRS have shown differences between trypanosomatid HisRS and human HisRS, which could lead to the development of trypanosomatid HisRS structure-based inhibitors. This study aims to determine the role of L. donovani HisRS (LdHisRS) in parasite growth and virulence in vitro using RNAi. The silencing effect of LdHisRS expression was determined using qPCR. The results showed that after 24 and 48 h of incubation with 90 ng siRNAs, LdHisRS mRNA expression levels were significantly reduced by ∼3.14-fold and ∼3.90-fold, respectively. SiRNA-treated parasites also exhibited ∼46.6 % delayed growth and ∼47 % reduced virulence. Additionally, homology modeling, virtual screening, and molecular docking studies were performed with potential inhibitors that have significant suppressive activity in bacteria, fungi, and viruses. Halofuginone was found to have the best binding affinity of -9.09 kcal/mol as a potent inhibitor against LdHisRS. The molecular dynamics (MD) results showed that halofuginone could interact with the various active site segments, potentially blocking substrate access. The data on gene silencing through siRNA suggests that LdHisRS is essential for the parasite's growth and survival. The computational findings could lead to the development of a potent ligand (halofuginone) as a future anti-leishmanial drug, paving the way for an effective therapeutic treatment.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh, 160025, India.
| | - Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32, Chandigarh, 160030, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh, 160025, India
| |
Collapse
|
2
|
Nasim F, Jakkula P, Kumar MS, Alvala M, Qureshi IA. Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis. Int J Biol Macromol 2024; 282:137357. [PMID: 39515693 DOI: 10.1016/j.ijbiomac.2024.137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Visceral leishmaniasis is caused by Leishmania donovani which affects the poorer sections of society, and despite the global spread, effective treatment is unavailable. The current study investigates the potential of leishmanial histidyl-tRNA synthetase (LdHisRS) as a drug target. LdHisRS delineated more closeness to other protozoan parasites than its mammalian counterparts and contained relevant differences in the active site residues. The important ATP-binding residues were mutated to alanine and all the proteins, including human HisRS, were purified to homogeneity. LdHisRS exhibited a dimeric state in solution and showed maximal amino acid activation activity in physiological conditions. It also demonstrated a greater affinity for substrate over cofactor, while magnesium and potassium enhanced its activity better than other tested metal ions. Comp-7m, a benzothiazolo-coumarin derivative, proved to be specific inhibitor of LdHisRS with competitive mode of inhibition for ATP whereas it displayed lower binding affinity towards mutants. LdHisRS majorly contained α-helices and most of the aromatic residues were present in its hydrophobic core. Additionally, Comp-7m superimposed on ATP adenine ring during docking analysis and LdHisRS-ligand complexes had comparable stability as well as rigidity in molecular dynamics simulation. We thus provide structural and functional insights of LdHisRS which can be useful for devising antileishmanials.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Pranay Jakkula
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
3
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
4
|
Meyer-Schuman R, Marte S, Smith TJ, Feely SME, Kennerson M, Nicholson G, Shy ME, Koutmou KS, Antonellis A. A humanized yeast model reveals dominant-negative properties of neuropathy-associated alanyl-tRNA synthetase mutations. Hum Mol Genet 2023; 32:2177-2191. [PMID: 37010095 PMCID: PMC10281750 DOI: 10.1093/hmg/ddad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Mike E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Nasim F, Qureshi IA. Aminoacyl tRNA Synthetases: Implications of Structural Biology in Drug Development against Trypanosomatid Parasites. ACS OMEGA 2023; 8:14884-14899. [PMID: 37151504 PMCID: PMC10157851 DOI: 10.1021/acsomega.3c00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023]
Abstract
The ensemble of aminoacyl tRNA synthetases is regarded as a key component of the protein translation machinery. With the progressive increase in structure-based studies on tRNA synthetase-ligand complexes, the detailed picture of these enzymes is becoming clear. Having known their critical role in deciphering the genetic code in a living system, they have always been chosen as one of the important targets for development of antimicrobial drugs. Later on, the role of aminoacyl tRNA synthetases (aaRSs) on the survivability of trypanosomatids has also been validated. It became evident through several gene knockout studies that targeting even one of these enzymes affected parasitic growth drastically. Such successful studies have inspired researchers to search for inhibitors that could specifically target trypanosomal aaRSs, and their never-ending efforts have provided fruitful results. Taking all such studies into consideration, these macromolecules of prime importance deserve further investigation for the development of drugs that cure spectrum of infections caused by trypanosomatids. In this review, we have compiled advancements of over a decade that have taken place in the pursuit of devising drugs by using trypanosomatid aaRSs as a major target of interest. Several of these inhibitors work on an exemplary low concentration range without posing any threat to the mammalian cells which is a very critical aspect of the drug discovery process. Advancements have been made in terms of using structural biology as an important tool to analyze the architecture of the trypanosomatids aaRSs and concoction of inhibitors with augmented specificities toward their targets. Some of the inhibitors that have been tested on other parasites successfully but their efficacy has so far not been validated against these trypanosomatids have also been appended.
Collapse
|
6
|
Qiu Y, Kenana R, Beharry A, Wilhelm SDP, Hsu SY, Siu VM, Duennwald M, Heinemann IU. Histidine supplementation can escalate or rescue HARS deficiency in a Charcot-Marie-Tooth disease model. Hum Mol Genet 2023; 32:810-824. [PMID: 36164730 PMCID: PMC9941834 DOI: 10.1093/hmg/ddac239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.
Collapse
Affiliation(s)
- Yi Qiu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rosan Kenana
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sarah D P Wilhelm
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sung Yuan Hsu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Victoria M Siu
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Martin Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Towards a Cure for HARS Disease. Genes (Basel) 2023; 14:genes14020254. [PMID: 36833180 PMCID: PMC9956352 DOI: 10.3390/genes14020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.
Collapse
|
8
|
Kushwaha V, Capalash N. Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-Leishmaniasis, Human African Trypanosomiasis and Chagas disease. Mol Biochem Parasitol 2022; 251:111510. [PMID: 35988745 DOI: 10.1016/j.molbiopara.2022.111510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
TriTryp diseases (Leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease) are devastating parasitic neglected tropical diseases (NTDs) that affect billions of people in developing countries, cause high mortality in humans, and impose a large socio-economic burden. The current treatment options against tritryp diseases are suboptimal and challenging due to the emergence of resistance against available tritryp drugs. Hence, designing and developing effective anti-tritryp drugs with novel targets are required. Aminoacyl-tRNA synthetases (AARSs) involved in specific aminoacylation of transfer RNAs (tRNAs), interrupt protein synthesis through inhibitors, and retard the parasite growth. AaRSs have long been studied as therapeutic targets in bacteria, and three aaRS inhibitors, mupirocin (against IleRS), tavaborole AN2690 (against LeuRS), and halofuginone (against ProRS), are already in clinical practice. The structural differences between tritryp and human aaRSs and the presence of unique sequences (N-terminal domain/C-terminal domain/catalytic domain) make them potential target for developing selective inhibitors. Drugs based on a single aaRS target developed by high-throughput screening (HTS) are less effective due to the emergence of resistance. However, designing multi-targeted drugs may be a better strategy for resistance development. In this perspective, we discuss the characteristics of tritryp aaRSs, sequence conservation in their orthologs and their peculiarities, recent advancements towards the single-target and multi-target aaRS inhibitors developed through rational design.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India.
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India.
| |
Collapse
|
9
|
CMT disease severity correlates with mutation-induced open conformation of histidyl-tRNA synthetase, not aminoacylation loss, in patient cells. Proc Natl Acad Sci U S A 2019; 116:19440-19448. [PMID: 31501329 DOI: 10.1073/pnas.1908288116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.
Collapse
|
10
|
Hu Y, Palmer SO, Robles ST, Resto T, Dean FB, Bullard JM. Identification of Chemical Compounds That Inhibit the Function of Histidyl-tRNA Synthetase from Pseudomonas aeruginosa. SLAS DISCOVERY 2017; 23:65-75. [PMID: 28745975 DOI: 10.1177/2472555217722016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pseudomonas aeruginosa histidyl-tRNA synthetase (HisRS) was selected as a target for antibiotic drug development. The HisRS protein was overexpressed in Escherichia coli and kinetically evaluated. The KM values for interaction of HisRS with its three substrates, histidine, ATP, and tRNAHis, were 37.6, 298.5, and 1.5 μM, while the turnover numbers were 8.32, 16.8, and 0.57 s-1, respectively. A robust screening assay was developed, and 800 natural products and 890 synthetic compounds were screened for inhibition of activity. Fifteen compounds with inhibitory activity were identified, and the minimum inhibitory concentration (MIC) was determined for each against a panel of nine pathogenic bacteria. Each compound exhibited broad-spectrum activity. Based on structural similarity and MIC results, four compounds, BT02C02, BT02D04, BT08E04, and BT09C11, were selected for additional analysis. These compounds inhibited the activity of HisRS with IC50 values of 4.4, 9.7, 14.1, and 11.3 µM, respectively. Time-kill studies indicated a bacteriostatic mode of inhibition for each compound. BT02D04 and BT08E04 were noncompetitive with both histidine and ATP, BT02C02 was competitive with histidine but noncompetitive with ATP, and BT09C11 was uncompetitive with histidine and noncompetitive with ATP. These compounds were not observed to be toxic to human cell cultures.
Collapse
Affiliation(s)
- Yanmei Hu
- 1 Chemistry Department, The University of Texas-RGV, Edinburg, TX, USA.,2 Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | | | - Sara T Robles
- 1 Chemistry Department, The University of Texas-RGV, Edinburg, TX, USA
| | - Tahyra Resto
- 1 Chemistry Department, The University of Texas-RGV, Edinburg, TX, USA
| | - Frank B Dean
- 1 Chemistry Department, The University of Texas-RGV, Edinburg, TX, USA
| | - James M Bullard
- 1 Chemistry Department, The University of Texas-RGV, Edinburg, TX, USA
| |
Collapse
|
11
|
Abbott JA, Guth E, Kim C, Regan C, Siu VM, Rupar CA, Demeler B, Francklyn CS, Robey-Bond SM. The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity. Biochemistry 2017. [PMID: 28632987 DOI: 10.1021/acs.biochem.7b00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histidyl-tRNA synthetase (HARS) is a highly conserved translation factor that plays an essential role in protein synthesis. HARS has been implicated in the human syndromes Charcot-Marie-Tooth (CMT) Type 2W and Type IIIB Usher (USH3B). The USH3B mutation, which encodes a Y454S substitution in HARS, is inherited in an autosomal recessive fashion and associated with childhood deafness, blindness, and episodic hallucinations during acute illness. The biochemical basis of the pathophysiologies linked to USH3B is currently unknown. Here, we present a detailed functional comparison of wild-type (WT) and Y454S HARS enzymes. Kinetic parameters for enzymes and canonical substrates were determined using both steady state and rapid kinetics. Enzyme stability was examined using differential scanning fluorimetry. Finally, enzyme functionality in a primary cell culture was assessed. Our results demonstrate that the Y454S substitution leaves HARS amino acid activation, aminoacylation, and tRNAHis binding functions largely intact compared with those of WT HARS, and the mutant enzyme dimerizes like the wild type does. Interestingly, during our investigation, it was revealed that the kinetics of amino acid activation differs from that of the previously characterized bacterial HisRS. Despite the similar kinetics, differential scanning fluorimetry revealed that Y454S is less thermally stable than WT HARS, and cells from Y454S patients grown at elevated temperatures demonstrate diminished levels of protein synthesis compared to those of WT cells. The thermal sensitivity associated with the Y454S mutation represents a biochemical basis for understanding USH3B.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, University of Vermont , Burlington, Vermont 05405, United States
| | - Ethan Guth
- Chemistry & Biochemistry Department, Norwich University , Northfield, Vermont 05663, United States
| | | | | | | | | | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - Christopher S Francklyn
- Department of Biochemistry, University of Vermont , Burlington, Vermont 05405, United States
| | - Susan M Robey-Bond
- Department of Biochemistry, University of Vermont , Burlington, Vermont 05405, United States
| |
Collapse
|
12
|
Koh CY, Kallur Siddaramaiah L, Ranade RM, Nguyen J, Jian T, Zhang Z, Gillespie JR, Buckner FS, Verlinde CLMJ, Fan E, Hol WGJ. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1684-98. [PMID: 26249349 PMCID: PMC4528801 DOI: 10.1107/s1399004715007683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/18/2015] [Indexed: 01/04/2023]
Abstract
American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.
Collapse
Affiliation(s)
- Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Ranae M. Ranade
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jasmine Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tengyue Jian
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Wim G. J. Hol
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|