1
|
Parhira S, Simanurak O, Pansooksan K, Somran J, Wangteeraprasert A, Jiang Z, Bai L, Nangngam P, Pekthong D, Srisawang P. Cerbera odollam fruit extracts enhance anti-cancer activity of sorafenib in HCT116 and HepG2 cells. CHINESE HERBAL MEDICINES 2025; 17:108-126. [PMID: 39949813 PMCID: PMC11814254 DOI: 10.1016/j.chmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Objective While higher therapeutic doses of toxic cardiac glycosides derived from Cerbera odollam are frequently employed in cases of suicide or homicide, ongoing research is investigating the potential anticancer properties of low-concentration extracts obtained from the fruits of C. odollam. The present study aimed to determine the enhanced anticancer effects and minimize potential side effects of combining extracts from C. odollam fruits from Thailand with sorafenib against HCT116 and HepG2 cells. Methods The dried powder of fresh green fruits of C. odollam was fractionated, and its phytochemical contents, including total cardiac glycosides, phenolics, flavonoids, and triterpenoids, were quantified. The cytotoxic effects of these fractions were evaluated against HCT116 and HepG2 cells using the MTT assay. The fractions showing the most significant response in HCT116 and HepG2 cells were subsequently combined with sorafenib to examine their synergistic effects. Apoptosis induction, cell cycle progression, and mitochondrial membrane potential (MMP) were then assessed. The underlying mechanism of the apoptotic effect was further investigated by analyzing reactive oxygen species (ROS) generation and the expression levels of antioxidant proteins. Results Phytochemical analysis showed that C. odollam-ethyl acetate fraction (COEtOAc) was rich in cardiac glycosides, phenolics, and flavonoids, while the dichloromethane fraction (CODCM) contained high levels of triterpenoids and saponins. Following 24 h treatment, HCT116 showed the most significant response to COEtOAc, while HepG2 responded well to CODCM with IC50 values of (42.04 ± 16.94) μg/mL and (123.75 ± 14.21) μg/mL, respectively. Consequently, COEtOAc (20 μg/mL) or CODCM (30 μg/mL), both administered at sub-IC50 concentrations, were combined with sorafenib at 6 μmol/L for HCT116 cells and 2 μmol/L for HepG2 cells, incubated for 24 h. This combination resulted in a significant suppression in cell viability by approximately 50%. The combination of treatments markedly enhanced apoptosis, diminished MMP, and triggered G0/G1 phase cell cycle arrest compared to the effects of each treatment administered individually. Concurrently, increased formation of ROS and decreased expression of the antioxidant enzymes superoxide dismutase 2 and catalase supported the proposed mechanism of apoptosis induction by the combination treatment. Importantly, the anticancer effect demonstrated a specific targeted action with a favorable safety profile, as evidenced by HFF-1 cells displaying IC50 values 2-3 times higher than those of the cancer cells. Conclusion Utilizing sub-IC50 concentrations of COEtOAc or CODCM in combination with sorafenib can enhance targeted anticancer effects beyond those achieved with single-agent treatments, while mitigating opposing side effects. Future research will focus on extracting and characterizing active constituents, especially cardiac glycosides, to enhance the therapeutic potential of anticancer compounds derived from toxic plants.
Collapse
Affiliation(s)
- Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Khemmachat Pansooksan
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Liping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Pranee Nangngam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Sue SH, Liu ST, Huang SM. Factors affecting the expression and stability of full-length and truncated SRSF3 proteins in human cancer cells. Sci Rep 2024; 14:14397. [PMID: 38909100 PMCID: PMC11193772 DOI: 10.1038/s41598-024-64640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
Alternative splicing plays a crucial role in increasing the diversity of mRNAs expressed in the genome. Serine/arginine-rich splicing factor 3 (SRSF3) is responsible for regulating the alternative splicing of its own mRNA and ensuring that its expression is balanced to maintain homeostasis. Moreover, the exon skipping of SRSF3 leads to the production of a truncated protein instead of a frameshift mutation that generates a premature termination codon (PTC). However, the precise regulatory mechanism involved in the splicing of SRSF3 remains unclear. In this study, we first established a platform for coexpressing full-length SRSF3 (SRSF3-FL) and SRSF3-PTC and further identified a specific antibody against the SRSF3-FL and truncated SRSF3 (SRSF3-TR) proteins. Next, we found that exogenously overexpressing SRSF3-FL or SRSF3-PTC failed to reverse the effects of digoxin, caffeine, or both in combination on this molecule and its targets. Endoplasmic reticulum-related pathways, transcription factors, and chemicals such as palmitic acid and phosphate were found to be involved in the regulation of SRSF3 expression. The downregulation of SRSF3-FL by palmitic acid and phosphate was mediated via different regulatory mechanisms in HeLa cells. In summary, we provide new insights into the altered expression of the SRSF3-FL and SRSF3-TR proteins for the identification of the functions of SRSF3 in cells.
Collapse
Affiliation(s)
- Sung-How Sue
- Department of Cardiovascular Surgery, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung City, 402, Taiwan, Republic of China
- Institute of Medicine, Chung Shan Medical University, Taichung City, 402, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China.
| |
Collapse
|
3
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
4
|
Ainembabazi D, Zhang Y, Turchi JJ. The mechanistic role of cardiac glycosides in DNA damage response and repair signaling. Cell Mol Life Sci 2023; 80:250. [PMID: 37584722 PMCID: PMC10432338 DOI: 10.1007/s00018-023-04910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Cardiac glycosides (CGs) are a class of bioactive organic compounds well-known for their application in treating heart disease despite a narrow therapeutic window. Considerable evidence has demonstrated the potential to repurpose CGs for cancer treatment. Chemical modification of these CGs has been utilized in attempts to increase their anti-cancer properties; however, this has met limited success as their mechanism of action is still speculative. Recent studies have identified the DNA damage response (DDR) pathway as a target of CGs. DDR serves to coordinate numerous cellular pathways to initiate cell cycle arrest, promote DNA repair, regulate replication fork firing and protection, or induce apoptosis to avoid the survival of cells with DNA damage or cells carrying mutations. Understanding the modus operandi of cardiac glycosides will provide critical information to better address improvements in potency, reduced toxicity, and the potential to overcome drug resistance. This review summarizes recent scientific findings of the molecular mechanisms of cardiac glycosides affecting the DDR signaling pathway in cancer therapeutics from 2010 to 2022. We focus on the structural and functional differences of CGs toward identifying the critical features for DDR targeting of these agents.
Collapse
Affiliation(s)
- Diana Ainembabazi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - John J. Turchi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| |
Collapse
|
5
|
Li D, Yu W, Lai M. Towards understandings of serine/arginine-rich splicing factors. Acta Pharm Sin B 2023; 13:3181-3207. [PMID: 37655328 PMCID: PMC10465970 DOI: 10.1016/j.apsb.2023.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) refer to twelve RNA-binding proteins which regulate splice site recognition and spliceosome assembly during precursor messenger RNA splicing. SRSFs also participate in other RNA metabolic events, such as transcription, translation and nonsense-mediated decay, during their shuttling between nucleus and cytoplasm, making them indispensable for genome diversity and cellular activity. Of note, aberrant SRSF expression and/or mutations elicit fallacies in gene splicing, leading to the generation of pathogenic gene and protein isoforms, which highlights the therapeutic potential of targeting SRSF to treat diseases. In this review, we updated current understanding of SRSF structures and functions in RNA metabolism. Next, we analyzed SRSF-induced aberrant gene expression and their pathogenic outcomes in cancers and non-tumor diseases. The development of some well-characterized SRSF inhibitors was discussed in detail. We hope this review will contribute to future studies of SRSF functions and drug development targeting SRSFs.
Collapse
Affiliation(s)
- Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
6
|
Huang WZ, Liu TM, Liu ST, Chen SY, Huang SM, Chen GS. Oxidative Status Determines the Cytotoxicity of Ascorbic Acid in Human Oral Normal and Cancer Cells. Int J Mol Sci 2023; 24:ijms24054851. [PMID: 36902281 PMCID: PMC10002971 DOI: 10.3390/ijms24054851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) can arise anywhere in the oral cavity. OSCC's molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Platinum-based drugs are the first-line treatment for OSCC; however, severe side-effects and resistance are challenging issues. Thus, there is an urgent clinical need to develop novel and/or combinatory therapeutics. In this study, we investigated the cytotoxic effects of pharmacological concentrations of ascorbate on two human oral cell lines, the oral epidermoid carcinoma meng-1 (OECM-1) cell and the Smulow-Glickman (SG) human normal gingival epithelial cell. Our study examined the potential functional impact of pharmacological concentrations of ascorbates on the cell-cycle profiles, mitochondrial-membrane potential, oxidative response, the synergistic effect of cisplatin, and the differential responsiveness between OECM-1 and SG cells. Two forms of ascorbate, free and sodium forms, were applied to examine the cytotoxic effect and it was found that both forms had a similar higher sensitivity to OECM-1 cells than to SG cells. In addition, our study data suggest that the determinant factor of cell density is important for ascorbate-induced cytotoxicity in OECM-1 and SG cells. Our findings further revealed that the cytotoxic effect might be mediated through the induction of mitochondrial reactive oxygen species (ROS) generation and the reduction in cytosolic ROS generation. The combination index supported the agonistic effect between sodium ascorbate and cisplatin in OECM-1 cells, but not in SG cells. In summary, our current findings provide supporting evidence for ascorbate to serve as a sensitizer for platinum-based treatment of OSCC. Hence, our work provides not only repurposing of the drug, ascorbate, but also an opportunity to decrease the side-effects of, and risk of resistance to, platinum-based treatment for OSCC.
Collapse
Affiliation(s)
- Wei-Zhi Huang
- School of Dentistry, Department of Dentistry of Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Orthodontics, Pediatric Dentistry and Pediatric for Special Need, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ting-Ming Liu
- Department of Cardiovascular Surgery, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ssu-Yu Chen
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Gunng-Shinng Chen
- School of Dentistry, Department of Dentistry of Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Orthodontics, Pediatric Dentistry and Pediatric for Special Need, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: or
| |
Collapse
|
7
|
Che Y, Bai M, Lu K, Fu L. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Mol Carcinog 2023; 62:210-223. [PMID: 36282044 DOI: 10.1002/mc.23477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing (AS) profoundly affects tumorigenesis and cancer progression. Serine/arginine-rich splicing factor 3 (SRSF3) regulates the AS of precursor mRNAs and acts as a proto-oncogene in many tumors, but its function and potential mechanisms in cervical cancer remain unclear. Here, we found that SRSF3 was highly expressed in cervical cancer tissues and that SRSF3 expression was correlated with prognosis after analyses of the The Cancer Genome Atlas and GEO databases. Furthermore, knockdown of SRSF3 reduced the proliferation, migration, and invasion abilities of HeLa cells, while overexpression of SRSF3 promoted proliferation, migration, and invasion of CaSki cells. Further studies showed that SRSF3 mediated the variable splicing of exon 12 of the transcriptional cofactor DEAD-box helicase 5 (DDX5). Specifically, overexpression of SRSF3 promoted the production of the pro-oncogenic spliceosome DDX5-L and repressed the production of the repressive spliceosome DDX5-S. Ultimately, both SRSF3 and DDX5-L were able to upregulate oncogenic AKT expression, while DDX5-S downregulated AKT expression. In conclusion, we found that SRSF3 increased the production of DDX5-L and decreased the production of DDX5-S by regulating the variable splicing of DDX5. This, in turn promoted the proliferation, migration, and invasion of cervical cancer by upregulating the expression level of AKT. These results reveal the oncogenic role of SRSF3 in cervical cancer and emphasize the importance of the SRSF3-DDX5-AKT axis in tumorigenesis. SRSF3 and DDX5 are new potential biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China.,Weihai Ocean Vocational College, Weihai, China
| | - Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Splicing factor SRSF3 represses translation of p21 cip1/waf1 mRNA. Cell Death Dis 2022; 13:933. [PMID: 36344491 PMCID: PMC9640673 DOI: 10.1038/s41419-022-05371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3) is an RNA binding protein that most often regulates gene expression at the splicing level. Although the role of SRSF3 in mRNA splicing in the nucleus is well known, its splicing-independent role outside of the nucleus is poorly understood. Here, we found that SRSF3 exerts a translational control of p21 mRNA. Depletion of SRSF3 induces cellular senescence and increases the expression of p21 independent of p53. Consistent with the expression patterns of SRSF3 and p21 mRNA in the TCGA database, SRSF3 knockdown increases the p21 mRNA level and its translation efficiency as well. SRSF3 physically associates with the 3'UTR region of p21 mRNA and the translational initiation factor, eIF4A1. Our study proposes a model in which SRSF3 regulates translation by interacting with eIF4A1 at the 3'UTR region of p21 mRNA. We also found that SRSF3 localizes to the cytoplasmic RNA granule along with eIF4A1, which may assist in translational repression therein. Thus, our results provide a new mode of regulation for p21 expression, a crucial regulator of the cell cycle and senescence, which occurs at the translational level and involves SRSF3.
Collapse
|
9
|
SRSF3 Restriction Eases Cervical Cancer Cell Viability and Metastasis via Adjusting PI3K/AKT/mTOR Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8497078. [PMID: 36237584 PMCID: PMC9529520 DOI: 10.1155/2022/8497078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
Objective To investigate the effect of SRSF3 on the viability and metastasis of cervical cancer (CC) SiHa and Hela cells. Methods In vitro, HeLa cells and SiHa cells were cultured. In cervical cancer cells, RNA interference technology was utilized to lessen the SRSF3 level, and via RT-PCR utilization, the SRSF3 level in every group of cells was revealed. By employing the CCK-8 method, the OD value was revealed in every group at 24, 48, 72, and 96 h. On the migration of cervical cancer SiHa and HeLa cells via transwell utilizing, the consequence of SRSF3 was surveyed. Through western blotting utilizing, the PI3K/AKT/mTOR signaling pathway-connected proteins levels was revealed. Results In SiHa cells, contrasted to the NC-SiHa group, the SRSF3 level, the number of invasive cells per unit area, the p-PI3K/PI3K level, the p-AKT/AKT level, and the p-mTOR/mTOR level in the si-SRSF3 group were substantially lessened. The OD value at 490 nm of the si-SRSF3 group had no impressive divergence, contrasted to the NC-SiHa group at 24 h. At 48 h, the OD value of the si-SRSF3 group was impressively lessened than that of the NC-SiHa group. This connection was time-dependent. In HeLa cells, the SRSF3 level, the number of invasive cells per unit area, the level of p-PI3K/PI3K, the level of p-AKT/AKT, and the level of p-mTOR/mTOR in the cells of the si-SRSF3 group in the NC-HeLa group were impressively lessened than those in the NC-Hela group. Between the NC-HeLa group and the si-SRSF3 group at 24 h, there was no impressive divergence in the OD value at 490 nm. At 48 h, the OD value of the si-SRSF3 group was impressively lessened than that of the NC-SiHa group. This connection is time-dependent. Conclusion Reducing the SRSF3 level can restrain the viability and metastasis of cervical cancer cells via restraining the PI3K/AKT/mTOR signaling pathway.
Collapse
|
10
|
Xiong J, Chen Y, Wang W, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett 2021; 23:21. [PMID: 34858525 PMCID: PMC8617561 DOI: 10.3892/ol.2021.13139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3; also known as SRp20), an important member of the family of SRSFs, is abnormally expressed in tumors, resulting in aberrant splicing of hub genes, such as CD44, HER2, MDM4, Rac family small GTPase 1 and tumor protein p53. Under normal conditions, the splicing and expression of SRSF3 are strictly regulated. However, the splicing, expression and phosphorylation of SRSF3 are abnormal in tumors. SRSF3 plays important roles in the occurrence and development of tumors, including the promotion of tumorigenesis, cellular proliferation, the cell cycle and metastasis, as well as inhibition of cell senescence, apoptosis and autophagy. SRSF3-knockdown significantly inhibits the proliferation and metastatic characteristics of tumor cells. Therefore, SRSF3 may be suggested as a novel anti-tumor target. The other biological functions of SRSF3 and its regulatory mechanisms are also summarized in the current review.
Collapse
Affiliation(s)
- Jian Xiong
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China
| |
Collapse
|
11
|
Ren Y, Wu S, Chen S, Burdette JE, Cheng X, Kinghorn AD. Interaction of (+)-Strebloside and Its Derivatives with Na +/K +-ATPase and Other Targets. Molecules 2021; 26:5675. [PMID: 34577146 PMCID: PMC8467840 DOI: 10.3390/molecules26185675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Docking profiles for (+)-strebloside, a cytotoxic cardiac glycoside identified from Streblus asper, and some of its derivatives and Na+/K+-ATPase have been investigated. In addition, binding between (+)-strebloside and its aglycone, strophanthidin, and several of their other molecular targets, including FIH-1, HDAC, KEAP1 and MDM2 (negative regulators of Nrf2 and p53, respectively), NF-κB, and PI3K and Akt1, have been inspected and compared with those for digoxin and its aglycone, digoxigenin. The results showed that (+)-strebloside, digoxin, and their aglycones bind to KEAP1 and MDM2, while (+)-strebloside, strophanthidin, and digoxigenin dock to the active pocket of PI3K, and (+)-strebloside and digoxin interact with FIH-1. Thus, these cardiac glycosides could directly target HIF-1, Nrf2, and p53 protein-protein interactions, Na+/K+-ATPase, and PI3K to mediate their antitumor activity. Overall, (+)-strebloside seems more promising than digoxin for the development of potential anticancer agents.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - Sijie Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (Y.R.); (S.W.); (S.C.)
| |
Collapse
|
12
|
Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, Azevedo V. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomolecules 2021; 11:1275. [PMID: 34572488 PMCID: PMC8465509 DOI: 10.3390/biom11091275] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac glycosides are natural sterols and constitute a group of secondary metabolites isolated from plants and animals. These cardiotonic agents are well recognized and accepted in the treatment of various cardiac diseases as they can increase the rate of cardiac contractions by acting on the cellular sodium potassium ATPase pump. However, a growing number of recent efforts were focused on exploring the antitumor and antiviral potential of these compounds. Several reports suggest their antitumor properties and hence, today cardiac glycosides (CG) represent the most diversified naturally derived compounds strongly recommended for the treatment of various cancers. Mutated or dysregulated transcription factors have also gained prominence as potential therapeutic targets that can be selectively targeted. Thus, we have explored the recent advances in CGs mediated cancer scope and have considered various signaling pathways, molecular aberration, transcription factors (TFs), and oncogenic genes to highlight potential therapeutic targets in cancer management.
Collapse
Affiliation(s)
- Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012, India;
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Honey Pavithran
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala 671320, India;
| | - Manash K. Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA;
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India;
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-001, Brazil;
| |
Collapse
|
13
|
Mechanisms of Cisplatin in Combination with Repurposed Drugs against Human Endometrial Carcinoma Cells. Life (Basel) 2021; 11:life11020160. [PMID: 33669781 PMCID: PMC7922822 DOI: 10.3390/life11020160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Although endometrial carcinoma is one of the most common gynecological malignancies worldwide, its precise etiology remains unknown. Moreover, no novel adjuvant and/or targeted therapies are currently being developed to achieve greater efficacy for endometrial cancer patients who develop chemotherapeutic drug resistance. In this study, we used three human endometrial cancer cell lines, RL95-2, HEC-1-A, and KLE, to investigate the responsiveness of cisplatin alone and in combination with potential repurposed drugs. We first found that RL95-2 cells were more sensitive to cisplatin than HEC-1-A or KLE cells. The cytotoxicity of cisplatin in RL95-2 cells may reflect its ability to perturb the cell cycle, reactive oxygen species production and autophagy as well as to induce senescence and DNA damage. Similar effects, although not DNA damage, were also observed in HEC-1-A and KLE cells. In addition, downregulation of p53 and/or cyclin D1 may also impact the responsiveness of HEC-1-A and KLE cells to cisplatin. We also observed that resveratrol, trichostatin A (TSA), caffeine, or digoxin increased the apoptotic process of cisplatin toward RL95-2 cells, while amiodarone or TSA increased its apoptotic process toward HEC-1-A cells. The combination index supported the assertion that the combination of cisplatin with caffeine, amiodarone, resveratrol, metformin, digoxin, or TSA increases the cytotoxicity of cisplatin in HEC-1-A cells. These findings suggest potential strategies for enhancing the efficacy of cisplatin to overcome drug resistance in endometrial carcinoma patients.
Collapse
|
14
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Liu SH, Yu J, Creeden JF, Sutton JM, Markowiak S, Sanchez R, Nemunaitis J, Kalinoski A, Zhang JT, Damoiseaux R, Erhardt P, Brunicardi FC. Repurposing metformin, simvastatin and digoxin as a combination for targeted therapy for pancreatic ductal adenocarcinoma. Cancer Lett 2020; 491:97-107. [PMID: 32829010 DOI: 10.1016/j.canlet.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Patients with pancreatic adenocarcinoma (PDAC) have a 5-year survival rate of 8%, the lowest of any cancer in the United States. Traditional chemotherapeutic regimens, such as gemcitabine- and fluorouracil-based regimens, often only prolong survival by months. Effective precision targeted therapy is therefore urgently needed to substantially improve survival. In an effort to expedite approval and delivery of targeted therapy to patients, we utilized a platform to develop a novel combination of FDA approved drugs that would target pancreaticoduodenal homeobox1 (PDX1) and baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) utilizing super-promoters of the target genes to interrogate an FDA approved drug library. We identified and selected metformin, simvastatin and digoxin (C3) as a novel combination of FDA approved drugs, which were shown to effectively target PDX1 and BIRC5 in human PDAC tumors in mice with no toxicity.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Juehua Yu
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Justin F Creeden
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jeffrey M Sutton
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Stephen Markowiak
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robbi Sanchez
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jian-Ting Zhang
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul Erhardt
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, 43614, USA
| | - F Charles Brunicardi
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| |
Collapse
|
16
|
Che Y, Fu L. Aberrant expression and regulatory network of splicing factor-SRSF3 in tumors. J Cancer 2020; 11:3502-3511. [PMID: 32284746 PMCID: PMC7150454 DOI: 10.7150/jca.42645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing facilitates the splicing of precursor RNA into different isoforms. Alternatively spliced transcripts often exhibit antagonistic functions or differential temporal or spatial expression patterns. There is increasing evidence that alternative splicing, especially by the serine-arginine rich (SR) protein family, leads to abnormal expression patterns and is closely related to the development of cancer. SRSF3, also known as SRp20, is a splicing factor. Through alternative splicing, it plays important roles in regulating various biological functions, such as cell cycle, cell proliferation, migration and invasion, under pathological and physiological conditions. Deregulation of SRSF3 is an essential feature of cancers. SRSF3 is also considered a candidate therapeutic target. Therefore, the involvement of abnormal splicing in tumorigenesis and the regulation of splicing factors deserve further analysis and discussion. Here, we summarize the function of SRSF3-regulated alternative transcripts in cancer cell biology at different stages of tumor development and the regulation of SRSF3 in tumorigenesis.
Collapse
Affiliation(s)
- Yingying Che
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| |
Collapse
|
17
|
Guo J, Wang X, Jia J, Jia R. Underexpression of SRSF3 and its target gene RBMX predicts good prognosis in patients with head and neck cancer. J Oral Sci 2020; 62:175-179. [PMID: 32132325 DOI: 10.2334/josnusd.18-0485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Head and neck cancer collectively is one of the most common cancer types in the world. Oral squamous cell carcinoma (OSCC) is the most common subtype of head and neck cancer. SRSF3 is a proto-oncogene and is overexpressed in patients with OSCC. However, the relationship between SRSF3 expression and the clinical outcomes of patients with head and neck cancer remains unclear. By using the cBioPortal for Cancer Genomics, a public online tool originally developed at Memorial Sloan Kettering Cancer Center (New York, NY, USA), it was revealed that patients with head and neck cancer with an underexpression of SRSF3 showed better overall and disease-/progression-free survival rates. Moreover, 227 genes were found to be significantly coexpressed with SRSF3 in head and neck cancer. Then, in combination with the analysis of a previous splice-array dataset that included significantly changed genes after the silencing of SRSF3, four potential target genes of SRSF3 were identified. RBMX and HNRNPL were further confirmed to be target genes of SRSF3. Moreover, the underexpression of RBMX was determined to be significantly associated with a favorable overall survival rate among patients, while patients with an underexpression of both SRSF3 and RBMX is a subgroup of individuals with better prognoses than all other patients. These results suggest that the underexpression of SRSF3 and that of its target RBMX can be used as potential biomarkers to predict favorable overall survival among head and neck cancer patients.
Collapse
Affiliation(s)
- Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University
| |
Collapse
|
18
|
Wang Y, Ma Q, Zhang S, Liu H, Zhao B, Du B, Wang W, Lin P, Zhang Z, Zhong Y, Kong D. Digoxin Enhances the Anticancer Effect on Non-Small Cell Lung Cancer While Reducing the Cardiotoxicity of Adriamycin. Front Pharmacol 2020; 11:186. [PMID: 32180730 PMCID: PMC7059749 DOI: 10.3389/fphar.2020.00186] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 01/16/2023] Open
Abstract
Digoxin is widely used to treat heart failure. Epidemiological studies suggested it might be used as an anticancer drug or sensitizing agent for cancer therapy. Adriamycin is a well-known anticancer drug, but often causes cardiotoxicity which limits its use. We recently investigated the anticancer effects of digoxin alone or in combination with adriamycin on human non-small cell lung cancer in vitro and in vivo. Digoxin reduced the viability of A549 and H1299 cells in vitro, increased DNA damage by promoting ROS generation and inhibiting both DNA double strand break (DSB) and single strand break (SSB) repair. Combination with adriamycin showed synergistic antiproliferative effects at the ratios of 1/2IC50DIG:IC50ADR and IC50DIG:IC50ADR on A549 and H1299 cells, respectively. In vivo, digoxin potently inhibited A549 growth in both zebrafish and nude mouse xenograft model. Co-treatment with adriamycin not only enhanced the antitumor efficacy, but also reduced the cardiotoxicity. Our findings suggest that digoxin has the potential to be applied as an antitumor drug via inhibiting both DNA DSB and SSB repair, and combination with adriamycin for therapy of human non-small cell lung cancer is reasonable.
Collapse
Affiliation(s)
- Yingying Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shaolu Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hongyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
20
|
Lin CK, Liu ST, Chang CC, Huang SM. Regulatory mechanisms of fluvastatin and lovastatin for the p21 induction in human cervical cancer HeLa cells. PLoS One 2019; 14:e0214408. [PMID: 30939155 PMCID: PMC6445431 DOI: 10.1371/journal.pone.0214408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
p21, an inhibitor of cyclin-dependent kinase, functions as an oncogene or tumor suppressor depending on the context of a variety of extracellular and intracellular signals. The expression of p21 could be regulated at the transcriptional and/or post-translational levels. The p21 gene is well-known to be regulated in both p53-dependent and -independent manners. However, the detailed regulatory mechanisms of p21 messenger RNA and protein expression via statins remain unknown, and the possible application of statins as anticancer reagents remains to be controversial. Our data showed that the statins-fluvastatin and lovastatin-induced p21 expression as general histone deacetylase inhibitors in a p53-independent manner, which is mediated through various pathways, such as apoptosis, autophagy, cell cycle progression, and DNA damage, to be involved in the function of p21 in HeLa cells. The curative effect repositioning of digoxin, a cardiovascular medication, was combined with fluvastatin and lovastatin, and the results further implied that p21 induction is involved in a p53-dependent and p53-independent manner. Digoxin modified the effects of statins on ATF3, p21, p53, and cyclin D1 expression, while fluvastatin boosted its DNA damage effect and lovastatin impeded its DNA damage effect. Fluvastatin and lovastatin combined with digoxin further support the localization specificity of their interactivity with our subcellular localization data. This study will not only clarify the regulatory mechanisms of p21 induction by statins but will also shed light on the repurposing of widely cardiovascular medications for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Cheng-Chang Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
- * E-mail: (C-CC); (S-MH)
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
- * E-mail: (C-CC); (S-MH)
| |
Collapse
|
21
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Kuo CL, Liu ST, Chang YL, Wu CC, Huang SM. Zac1 regulates IL-11 expression in osteoarthritis. Oncotarget 2018; 9:32478-32495. [PMID: 30197757 PMCID: PMC6126702 DOI: 10.18632/oncotarget.25980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL)-11, a member of the IL-6 family of cytokines, exerts pleiotropic effects under normal and various disease conditions. We assessed IL-11 expression regulation and the IL-11/IL-6 ratio in osteoarthritis (OA) to better guide clinical therapeutic decision-making. Our findings suggest that Zac1, a zinc finger protein that regulates apoptosis and cell cycle arrest, is a transcription factor regulating IL-11 expression. Zac1 overexpression or knockdown respectively induced or suppressed IL-11 expression in HeLa cells. Zac1 acted synergistically with AP-1, human papillomavirus E2, and hypoxia inducible factor 1 alpha (HIF1α). IL-11 expression under various conditions, including hypoxia or treatment with phorbol 12-myristate 13-acetate or copper sulfate. Recombinant IL-11-induced phosphorylation of signal transducer and activator of transcription 3 at tyrosine 705 was reduced in a dose-dependent manner in HeLa cells. Cross-talk between Zac1, IL-11, p53, and suppressor of cytokine signaling 3 was differentially affected by copper sulfate, digoxin, and caffeine. Finally, aggressive vs. conventional treatment of OA patients was primarily determined by IL-6 levels. However, we suggest that OA patients with higher IL-11 levels may respond well to conventional treatments, even in the presence of high IL-6.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Chia-Chun Wu
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
23
|
Silva IT, Munkert J, Nolte E, Schneider NFZ, Rocha SC, Ramos ACP, Kreis W, Braga FC, de Pádua RM, Taranto AG, Cortes V, Barbosa LA, Wach S, Taubert H, Simões CMO. Cytotoxicity of AMANTADIG - a semisynthetic digitoxigenin derivative - alone and in combination with docetaxel in human hormone-refractory prostate cancer cells and its effect on Na +/K +-ATPase inhibition. Biomed Pharmacother 2018; 107:464-474. [PMID: 30107342 DOI: 10.1016/j.biopha.2018.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/29/2023] Open
Abstract
Cardiac glycosides (CGs) are natural compounds used to treat congestive heart failure. They have garnered attention as a potential cancer treatment option, especially because they bind to Na+/K+-ATPase as a target and activate intracellular signaling pathways leading to a variety of cellular responses. In this study we evaluated AMANTADIG, a semisynthetic cardenolide derivative, for its cytotoxic activity in two human androgen-insensitive prostate carcinoma cell lines, and the potential synergistic effects with docetaxel. AMANTADIG induced cytotoxic effects in both cell lines, and a combination with docetaxel showed a moderate and strong synergism in DU145 and PC-3 cells, respectively, at concentrations considerably lower than their IC50 values. Cell cycle analyses showed that AMANTADIG and its synergistic combination induced G2/M arrest of DU145 and PC-3 cells by modulating Cyclin B1, CDK1, p21 and, mainly, survivin expression, a promising target in cancer therapy. Furthermore, AMANTADIG presented reduced toxicity toward non-cancerous cell type (PBMC), and computational docking studies disclosed high-affinity binding to the Na+/K+-ATPase α subunit, a result that was experimentally confirmed by Na+/K+-ATPase inhibition assays. Hence, AMANTADIG inhibited Na+/K+-ATPase activity in PC-3 cells, as well as in purified pig kidney at nanomolar range. Altogether, these data highlight the potent effects of AMANTADIG in combination with docetaxel and offer important insights for the development of more effective and selective therapies against prostate cancer.
Collapse
Affiliation(s)
- Izabella Thaís Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Jennifer Munkert
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Nolte
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | | | - Sayonarah Carvalho Rocha
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Ana Carolina Pacheco Ramos
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Wolfgang Kreis
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fernão Castro Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alex G Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Vanessa Cortes
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Faculdade de Bioquímica, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
24
|
Cancer mortality does not differ by antiarrhythmic drug use: A population-based cohort of Finnish men. Sci Rep 2018; 8:10308. [PMID: 29985440 PMCID: PMC6037774 DOI: 10.1038/s41598-018-28541-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 02/03/2023] Open
Abstract
In-vitro studies have suggested that the antiarrhythmic drug digoxin might restrain the growth of cancer cells by inhibiting Na+/K+-ATPase. We evaluated the association between cancer mortality and digoxin, sotalol and general antiarrhythmic drug use in a retrospective cohort study. The study population consists of 78,615 men originally identified for the Finnish Randomized Study of Screening for Prostate Cancer. Information on antiarrhythmic drug purchases was collected from the national prescription database. We used the Cox regression method to analyze separately overall cancer mortality and mortality from the most common types of cancer. During the median follow-up of 17.0 years after the baseline 28,936 (36.8%) men died, of these 8,889 due to cancer. 9,023 men (11.5%) had used antiarrhythmic drugs. Overall cancer mortality was elevated among antiarrhythmic drug users compared to non-users (HR 1.43, 95% CI 1.34–1.53). Similar results were observed separately for digoxin and for sotalol. However, the risk associations disappeared in long-term use and were modified by background co-morbidities. All in all, cancer mortality was elevated among antiarrhythmic drug users. This association is probably non-causal as it was related to short-term use and disappeared in long-term use. Our results do not support the anticancer effects of digoxin or any other antiarrhythmic drug.
Collapse
|
25
|
Chung MH, Wang YW, Chang YL, Huang SM, Lin WS. Risk of cancer in patients with heart failure who use digoxin: a 10-year follow-up study and cell-based verification. Oncotarget 2018; 8:44203-44216. [PMID: 28496002 PMCID: PMC5546474 DOI: 10.18632/oncotarget.17410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) is the leading cause of death in the world and digoxin remains one of the oldest therapies for HF. However, its safety and efficacy have been controversial since its initial use and there is uncertainty about its long-term efficacy and safety. Recently, the repositioning of cardiac glycosides is to function in anti-tumor activity via multiple working pathways. It is interesting to compare the potential effects of digoxin in clinical patients and cell lines. First, we analyze patient information retrieved from the National Health Insurance Research database of Taiwan between January 1, 2000 and December 31, 2000. This retrospective study included a study cohort (1,219 patients) and a comparison cohort. Our analytical data suggested that patients taking digoxin are at an increased risk of cancers, including breast, liver, and lung cancers, during the 10-year follow-up period. In contrast to the anti-tumor function of digoxin, we further examined the potential pathway of digoxin via the cell-based strategy using several breast cancer cell lines, including MCF-7, BT-474, MAD-MB-231, and ZR-75-1. Digoxin consistently exerted its cytotoxicity to these four cell lines with various range of concentration. However, the proliferation of ZR-75-1 cells was the only cell lines induced by digoxin and the others were dramatically suppressed by digoxin. The responsiveness of SRSF3 to digoxin might be involved with cell-type differences. In summary, we combined a cohort study for digoxin treatment for HF patients with a cell-based strategy that addresses the translation issue, which revealed the complexity of personalized medicine.
Collapse
Affiliation(s)
- Min-Huey Chung
- Graduate Institute of Nursing, College of Nursing, Taipei Medical University, Taipei 110, Taiwan, Republic of China
| | - Yi-Wen Wang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City 114, Taiwan, Republic of China
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan, Republic of China
| | - Wei-Shiang Lin
- Department of Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan, Republic of China
| |
Collapse
|
26
|
Chang YL, Liu ST, Wang YW, Lin WS, Huang SM. Amiodarone promotes cancer cell death through elevated truncated SRSF3 and downregulation of miR-224. Oncotarget 2018; 9:13390-13406. [PMID: 29568365 PMCID: PMC5862586 DOI: 10.18632/oncotarget.24385] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022] Open
Abstract
Amiodarone is a widely used class III antiarrhythmic agent which prolongs the action potential and refractory period by blockage of several types of myocardial potassium channels. Emerging evidence suggests that amiodarone sensitize tumor cells in response to chemotherapy. Nevertheless, little is known about the underlying molecular mechanism. To gain further insight, we demonstrated that amiodarone accumulated the population of a premature termination codon-containing isoform of serine and arginine rich splicing factor 3 (SRSF3-PTC) without increasing alternative spliced p53 beta isoform. Amiodarone enhanced reactive oxygen species production and increased cell apoptosis, whereas reduced DNA damage. Moreover, amiodarone suppressed miR-224 and increased its target COX-2 expression. Taken together, our results suggested amiodarone caused cancer cell death might be through increased SRSF3-PTC and miR-224 reduction in a p53-independent manner.
Collapse
Affiliation(s)
- Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan 114, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan 114, Republic of China
| | - Yi-Wen Wang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan 114, Republic of China
| | - Wei-Shiang Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan 114, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan 114, Republic of China
| |
Collapse
|
27
|
Anticancer and Immunogenic Properties of Cardiac Glycosides. Molecules 2017; 22:molecules22111932. [PMID: 29117117 PMCID: PMC6150164 DOI: 10.3390/molecules22111932] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiac glycosides (CGs) are natural compounds widely used in the treatment of several cardiac conditions and more recently have been recognized as potential antitumor compounds. They are known to be ligands for Na/K-ATPase, which is a promising drug target in cancer. More recently, in addition to their antitumor effects, it has been suggested that CGs activate tumor-specific immune responses. This review summarizes the anticancer aspects of CGs as new strategies for immunotherapy and drug repositioning (new horizons for old players), and the possible new targets for CGs in cancer cells.
Collapse
|
28
|
Nolte E, Wach S, Silva IT, Lukat S, Ekici AB, Munkert J, Müller-Uri F, Kreis W, Oliveira Simões CM, Vera J, Wullich B, Taubert H, Lai X. A new semisynthetic cardenolide analog 3β-[2-(1-amantadine)- 1-on-ethylamine]-digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA expression profiles and enhances proapoptotic survivin-2B expression in renal cell carcinoma cell lines. Oncotarget 2017; 8:11676-11691. [PMID: 28099931 PMCID: PMC5355295 DOI: 10.18632/oncotarget.14644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/24/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiac glycosides are well known in the treatment of cardiovascular diseases; however, their application as treatment option for cancer patients is under discussion. We showed that the cardiac glycoside digitoxin and its analog AMANTADIG can inhibit the growth of renal cell carcinoma (RCC) cell lines and increase G2/M cell cycle arrest. To identify the signaling pathways and molecular basis of this G2/M arrest, microRNAs were profiled using microRNA arrays. Cardiac glycoside treatment significantly deregulated two microRNAs, miR-2278 and miR-670-5p. Pathway enrichment analysis showed that all cardiac glycoside treatments affected the MAPK and the axon guidance pathway. Within these pathways, three genes, MAPK1, NRAS and RAC2, were identified as in silico targets of the deregulated miRNAs. MAPK1 and NRAS are known regulators of G2/M cell cycle arrest. AMANTADIG treatment enhanced the expression of phosphorylated MAPK1 in 786-O cells. Secondly, we studied the expression of survivin known to be affected by cardiac glycosides and to regulate the G2/M cell phase. AMANTADIG treatment upregulated the expression of the pro-apoptotic survivin-2B variant in Caki-1 and 786-O cells. Moreover, treatment with AMANTADIG resulted in significantly lower survivin protein expression compared to 786-O control cells. Summarizing, treatment with all cardiac glycosides induced G2/M cell cycle arrest and downregulated the miR-2278 and miR-670-5p in microarray analysis. All cardiac glycosides affected the MAPK-pathway and survivin expression, both associated with the G2/M phase. Because cells in the G2/M phase are radio- and chemotherapy sensitive, cardiac glycosides like AMANTADIG could potentially improve the efficacy of radio- and/or chemotherapy in RCCs.
Collapse
Affiliation(s)
- Elke Nolte
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Izabella Thais Silva
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Department of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sabine Lukat
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer Munkert
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Frieder Müller-Uri
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Kreis
- Department of Biology, Chair of Pharmaceutical Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Helge Taubert
- Department of Urology, University Hospital Erlangen, Erlangen, Germany
| | - Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Trenti A, Zulato E, Pasqualini L, Indraccolo S, Bolego C, Trevisi L. Therapeutic concentrations of digitoxin inhibit endothelial focal adhesion kinase and angiogenesis induced by different growth factors. Br J Pharmacol 2017; 174:3094-3106. [PMID: 28688145 DOI: 10.1111/bph.13944] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiac glycosides are Na+ /K+ -ATPases inhibitors used to treat congestive heart failure and cardiac arrhythmias. Epidemiological studies indicate that patients on digitalis therapy are more protected from cancer. Evidence of a selective cytotoxicity against cancer cells has suggested their potential use as anticancer drugs. The effect on angiogenesis of clinically used cardiac glycosides has not been extensively explored. EXPERIMENTAL APPROACH We studied the effect of digoxin, digitoxin and ouabain on early events of the angiogenic process in HUVECs. We determined HUVEC viability, proliferation, migration and differentiation into capillary tube-like structures. We also tested drug activity using an in vivo angiogenesis model. Activation of protein tyrosine kinase 2 (FAK) and signalling proteins associated with the Na+ /K+ -ATPase signalosome was determined by Western blotting. KEY RESULTS Digitoxin and ouabain (1-100 nM) inhibited HUVEC migration, concentration-dependently, without affecting cell viability, while digoxin induced apoptosis at the same concentrations. Digitoxin antagonized growth factor-induced migration and tubularization at concentrations (1-25 nM) within its plasma therapeutic range. The anti-angiogenic effect of digitoxin was confirmed also by in vivo studies. Digitoxin induced Src, Akt and ERK1/2 phosphorylation but did not affect FAK autophosphorylation at Tyr397 . However, it significantly inhibited growth factor-induced FAK phosphorylation at Tyr576/577 . CONCLUSIONS AND IMPLICATIONS Therapeutic concentrations of digitoxin inhibited angiogenesis and FAK activation by several pro-angiogenic stimuli. These novel findings suggest a potential repositioning of digitoxin as a broad-spectrum anti-angiogenic drug for diseases where pathological angiogenesis is involved.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Lu CC, Lee CC, Tseng CT, Tarn WY. Y14 governs p53 expression and modulates DNA damage sensitivity. Sci Rep 2017; 7:45558. [PMID: 28361991 PMCID: PMC5374521 DOI: 10.1038/srep45558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Y14 is a core component of the exon junction complex (EJC), while it also exerts cellular functions independent of the EJC. Depletion of Y14 causes G2/M arrest, DNA damage and apoptosis. Here we show that knockdown of Y14 induces the expression of an alternative spliced isoform of p53, namely p53β, in human cells. Y14, in the context of the EJC, inhibited aberrant exon inclusion during the splicing of p53 pre-mRNA, and thus prevent p53β expression. The anti-cancer agent camptothecin specifically suppressed p53β induction. Intriguingly, both depletion and overexpression of Y14 increased overall p53 protein levels, suggesting that Y14 governs the quality and quantity control of p53. Moreover, Y14 depletion unexpectedly reduced p21 protein levels, which in conjunction with aberrant p53 expression accordingly increased cell sensitivity to genotoxic agents. This study establishes a direct link between Y14 and p53 expression and suggests a function for Y14 in DNA damage signaling.
Collapse
Affiliation(s)
- Chia-Chen Lu
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chi-Chieh Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Tzu Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
de Oliveira JT, Barbosa MCDS, de Camargos LF, da Silva IVG, Varotti FDP, da Silva LM, Moreira LM, Lyon JP, Dos Santos VJDSV, Dos Santos FV. Digoxin reduces the mutagenic effects of Mitomycin C in human and rodent cell lines. Cytotechnology 2017; 69:699-710. [PMID: 28321777 DOI: 10.1007/s10616-017-0078-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/04/2017] [Indexed: 11/30/2022] Open
Abstract
Digoxin is a drug widely used to treat heart failure and studies have demonstrated its potential as anticancer agent. In addition, digoxin presents the potential to interact with a series of other compounds used in medicine. The aim of the present study was to evaluate in vitro the cytotoxicity, genotoxicity and mutagenicity of digoxin and its potential to interact with the mutagen Mitomycin C (MMC). The cytotoxicity of digoxin was assessed by employing the MTT method and the comet assay was performed to assess the genotoxicity of this medicine in CHO-K1 and HeLa cell lines. Besides, the cytokinesis-block micronucleus assay was performed to assess the mutagenicity and the antimutagenicity of this drug. The Ames assay was also performed with TA98 and TA100 strains of S. typhimurium. Results showed that digoxin was cytotoxic, genotoxic and mutagenic for HeLa and CHO-K1 cell lines at concentrations many times higher than those observed in human therapeutic conditions. Nevertheless, an antimutagenic effect against the mutagen MMC was observed on both cell lines in concentrations near those used therapeutically in humans. This chemoprotective effect observed is an interesting finding that should be better explored regarding its impact in anticancer chemotherapy.
Collapse
Affiliation(s)
- Júlia Teixeira de Oliveira
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-506, Brazil.,Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-296, Brazil
| | - Maria C da Silva Barbosa
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-506, Brazil.,Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-296, Brazil
| | - Luiz F de Camargos
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-506, Brazil.,Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-296, Brazil
| | - Isabella Viana Gomes da Silva
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-506, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-296, Brazil
| | - Luciana M da Silva
- Serviço de Biologia Celular (SBC), Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, 30510-010, Brazil
| | - Leonardo Marmo Moreira
- Departamento de Zootecnia (DZOO), Universidade Federal de São João del Rei (UFSJ), São João del Rei, MG, 36301-160, Brazil
| | - Juliana Pereira Lyon
- Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João del Rei (UFSJ), São João del Rei, MG, 36301-160, Brazil
| | | | - Fabio Vieira Dos Santos
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-506, Brazil. .,Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
32
|
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396:53-65. [PMID: 28315432 DOI: 10.1016/j.canlet.2017.03.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
Abstract
SR and hnRNP proteins were initially discovered as regulators of alternative splicing: the process of controlled removal of introns and selective joining of exons through which multiple transcripts and, subsequently, proteins can be expressed from a single gene. Alternative splicing affects genes involved in all crucial cellular processes, including apoptosis. During cancerogenesis impaired apoptotic control facilitates survival of cells bearing molecular aberrations, contributing to their unrestricted proliferation and chemoresistance. Apparently, SR and hnRNP proteins regulate all levels of expression of apoptotic genes, including transcription initiation and elongation, alternative splicing, mRNA stability, translation, and protein degradation. The frequently disturbed expressions of SR/hnRNP proteins in cancers lead to impaired functioning of target apoptotic genes, including regulators of the extrinsic (Fas, caspase-8, caspase-2, c-FLIP) and the intrinsic pathway (Apaf-1, caspase-9, ICAD), genes encoding Bcl-2 proteins, IAPs, and p53 tumor suppressor. Prototypical members of SR/hnRNP families, SRSF1 and hnRNP A1, promote synthesis of anti-apoptotic splice variants of Bcl-x and Mcl-1, which results in attenuation of programmed cell death in breast cancer and chronic myeloid leukemia. SR/hnRNP proteins significantly affect responses to chemotherapy, acting as mediators or modulators of drug-induced apoptosis. Aberrant expression of SRSF1 and hnRNP K can interfere with tumor responses to chemotherapy in pancreatic and liver cancers. Currently, a number of splicing factor inhibitors is being tested in pre-clinical and clinical trials. In this review we discuss recent findings on the role of SR and hnRNP proteins in apoptotic control in cancer cells as well as their significance in anticancer treatments.
Collapse
Affiliation(s)
- Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
33
|
Wang T, Xu P, Wang F, Zhou D, Wang R, Meng L, Wang X, Zhou M, Chen B, Ouyang J. Effects of digoxin on cell cycle, apoptosis and NF-κB pathway in Burkitt's lymphoma cells and animal model. Leuk Lymphoma 2017; 58:1673-1685. [PMID: 28084852 DOI: 10.1080/10428194.2016.1256480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Digoxin has potential antitumor properties. This study investigated whether digoxin suppressed Burkitt's lymphoma (BL) cells. Raji and NAMALWA cells were exposed to digoxin, followed by assay of cell viability, apoptosis and cell cycle. Western blotting was used to analyze NF-κB activity. A xenograft model was established for therapeutic efficacy evaluation. Digoxin inhibited cell growth and resulted in apoptosis and cell cycle arrest (G0/G1 for Raji cells; G2/M for NAMALWA cells). Digoxin inhibited DNA synthesis and induced morphological apoptotic characteristics. Besides, digoxin inhibited NF-κB and TNF-α-stimulated NF-κB activity, and suppressed NF-κB initiating genes (Bcl-2, Bcl-xL, cyclin D1, and c-myc), however, increased p21cip1. Digoxin activated caspase-9/3. Furthermore, digoxin inhibited xenograft tumors growth and reduced Ki-67 and c-myc. Digoxin exerted antitumor effects on BL cells in vitro and in vivo might through regulating NF-κB and caspase pathway. These outcomes highlight the potential of digoxin as a therapeutic agent for BL.
Collapse
Affiliation(s)
- Ting Wang
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Peipei Xu
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Fan Wang
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Di Zhou
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Ruju Wang
- b Department of Hematology , Nanjing Drum Tower Hospital, Clinical College of Medical College of Southeast University , Nanjing , PR China
| | - Li Meng
- c Department of Maternity Intensive Care Unit , Nanjing Maternity and Child Health Hospital Affiliated to Nanjing Medical University , Nanjing , PR China
| | - Xiaohui Wang
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Min Zhou
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Bing Chen
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| | - Jian Ouyang
- a Department of Hematology , Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing , PR China
| |
Collapse
|