1
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S, Liu C. Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal 2025; 128:111632. [PMID: 39922440 DOI: 10.1016/j.cellsig.2025.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The occurrence of diabetic cardiomyopathy (DCM) can be independent of several risk factors such as hypertension and myocardial ischemia, which can lead to heart failure, thus seriously threatening human health and life. Sustained hyperglycemic stimulation can induce cardiomyocyte apoptosis, which is recognized as the pathological basis of DCM. It has been demonstrated that dysregulation induced by apoptosis is closely associated to progression of DCM, but mechanisms behind it requires further clarification. Currently, increasing evidence has shown that non-coding RNA (ncRNA), especially microRNA, long-chain non-coding RNA (lncRNA), and circular RNA (circRNA), play a regulative role in apoptosis, thus affecting the progression of DCM. Notably, some ncRNAs have also exhibit potential significance as biomarkers and/or therapeutic targets for patients with DCM. In this review, recent findings regarding the potential mechanisms of ncRNA in regulating apoptosis and their role in the progression of DCM were systematically summarized in this research. The conclusion reveals that ncRNA abnormalities exert a crucial role in pathological changes of DCM, which offers potential therapeutic targets for the prevention of DCM.
Collapse
Affiliation(s)
- Yicheng Liu
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Yuan
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuhang Zhang
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Ma
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qianqian Ji
- Department one of Cardiovascular Disease, Tai'an Hospital of Traditional Chinese Medicine, Taian 271000, China
| | - Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
3
|
Wingert J, Meinhardt E, Sasipong N, Pott M, Lederer C, de la Torre C, Sticht C, Most P, Katus HA, Frey N, Raake PWJ, Schlegel P. Cardiomyocyte-specific RXFP1 overexpression protects against pressure overload-induced cardiac dysfunction independently of relaxin. Biochem Pharmacol 2024; 225:116305. [PMID: 38768763 DOI: 10.1016/j.bcp.2024.116305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Heart failure (HF) prevalence is rising due to reduced early mortality and demographic change. Relaxin (RLN) mediates protective effects in the cardiovascular system through Relaxin-receptor 1 (RXFP1). Cardiac overexpression of RXFP1 with additional RLN supplementation attenuated HF in the pressure-overload transverse aortic constriction (TAC) model. Here, we hypothesized that robust transgenic RXFP1 overexpression in cardiomyocytes (CM) protects from TAC-induced HF even in the absence of RLN. Hence, transgenic mice with a CM-specific overexpression of human RXFP1 (hRXFP1tg) were generated. Receptor functionality was demonstrated by in vivo hemodynamics, where the administration of RLN induced positive inotropy strictly in hRXFP1tg. An increase in phospholamban-phosphorylation at serine 16 was identified as a molecular correlate. hRXFP1tg were protected from TAC without additional RLN administration, presenting not only less decline in systolic left ventricular (LV) function but also abrogated LV dilation and pulmonary congestion compared to WT mice. Molecularly, transgenic hearts exhibited not only a significantly attenuated fetal and fibrotic gene activation but also demonstrated less fibrotic tissue and CM hypertrophy in histological sections. These protective effects were evident in both sexes. Similar cardioprotective effects of hRXFP1tg were detectable in a RLN-knockout model, suggesting an alternative mechanism of receptor activation through intrinsic activity, alternative endogenous ligands or crosstalk with other receptors. In summary, CM-specific RXFP1 overexpression provides protection against TAC even in the absence of endogenous RLN. This suggests RXFP1 overexpression as a potential therapeutic approach for HF, offering baseline protection with optional RLN supplementation for specific activation.
Collapse
Affiliation(s)
- J Wingert
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - E Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - N Sasipong
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - M Pott
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany
| | - C Lederer
- Thoraxklinik Heidelberg, University Hospital Heidelberg and German Center for Lung Research (DZL), Heidelberg, Germany
| | - C de la Torre
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - C Sticht
- Core Facility Platform Mannheim, NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - H A Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - N Frey
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - P W J Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany; Department of Internal Medicine I, University Hospital Augsburg, Augsburg University, Germany
| | - P Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg University, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany.
| |
Collapse
|
4
|
Xuan X, Zhang S. Targeting the programmed cell death (PCD) signaling mechanism with natural substances for the treatment of diabetic cardiomyopathy (DCM). Phytother Res 2023; 37:5495-5508. [PMID: 37622685 DOI: 10.1002/ptr.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes, characterized by structural and functional abnormalities in the hearts of diabetic patients without hypertension, coronary heart disease, or valvular heart disease. DCM can progress to heart failure, which is a significant cause of death in diabetic patients, but currently, there is no effective treatment available. Programmed cell death (PCD) is a genetically regulated form of cell death that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD is essential for tissue homeostasis and normal development of the body. DCM is a complex condition, and abnormalities in the cascade of PCD signaling have been observed in its pathological process, suggesting that targeting PCD could be a potential therapeutic strategy. Studies have shown that natural substances can effectively modulate PCD to intervene in the treatment of DCM, and their use is safe. This review explores the role of different forms of PCD in the pathogenesis of DCM and summarizes the research progress in targeting PCD with natural substances to treat DCM. It can serve as a basis for further research and drug development to provide new treatment strategies for DCM patients.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Huo JL, Feng Q, Pan S, Fu WJ, Liu Z, Liu Z. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov 2023; 9:256. [PMID: 37479697 PMCID: PMC10362058 DOI: 10.1038/s41420-023-01553-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) mainly refers to myocardial metabolic dysfunction caused by high glucose, and hyperglycemia is an independent risk factor for cardiac function in the absence of coronary atherosclerosis and hypertension. DCM, which is a severe complication of diabetes, has become the leading cause of heart failure in diabetic patients. The initial symptoms are inconspicuous, and patients gradually exhibit left ventricular dysfunction and eventually develop total heart failure, which brings a great challenge to the early diagnosis of DCM. To date, the underlying pathological mechanisms of DCM are complicated and have not been fully elucidated. Although there are therapeutic strategies available for DCM, the treatment is mainly focused on controlling blood glucose and blood lipids, and there is a lack of effective drugs targeting myocardial injury. Thus, a large percentage of patients with DCM inevitably develop heart failure. Given the neglected initial symptoms, the intricate cellular and molecular mechanisms, and the lack of available drugs, it is necessary to explore early diagnostic biomarkers, further understand the signaling pathways involved in the pathogenesis of DCM, summarize the current therapeutic strategies, and develop new targeted interventions.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Wen-Jia Fu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Zhenzhen Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
6
|
Feng C, Yi Z, Qian W, Liu H, Jiang X. Rotations improve the diversity of rhizosphere soil bacterial communities, enzyme activities and tomato yield. PLoS One 2023; 18:e0270944. [PMID: 36634092 PMCID: PMC9836298 DOI: 10.1371/journal.pone.0270944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The use of rotations is an effective strategy to control crop diseases and improve plant health. The soil bacterial communities in the rhizosphere are highly important for maintaining soil productivity. However, the composition and structure of soil bacterial communities in the rotations of vegetable crops remain unclear. In this study, we explored the bacterial diversity and community structure of the tomato rhizosphere, including enzyme activities, yield, and fruit quality, under three different cropping systems: tomato-tomato (Solanum lycopersicum) continuous cropping (TY1), eggplant (Solanum melongena)-tomato rotation (TY2) and arrowhead (Sagittaria trifolia)-tomato rotation (TY3). The composition and diversity of the rhizosphere bacterial communities differed significantly. The diversity was more in the TY2 and TY3 treatments than those in the TY1 treatment. Chujaibacter and Rhodanobacter were two predominant and unique strains detected only in TY1, while the relative abundances of Curvibacter and Luteimonas were the highest in TY2 and TY3, respectively. Moreover, Lysobacter was a relatively abundant type of biocontrol bacterium found only in the TY3 treatment, which could contribute to alleviating the obstacle of tomato continuous cropping. Compared with the TY1 treatment, the activities of catalase were significantly higher in the TY2 and TY3 treatments. In addition, compared with TY1, the TY2 and TY3 plots increased the following parameters: tomato yields by 24-46%, total soluble solids by 37-93%, total organic acid by 10-15.7% and soluble protein by 10-21%, while the content of nitrate was significantly reduced by 23%. Altogether, compared with the tomato monoculture, the rotations of tomato with eggplant and arrowhead shifted the rhizosphere bacterial communities and improved the yield and quality of the tomato. Moreover, a tomato rotation, particularly with arrowhead, was an effective way to alleviate the obstacles of continuous cropping.
Collapse
Affiliation(s)
- Cui Feng
- Taizhou Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Taizhou, China
| | - Zhengwei Yi
- Taizhou Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Taizhou, China
| | - Wei Qian
- Taizhou Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Taizhou, China
| | - Huiying Liu
- Taizhou Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Taizhou, China
| | - Xiaosan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
7
|
Relaxin-3 Ameliorates Diabetic Cardiomyopathy by Inhibiting Endoplasmic Reticulum Stress. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9380283. [PMID: 36203531 PMCID: PMC9532149 DOI: 10.1155/2022/9380283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
Background This study is aimed at investigating whether relaxin-3 exhibits protective effects against cardiomyopathy in diabetic rats by suppressing ERS. Methods Eighty male SD rats were randomly divided into two groups: controls (n = 20) and diabetes (n = 60). The streptozotocin-treated rats were randomly divided into three groups: diabetic group (DM), low-dose relaxin-3 group (0.2 μg/kg/d), and high-dose relaxin-3 group (2 μg/kg/d). The myocardial tissues and collagen fiber were observed by hematoxylin and eosin (H&E) and Masson staining. Serum brain natriuretic peptide (BNP), troponin (TNI), myoglobin, interleukin (IL-17), interleukin (IL)-1α, and tumor necrosis factor (TNF)-α were determined by ELISA. The protein expression of glucose regulatory protein 78 (GRP78) and C/EBP homologous protein (CHOP) in the heart tissue of each group was detected by Western blot analysis. Results (1) HE and Masson staining indicated that relaxin-3 could attenuate myocardial lesions and myocardial collagen volume fraction. (2) BNP, TnI, and myoglobin in the DM group at four and eight weeks were significantly higher than in the controls (P < 0.01). The relaxin-3-treated groups showed significantly reduced serum BNP, TnI, and myoglobin levels compared with the DM group (P < 0.05). (3) IL-17, IL-1α, and TNF-α levels in the DM rats at 4 weeks were higher than in the controls (P < 0.05). Low or high dose of relaxin-3-treated groups showed reduced serum IL-17 and TNF-α levels compared with the DM group at four and eight weeks (P < 0.05). (4) CHOP and GRP78 protein expression was increased in the DM group at four and eight weeks compared with the controls (P < 0.01), and small and large doses of relaxin-3 significantly reduced GRP78 and CHOP protein expression. Conclusions Exogenous relaxin-3 ameliorates diabetic cardiomyopathy by inhibiting ERS in diabetic rats.
Collapse
|
8
|
Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc 2020; 9:e015748. [PMID: 32295457 PMCID: PMC7428518 DOI: 10.1161/jaha.119.015748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Human relaxin‐2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia‐reperfusion injury. B7‐33, a synthetically designed peptide analogous to B‐chain of relaxin‐2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin‐2) by preferentially phosphorylating the mitogen‐activated protein kinase extracellular signal‐regulated kinase 1/2. We sought to investigate the effects of B7‐33 treatment post ischemia‐reperfusion injury in mice. Methods and Results Adult male CD1 mice were subjected to ischemia‐reperfusion via ligation of left anterior descending artery for 30 minutes, followed by 24 hours or 7 days of reperfusion. Echocardiography was performed to assess cardiac function, and cardiac tissue was stained to determine infarct size at 24 hours. B7‐33 significantly reduced infarct size (21.99% versus 45.32%; P=0.02) and preserved fractional shortening (29% versus 23%; P=0.02) compared with vehicle. The difference in fractional shortening further increased at 7 days post myocardial infarction (29% versus 20% for B7‐33 and vehicle groups, respectively). In vitro, primary cardiomyocytes were isolated from adult hearts and subjected to simulated ischemia‐reperfusion injury (simulated ischemia reoxygenation). B7‐33 (50 and 100 nmol/L) improved cell survival and reduced the expression of GRP78 (glucose regulated protein), an endoplasmic reticulum stress marker. Subsequently, B7‐33 (100 nmol/L) reduced tunicamycin (2.5 μg/mL) induced upregulation of GRP78 in an extracellular signal‐regulated kinase 1/2–dependent manner. Conclusions B7‐33 confers acute cardioprotection and limits myocardial infarction–related adverse remodeling in mice by attenuating cardiomyocyte death and endoplasmic reticulum stress as well as preserving cardiac function.
Collapse
Affiliation(s)
- Teja Devarakonda
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Adolfo G Mauro
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Geronimo Guzman
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Sahak Hovsepian
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Chad Cain
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Anindita Das
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Australia
| | - Fadi N Salloum
- Division of Cardiology Pauley Heart Center Virginia Commonwealth University Richmond VA
| |
Collapse
|
9
|
Li X, Li Z, Li B, Zhu X, Lai X. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway. Life Sci 2019; 234:116773. [PMID: 31422095 DOI: 10.1016/j.lfs.2019.116773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
AIMS NLRP3 inflammasome activation is essential for the development and prognosis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho is suggested to modulate tissue inflammatory responses. The aim of the present study was to examine the protective effects of Klotho on DCM. MAIN METHODS A streptozotocin-induced diabetes mouse model was established to assess the effects of Klotho in vivo, which was administered for 12 weeks. The characteristics of type 1 DCM were evaluated by general status, echocardiography, and histopathology. The expression of associated factors was determined by RT-qPCR and western blotting. Parallel experiments to determine the molecular mechanism through which Klotho prevents DCM were performed using H9C2 cells exposed to high glucose (35 mM). KEY FINDINGS Diabetes-induced increases in serum creatine kinase-muscle/brain and lactate dehydrogenase levels, cardiac fibrosis, cardiomyocyte apoptosis, and cardiac dysfunction were ameliorated by Klotho. Additionally, Klotho suppressed TXNIP expression, NLRP3 inflammasome activation, and expression of the inflammatory cytokines tumor necrosis factor ɑ, interleukin-1β, and interleukin-18 in vivo. In high glucose-cultured cardiomyocytes, Klotho and N-acetylcysteine significantly downregulated intracellular reactive oxygen species generation and TXNIP/NLRP3 inflammasome activation. Pretreatment of H9C2 cells with NLRP3 siRNA or Klotho prevented high glucose-induced inflammation and apoptosis in H9C2 cells. SIGNIFICANCE Our results demonstrate that the protective effect of Klotho on diabetes-induced cardiac injury is associated with inhibition of the NLRP3 inflammasome pathway, suggesting its therapeutic potential for DCM.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Zhiyang Li
- Grade 2016 Class 2, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingong Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China; Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Xianjie Zhu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Xingjun Lai
- Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
10
|
Shen L, Li L, Li M, Wang W, Yin W, Liu W, Hu Y. Silencing of NOD2 protects against diabetic cardiomyopathy in a murine diabetes model. Int J Mol Med 2018; 42:3017-3026. [PMID: 30221681 PMCID: PMC6202090 DOI: 10.3892/ijmm.2018.3880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the role of the nucleotide‑binding oligomerization domain (NOD) 2 in high glucose (HG)‑induced myocardial apoptosis and fibrosis in mice. Mouse models of diabetes were induced by streptozotocin (STZ). NOD2 expression was knocked down by injection of lentivirus‑mediated short‑hairpin RNA. Alternatively, small interfering RNA‑NOD2 was transfected into cardiomyocytes and cardiac fibroblasts (CFs). A hemodynamic assay was used to assess the cardiac function in the mouse model. Hematoxylin and eosin, Masson and terminal deoxynucleotidyl transferase dUTP nick end labeling staining was performed to observe pathological changes and injury of myocardial tissue. The expression levels of NOD2, collagen I and III, and transforming growth factor‑β (TGF‑β) and apoptotic proteins were quantified by reverse transcription‑quantitative polymerase chain reaction and western blotting. NOD2 silencing ameliorated diabetes‑induced myocardial apoptosis and fibrosis in mice. NOD2, collagen I, collagen III, TGF‑β and pro‑apoptotic proteins were upregulated in the diabetic cardiomyopathy (DCM) model group, but interference of NOD2 suppressed these alterations in protein expression levels. NOD2 is upregulated in HG‑induced primary cardiomyocytes and CFs. Suppression of NOD2 attenuated HG‑induced cardiomyocyte apoptosis and proliferation of CFs. Overall, NOD2 silencing alleviated myocardial apoptosis and fibrosis in diabetic mice. The results of the present study demonstrated an understanding of the role of NOD2 in diabetes‑induced cardiomyopathy, which provides a novel target and therapies for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Lin Shen
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Li Li
- The Undergraduate Teaching Department, Shandong University Qilu Medical College, Jinan, Shandong 250012, P.R. China
| | - Man Li
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Weiling Wang
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Wenbin Yin
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Wei Liu
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Yanyan Hu
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
11
|
You X, Guo ZF, Cheng F, Yi B, Yang F, Liu X, Zhu N, Zhao X, Yan G, Ma XL, Sun J. Transcriptional up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic agonist-induced apoptosis in cardiomyocytes. J Biol Chem 2018; 293:14001-14011. [PMID: 30006349 DOI: 10.1074/jbc.ra118.003099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
The relaxin family peptides have been shown to exert several beneficial effects on the heart, including anti-apoptosis, anti-fibrosis, and anti-hypertrophy activity. Understanding their regulation might provide new opportunities for therapeutic interventions, but the molecular mechanism(s) coordinating relaxin expression in the heart remain largely obscured. Previous work demonstrated a role for the orphan nuclear receptor Nur77 in regulating cardiomyocyte apoptosis. We therefore investigated Nur77 in the hopes of identifying novel relaxin regulators. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) data indicated that ectopic expression of orphan nuclear receptor Nur77 markedly increased the expression of latexin-3 (RLN3), but not relaxin-1 (RLN1), in neonatal rat ventricular cardiomyocytes (NRVMs). Furthermore, we found that the β-adrenergic agonist isoproterenol (ISO) markedly stimulated RLN3 expression, and this stimulation was significantly attenuated in Nur77 knockdown cardiomyocytes and Nur77 knockout hearts. We showed that Nur77 significantly increased RLN3 promoter activity via specific binding to the RLN3 promoter, as demonstrated by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Furthermore, we found that Nur77 overexpression potently inhibited ISO-induced cardiomyocyte apoptosis, whereas this protective effect was significantly attenuated in RLN3 knockdown cardiomyocytes, suggesting that Nur77-induced RLN3 expression is an important mediator for the suppression of cardiomyocyte apoptosis. These findings show that Nur77 regulates RLN3 expression, therefore suppressing apoptosis in the heart, and suggest that activation of Nur77 may represent a useful therapeutic strategy for inhibition of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Xiaohua You
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Zhi-Fu Guo
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Fang Cheng
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Bing Yi
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Fan Yang
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Xinzhu Liu
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Ni Zhu
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guijun Yan
- the Reproductive Medicine Center, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 211166, China
| | - Xin-Liang Ma
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Jianxin Sun
- From the Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China, .,the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| |
Collapse
|
12
|
Ng HH, Leo CH, Parry LJ, Ritchie RH. Relaxin as a Therapeutic Target for the Cardiovascular Complications of Diabetes. Front Pharmacol 2018; 9:501. [PMID: 29867503 PMCID: PMC5962677 DOI: 10.3389/fphar.2018.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular complications are the major cause of mortality in patients with diabetes. This is closely associated with both macrovascular and microvascular complications of diabetes, which lead to organ injuries in diabetic patients. Previous studies have consistently demonstrated the beneficial effects of relaxin treatment for protection of the vasculature, with evidence of antioxidant and anti-remodeling actions. Relaxin enhances nitric oxide, prostacyclin and endothelium-derived hyperpolarization (EDH)-type-mediated relaxation in various vascular beds. These effects of relaxin on the systemic vasculature, coupled with its cardiac actions, reduce pulmonary capillary wedge pressure and pulmonary artery pressure. This results in an overall decrease in systemic and pulmonary vascular resistance in heart failure patients. The anti-fibrotic actions of relaxin are well established, a desirable property in the context of diabetes. Further, relaxin ameliorates diabetic wound healing, with accelerated angiogenesis and vasculogenesis. Relaxin-mediated stimulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1-α, as well as regulation of metalloproteinase expression, ameliorates cardiovascular fibrosis in diabetic mice. In the heart, relaxin is a cardioprotective molecule in several experimental animal models, exerting anti-fibrotic, anti-hypertrophy and anti-apoptotic effects in diabetic pathologies. Collectively, these studies provide a foundation to propose the therapeutic potential for relaxin as an adjunctive agent in the prevention or treatment of diabetes-induced cardiovascular complications. This review provides a comprehensive overview of the beneficial effects of relaxin, and identifies its therapeutic possibilities for alleviating diabetes-related cardiovascular injury.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Science and Math Cluster, Singapore University of Technology and Design, Singapore, Singapore
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Aragón-Herrera A, Feijóo-Bandín S, Rodríguez-Penas D, Roselló-Lletí E, Portolés M, Rivera M, Bigazzi M, Bani D, Gualillo O, González-Juanatey JR, Lago F. Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes. Endocrine 2018; 60:103-111. [PMID: 29411306 DOI: 10.1007/s12020-018-1534-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism. METHODS Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone. RESULTS We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported. CONCLUSION Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell's metabolic responses.
Collapse
Affiliation(s)
- A Aragón-Herrera
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
| | - S Feijóo-Bandín
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain.
- CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - D Rodríguez-Penas
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
| | - E Roselló-Lletí
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - M Portolés
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - M Rivera
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Cardiocirculatory Unit, Health Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - M Bigazzi
- Prosperius Institute, Florence, Italy
| | - D Bani
- Prosperius Institute, Florence, Italy
| | - O Gualillo
- Neuroendocrine Interaccions in Rheumatology and Inflammatory Diseases Unit, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
| | - J R González-Juanatey
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F Lago
- Cellular and Molecular Cardiology Unit and Department of Cardiology, Institute of Biomedical Research (IDIS-SERGAS), Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Zhang X, Fu Y, Li H, Shen L, Chang Q, Pan L, Hong S, Yin X. H3 relaxin inhibits the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose. J Cell Mol Med 2018; 22:1816-1825. [PMID: 29314607 PMCID: PMC5824385 DOI: 10.1111/jcmm.13464] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Fu
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- The Department of Cardiology, The Fifth hospital of Harbin, Harbin, China
| | - Li Shen
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Chang
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liya Pan
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siting Hong
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- The Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Wei X, Yang Y, Jiang YJ, Lei JM, Guo JW, Xiao H. Relaxin ameliorates high glucose-induced cardiomyocyte hypertrophy and apoptosis via the Notch1 pathway. Exp Ther Med 2017; 15:691-698. [PMID: 29399073 PMCID: PMC5772593 DOI: 10.3892/etm.2017.5448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the role of relaxin (RLX) on high glucose (HG)-induced cardiomyocyte hypertrophy and apoptosis, as well as the possible molecular mechanism. H9c2 cells were exposed to 33 mmol/l HG with or without RLX (100 nmol/ml). Cell viability, apoptosis, oxidative stress, cell hypertrophy and the levels of Notch1, hairy and enhancer of split 1 (hes1), atrial natriuretic polypeptide (ANP), brain natriuretic peptide (BNP), manganese superoxide dismutase (MnSOD), cytochrome C and caspase-3 were assessed in cardiomyocytes. Compared with the HG group, the viability of H9c2 cells was increased by RLX in a time- and dose-dependent manner, and was accompanied with a significant reduction in apoptosis. Furthermore, RLX significantly suppressed the formation of reactive oxygen species and malondialdehyde, and enhanced the activity of SOD. In addition, the levels of ANP, BNP, cytochrome C and caspase-3 were increased and Notch1, hes1 and MnSOD were inhibited in the HG group compared with those in the normal group. However, the Notch inhibitor DAPT almost abolished the protective effects of RLX. These results suggested that RLX protected cardiomyocytes from HG-induced hypertrophy and apoptosis partly through a Notch1-dependent pathway, which may be associated with reducing oxidative stress.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuan Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yin-Jiu Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jian-Ming Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing-Wen Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hua Xiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
16
|
Xiong FY, Tang ST, Su H, Tang HQ, Jiang P, Zhou Q, Wang Y, Zhu HQ. Melatonin ameliorates myocardial apoptosis by suppressing endoplasmic reticulum stress in rats with long‑term diabetic cardiomyopathy. Mol Med Rep 2017; 17:374-381. [PMID: 29115422 DOI: 10.3892/mmr.2017.7841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 08/24/2017] [Indexed: 11/05/2022] Open
Abstract
The effects of melatonin (MLT), which exerts cardioprotective effects against myocardial apoptosis, in long‑term diabetic cardiomyopathy are not currently well defined. The present study aimed to investigate how MLT protects the heart through modulating myocardial apoptosis in rats with type 2 diabetes mellitus (DM). In total, 36 rats were randomly divided into three groups, including control (n=12), DM (n=12) and DM + MLT (n=12) groups. The results demonstrated that, in DM rats, a significant increase was observed in the serum fasting blood glucose and lipid levels, in addition to insulin resistance and cardiac dysfunction, which were attenuated in DM rats treated with MLT. Additionally, cellular apoptosis in rats with DM was increased, and the expression of Bcl‑2 was downregulated, while levels of Bcl‑2‑associated X and caspase‑3 were upregulated, and these observations were reversed by MLT, as determined by TUNEL and western blot analysis, respectively. As increased endoplasmic reticulum (ER) stress induced by hyperglycemia is reported to be a factor for apoptosis, the present study also determined the expression of proteins associated with ER stress in cardiac tissues following MLT treatment by western blotting. The results further indicated that MLT decreased the expression of ER stress hallmarks, including CCAAT/enhancer‑binding protein homologous protein, glucose‑regulated protein 78, protein kinase RNA‑like endoplasmic reticulum kinase (PERK) and activating transcription factor 6α in cardiac tissues. In conclusion, the results of the present study indicate that MLT may protect heart by ameliorating cardiac ER stress‑induced apoptosis in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fang-Yuan Xiong
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Song-Tao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Su
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hai-Qin Tang
- Department of Geriatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Pin Jiang
- Department of Geriatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qing Zhou
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hua-Qing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
17
|
Feijóo-Bandín S, Aragón-Herrera A, Rodríguez-Penas D, Portolés M, Roselló-Lletí E, Rivera M, González-Juanatey JR, Lago F. Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives. Front Physiol 2017; 8:599. [PMID: 28868039 PMCID: PMC5563388 DOI: 10.3389/fphys.2017.00599] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Despite the great effort of the medical community during the last decades, cardiovascular diseases remain the leading cause of death worldwide, increasing their prevalence every year mainly due to our new way of life. In the last years, the study of new hormones implicated in the regulation of energy metabolism and inflammation has raised a great interest among the scientific community regarding their implications in the development of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin, a pleiotropic hormone that was previously suggested to improve acute heart failure and that participates in both metabolism and inflammation regulation at cardiovascular level, and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - Miguel Rivera
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
- Cardiocirculatory Unit, Health Research Institute of La Fe University HospitalValencia, Spain
| | - José R. González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and University Clinical HospitalSantiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades CardiovascularesMadrid, Spain
| |
Collapse
|
18
|
Samuel CS, Royce SG, Hewitson TD, Denton KM, Cooney TE, Bennett RG. Anti-fibrotic actions of relaxin. Br J Pharmacol 2017; 174:962-976. [PMID: 27250825 PMCID: PMC5406285 DOI: 10.1111/bph.13529] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022] Open
Abstract
Fibrosis refers to the hardening or scarring of tissues that usually results from aberrant wound healing in response to organ injury, and its manifestations in various organs have collectively been estimated to contribute to around 45-50% of deaths in the Western world. Despite this, there is currently no effective cure for the tissue structural and functional damage induced by fibrosis-related disorders. Relaxin meets several criteria of an effective anti-fibrotic based on its specific ability to inhibit pro-fibrotic cytokine and/or growth factor-mediated, but not normal/unstimulated, fibroblast proliferation, differentiation and matrix production. Furthermore, relaxin augments matrix degradation through its ability to up-regulate the release and activation of various matrix-degrading matrix metalloproteinases and/or being able to down-regulate tissue inhibitor of metalloproteinase activity. Relaxin can also indirectly suppress fibrosis through its other well-known (anti-inflammatory, antioxidant, anti-hypertrophic, anti-apoptotic, angiogenic, wound healing and vasodilator) properties. This review will outline the organ-specific and general anti-fibrotic significance of exogenously administered relaxin and its mechanisms of action that have been documented in various non-reproductive organs such as the cardiovascular system, kidney, lung, liver, skin and tendons. In addition, it will outline the influence of sex on relaxin's anti-fibrotic actions, highlighting its potential as an emerging anti-fibrotic therapeutic. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PharmacologyMonash UniversityMelbourneVic.Australia
| | - S G Royce
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PharmacologyMonash UniversityMelbourneVic.Australia
| | - T D Hewitson
- Department of NephrologyRoyal Melbourne HospitalMelbourneVic.Australia
| | - K M Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityMelbourneVic.Australia
| | - T E Cooney
- University of Pittsburgh Medical Centre (UPMC) HamotEriePAUSA
| | - R G Bennett
- Research Service 151VA Nebraska‐Western Iowa Health Care SystemOmahaNEUSA
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
19
|
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2016; 174:933-949. [PMID: 27239943 DOI: 10.1111/bph.13523] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
The insulin-like peptide relaxin, originally identified as a hormone of pregnancy, is now known to exert a range of pleiotropic effects including vasodilatory, anti-fibrotic, angiogenic, anti-apoptotic and anti-inflammatory effects in both males and females. Relaxin produces these effects by binding to a cognate receptor RXFP1 and activating a variety of signalling pathways including cAMP, cGMP and MAPKs as well as by altering gene expression of TGF-β, MMPs, angiogenic growth factors and endothelin receptors. The peptide has been shown to be effective in halting or reversing many of the adverse effects including fibrosis in animal models of cardiovascular disease including ischaemia/reperfusion injury, myocardial infarction, hypertensive heart disease and cardiomyopathy. Relaxin given to humans is safe and produces favourable haemodynamic changes. Serelaxin, the recombinant form of relaxin, is now in extended phase III clinical trials for the treatment of acute heart failure. Previous clinical studies indicated that a 48 h infusion of relaxin improved 180 day mortality, yet the mechanism underlying this effect is not clear. This article provides an overview of the cellular mechanism of effects of relaxin and summarizes its beneficial actions in animal models and in the clinic. We also hypothesize potential mechanisms for the clinical efficacy of relaxin, identify current knowledge gaps and suggest new ways in which relaxin could be useful therapeutically. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Mohsin Sarwar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thomas B Dschietzig
- Immundiagnostik AG, Bensheim, Germany.,Campus Mitte, Medical Clinic for Cardiology and Angiology, Charité-University Medicine Berlin, Berlin, Germany.,Relaxera Pharmazeutische Gesellschaft mbH & Co. KG, Bensheim, Germany
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| |
Collapse
|
20
|
Díez J, Ruilope LM. Serelaxin for the treatment of acute heart failure: a review with a focus on end-organ protection. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:119-30. [PMID: 27418970 PMCID: PMC4853824 DOI: 10.1093/ehjcvp/pvv046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
Acute heart failure (AHF) is a complex clinical syndrome characterized by fluid overload and haemodynamic abnormalities (short-term clinical consequences) and the development of end-organ damage (long-term consequences). Current therapies for the treatment of AHF, such as loop diuretics and vasodilators, help to relieve haemodynamic imbalance and congestion, but have not been shown to prevent (and may even contribute to) end-organ damage, or to provide long-term clinical benefit. Serelaxin is the recombinant form of human relaxin-2, a naturally occurring hormone involved in mediating haemodynamic changes during pregnancy. Preclinical and clinical studies have investigated the effects mediated by serelaxin and the suitability of this agent for the treatment of patients with AHF. Data suggest that serelaxin acts via multiple pathways to improve haemodynamics at the vascular, cardiac, and renal level and provide effective congestion relief. In addition, this novel agent may protect the heart, kidneys, and liver from damage by inhibiting inflammation, oxidative stress, cell death, and tissue fibrosis, and stimulating angiogenesis. Serelaxin may therefore improve both short- and long-term outcomes in patients with AHF. In this review, we examine the unique mechanisms underlying the potential benefits of serelaxin for the treatment of AHF, in particular, those involved in mediating end-organ protection.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research and Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Av. Pío XII 55, Pamplona 31008, Spain
| | - Luis M Ruilope
- Research Institute, Hypertension Unit, Hospital 12 de Octubre and Department of Public Health and Preventive Medicine, University Autónoma, Madrid, Spain
| |
Collapse
|
21
|
Raleigh JMV, Toldo S, Das A, Abbate A, Salloum FN. Relaxin' the Heart: A Novel Therapeutic Modality. J Cardiovasc Pharmacol Ther 2015; 21:353-62. [PMID: 26589290 DOI: 10.1177/1074248415617851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/22/2015] [Indexed: 12/20/2022]
Abstract
The peptide hormone relaxin has traditionally been linked to the maternal adaptation of the cardiovascular system during the first trimester of pregnancy. By promoting nitric oxide formation through different molecular signaling events, relaxin has been proposed as a pleiotropic and cardioprotective hormone in the setting of many cardiovascular diseases. In fact, preclinical studies were able to demonstrate that relaxin promotes vasodilatation and angiogenesis, ameliorates ischemia/reperfusion injury, and regulates extracellular matrix turnover and remodeling. In the RELAX-AHF phase 3 clinical trial, serelaxin (recombinant human relaxin) was shown to be safe, and it exerted survival benefits in patients with acute heart failure. RELAX-AHF-2 is currently ongoing, and it aims to address a larger population and evaluate harder clinical outcomes. Besides heart failure, acute myocardial infarction, peripheral arterial disease, and stable coronary disease could be target diseases for treatment with serelaxin in future clinical trials.
Collapse
Affiliation(s)
- Juan M Valle Raleigh
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefano Toldo
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|