1
|
Jadhav P, Roy S, Butzin XY, Butzin NC. Engineering a New SsrA-Based Degradation Tag (LAA-LAA) and a Bacterial Synthetic Oscillator. ACS Synth Biol 2025; 14:1062-1071. [PMID: 40106229 PMCID: PMC12013620 DOI: 10.1021/acssynbio.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
The ATP-dependent ClpXP-SspB protease complex is responsible for the degradation of intracellular proteins and is maintained at low levels in Escherichia coli to avoid nonspecific degradation. The rate-limiting step in the protease complex leads to proteolytic queueing, where the proteins form waiting lines, and their overall degradation rate is slowed. Synthetic biologists have leveraged proteolytic queueing to design robust synthetic circuits by tagging proteins with the SsrA tag, an 11-amino acid sequence recognized by the complex. Previous work has demonstrated the binding site of each component of the ClpXP-SspB complex to the SsrA tag. However, the precise component responsible for queueing was unknown. To identify the bottleneck in the complex, we designed different SsrA tag variants depending on the chaperone binding sequences. We further overexpressed each protein in the ClpXP-SspB complex in vivo to determine how an increased amount of each component affects the tagged protein levels. Based on the degradation of the SsrA variants, upon overexpression of each component of the ClpXP-SspB system, evidence supports that ClpX (the ATP-dependent chaperone) is responsible for queueing but not ClpP (the protease) or SspB (the adapter, ATP-independent chaperone). In the process, we identified LAA-LAA, a 6-amino acid ClpX-dependent tag that degraded in vivo faster than the original SsrA tag, AANDENYALAA. We speculated that this high degradation tag could be useful in a dynamic-synthetic circuit, so we modified the well-characterized dual-feedback oscillator by replacing its original SsrA tag with the LAA-LAA tag to form the LAA-LAA-Osc oscillator. Both population and single-cell level experiments show that the new and old oscillators have distinct frequencies. Like the original oscillator, thousands of cells containing the new oscillator could be synchronized by entrainment using an external signal. Thus, the new LAA-LAA-Osc oscillator retains the original oscillator's best characteristics (robustness to fluctuations, a steady oscillation period, and entrainment across 1000s of cells to an external signal) but oscillates at a different frequency.
Collapse
Affiliation(s)
| | | | - Xuan Yi Butzin
- Department of Biology and
Microbiology, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Nicholas C. Butzin
- Department of Biology and
Microbiology, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
2
|
Michael N, Huang BY, Ray KK, Kinz-Thompson CD, Gonzalez RL. A cascade of structural rearrangements positions peptide release factor II for polypeptide hydrolysis on the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642146. [PMID: 40161701 PMCID: PMC11952352 DOI: 10.1101/2025.03.09.642146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Peptide release factor II (RF2) catalyzes the release of the nascent polypeptide from the bacterial ribosomal complex during translation termination and a subset of ribosome rescue pathways. Despite its critical role, the mechanisms that govern RF2 function and regulation remain elusive. Here, using single-molecule fluorescence energy transfer (smFRET), we characterize the conformational landscape that RF2 explores on the ribosomal complex and show that RF2 binding and dissociation from the ribosome follows a series of conformational rearrangements which depend on its ribosomal binding platform. We also show how further interactions with the ribosomal complex are necessary to properly position RF2 for polypeptide release. This work investigates not only the dynamics RF2 undergoes while in complex with the ribosome, but also identifies a potential mechanism by which the regulation of these dynamics may be disrupted, which may be exploited for future development of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Nina Michael
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Bridget Y. Huang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Current address: MRC Laboratory of Medical Sciences, London, UK
| | - Colin D. Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Current address: Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
3
|
Mikami M, Shimizu H, Iwama N, Yajima M, Kuwasako K, Ogura Y, Himeno H, Kurita D, Nameki N. Stalled ribosome rescue factors exert different roles depending on types of antibiotics in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:22. [PMID: 39843510 PMCID: PMC11721466 DOI: 10.1038/s44259-024-00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/08/2024] [Indexed: 01/24/2025]
Abstract
Escherichia coli possesses three stalled-ribosome rescue factors, tmRNA·SmpB (primary factor), ArfA (alternative factor to tmRNA·SmpB), and ArfB. Here, we examined the susceptibility of rescue factor-deficient strains from E. coli SE15 to various ribosome-targeting antibiotics. Aminoglycosides specifically decreased the growth of the ΔssrA (tmRNA gene) strain, in which the levels of reactive oxygen species were elevated. The decrease in growth of ΔssrA could not be complemented by plasmid-borne expression of arfA, arfB, or ssrAAA to DD mutant gene possessing a proteolysis-resistant tag sequence. These results highlight the significance of tmRNA·SmpB-mediated proteolysis during growth under aminoglycoside stress. In contrast, tetracyclines or amphenicols decreased the growth of the ΔarfA strain despite the presence of tmRNA·SmpB. Quantitative RT-PCR revealed that tetracyclines and amphenicols, but not aminoglycosides, considerably induced mRNA expression of arfA. These findings indicate that tmRNA·SmpB, and ArfA exert differing functions during stalled-ribosome rescue depending on the type of ribosome-targeting antibiotic.
Collapse
Affiliation(s)
- Mayu Mikami
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Hidehiko Shimizu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Norika Iwama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Mihono Yajima
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan
| | - Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma, 376-8515, Japan.
| |
Collapse
|
4
|
Abstract
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues.
Collapse
Affiliation(s)
- Prajakta Jadhav
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yanyan Chen
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Javier Buceta
- Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| | - Arantxa Urchueguía
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.,Institute for Integrative Systems Biology (I2SysBio, CSIC-UV), Paterna, Valencia 46980, Spain
| |
Collapse
|
5
|
Liu P, Chang H, Xu Q, Wang D, Tang Y, Hu X, Lin M, Liu Z. Peptide Aptamer PA3 Attenuates the Viability of Aeromonas veronii by Hindering of Small Protein B-Outer Membrane Protein A Signal Pathway. Front Microbiol 2022; 13:900234. [PMID: 35663889 PMCID: PMC9159911 DOI: 10.3389/fmicb.2022.900234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
The small protein B (SmpB), previously acting as a ribosome rescue factor for translation quality control, is required for cell viability in bacteria. Here, our study reveals that SmpB possesses new function which regulates the expression of outer membrane protein A (ompA) gene as a transcription factor in Aeromonas veronii. The deletion of SmpB caused the lower transcription expression of ompA by Quantitative Real-Time PCR (qPCR). Electrophoretic mobility shift assay (EMSA) and DNase I Footprinting verified that the SmpB bound at the regions of −46 to −28 bp, −18 to +4 bp, +21 to +31 bp, and +48 to +59 bp of the predicted ompA promoter (PompA). The key sites C52AT was further identified to interact with SmpB when PompA was fused with enhanced green fluorescent protein (EGFP) and co-transformed with SmpB expression vector for the fluorescence detection, and the result was further confirmed in microscale thermophoresis (MST) assays. Besides, the amino acid sites G11S, F26I, and K152 in SmpB were the key sites for binding to PompA. In order to further develop peptide antimicrobial agents, the peptide aptamer PA3 was screened from the peptide aptamer (PA) library by bacterial two-hybrid method. The drug sensitivity test showed that PA3 effectively inhibited the growth of A. veronii. In summary, these results demonstrated that OmpA was a good drug target for A. veronii, which was regulated by the SmpB protein and the selected peptide aptamer PA3 interacted with OmpA protein to disable SmpB-OmpA signal pathway and inhibited A. veronii, suggesting that it could be used as an antimicrobial agent for the prevention and treatment of pathogens.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Hainan University, Haikou, China
- Center for Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Huimin Chang
- School of Life Sciences, Hainan University, Haikou, China
| | - Qi Xu
- School of Life Sciences, Hainan University, Haikou, China
| | - Dan Wang
- School of Life Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Xinwen Hu
- School of Life Sciences, Hainan University, Haikou, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
- *Correspondence: Zhu Liu,
| |
Collapse
|
6
|
Thépaut M, Campos-Silva R, Renard E, Barloy-Hubler F, Ennifar E, Boujard D, Gillet R. Safe and easy in vitro evaluation of tmRNA-SmpB-mediated trans-translation from ESKAPE pathogenic bacteria. RNA (NEW YORK, N.Y.) 2021; 27:1390-1399. [PMID: 34353925 PMCID: PMC8522692 DOI: 10.1261/rna.078773.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In bacteria, trans-translation is the major quality control system for rescuing stalled ribosomes. It is mediated by tmRNA, a hybrid RNA with properties of both a tRNA and a mRNA, and the small protein SmpB. Because trans-translation is absent in eukaryotes but necessary for bacterial fitness or survival, it is a promising target for the development of novel antibiotics. To facilitate screening of chemical libraries, various reliable in vitro and in vivo systems have been created for assessing trans-translational activity. However, the aim of the current work was to permit the safe and easy in vitro evaluation of trans-translation from pathogenic bacteria, which are obviously the ones we should be targeting. Based on green fluorescent protein (GFP) reassembly during active trans-translation, we have created a cell-free assay adapted to the rapid evaluation of trans-translation in ESKAPE bacteria, with 24 different possible combinations. It can be used for easy high-throughput screening of chemical compounds as well as for exploring the mechanism of trans-translation in these pathogens.
Collapse
Affiliation(s)
- Marion Thépaut
- Université Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, 35043 Rennes, France
- SATT Ouest-Valorisation, 35750 Rennes, France
| | - Rodrigo Campos-Silva
- Université Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, 35043 Rennes, France
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Eva Renard
- Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084 Strasbourg, France
| | - Frédérique Barloy-Hubler
- Université Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, 35043 Rennes, France
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084 Strasbourg, France
| | - Daniel Boujard
- Université Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, 35043 Rennes, France
| | - Reynald Gillet
- Université Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, 35043 Rennes, France
| |
Collapse
|
7
|
Abstract
Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
8
|
Ren H, Zhang J, Zhou J, Xu C, Fan Z, Pan X, Li S, Liang Y, Chen S, Xu J, Wang P, Zhang Y, Zhu G, Liu H, Jin Y, Bai F, Cheng Z, Pletzer D, Wu W. Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae. J Antibiot (Tokyo) 2021; 74:528-537. [PMID: 34050325 DOI: 10.1038/s41429-021-00427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Trans-translation is a unique bacterial ribosome rescue system that plays important roles in the tolerance to environmental stresses. It is composed of an ssrA-encoded tmRNA and a protein SmpB. In this study, we examined the role of trans-translation in antibiotic tolerance in Klebsiella pneumoniae and explored whether the inhibition of this mechanism could enhance the bactericidal activities of antibiotics. We found that deletion of the ssrA gene reduced the survival of K. pneumoniae after treatment with kanamycin, tobramycin, azithromycin, and ciprofloxacin, indicating an important role of the trans-translation in bacterial antibiotic tolerance. By using a modified ssrA gene with a 6×His tag we demonstrated that tobramycin suppressed the azithromycin and ciprofloxacin-elicited activation of trans-translation. The results were further confirmed with a trans-translation reporter system that is composed of a normal mCherry gene and a gfp gene without the stop codon. Compared to each individual antibiotic, combination of tobramycin with azithromycin or ciprofloxacin synergistically enhanced the killing activities against planktonic K. pneumoniae cells and improved bacterial clearance in a murine cutaneous abscess infection model. In addition, the combination of tobramycin and ciprofloxacin increased the bactericidal activities against biofilm-associated cells. Overall, our results suggest that the combination of tobramycin with azithromycin or ciprofloxacin is a promising strategy in combating K. pneumoniae infections.
Collapse
Affiliation(s)
- Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingyi Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuying Liang
- Department of laboratory medicine, 5th medical center of PLA general hospital, Beijing, 100071, China
| | - Shuiping Chen
- Department of laboratory medicine, 5th medical center of PLA general hospital, Beijing, 100071, China
| | - Jun Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital & Chu Hsien-I Memorial Hospital, Tianjin, 300070, China
| | - Penghua Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Diabetic foot Department, Tianjin Medical University Metabolic Disease Hospital & Chu Hsien-I Memorial Hospital, Tianjin, 300070, China
| | - Yanhong Zhang
- Nankai University Affiliated Hospital (Tianjin Forth Hospital), Tianjin, 300222, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Zarechenskaia AS, Sergiev PV, Osterman IA. Quality Control Mechanisms in Bacterial Translation. Acta Naturae 2021; 13:32-44. [PMID: 34377554 PMCID: PMC8327144 DOI: 10.32607/actanaturae.11401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ribosome stalling during translation significantly reduces cell viability, because cells have to spend resources on the synthesis of new ribosomes. Therefore, all bacteria have developed various mechanisms of ribosome rescue. Usually, the release of ribosomes is preceded by hydrolysis of the tRNA-peptide bond, but, in some cases, the ribosome can continue translation thanks to the activity of certain factors. This review describes the mechanisms of ribosome rescue thanks to trans-translation and the activity of the ArfA, ArfB, BrfA, ArfT, HflX, and RqcP/H factors, as well as continuation of translation via the action of EF-P, EF-4, and EttA. Despite the ability of some systems to duplicate each other, most of them have their unique functional role, related to the quality control of bacterial translation in certain abnormalities caused by mutations, stress cultivation conditions, or antibiotics.
Collapse
Affiliation(s)
- A. S. Zarechenskaia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Moscow, 119992 Russia
| | - P. V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Institute of functional genomics, Moscow, 119992 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
| | - I. A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119992 Russia
- Sirius University of Science and Technology, Genetics and Life Sciences Research Center, Sochi, 354340 Russia
| |
Collapse
|
10
|
Hoshino S, Kanemura R, Kurita D, Soutome Y, Himeno H, Takaine M, Watanabe M, Nameki N. A stalled-ribosome rescue factor Pth3 is required for mitochondrial translation against antibiotics in Saccharomyces cerevisiae. Commun Biol 2021; 4:300. [PMID: 33686140 PMCID: PMC7940416 DOI: 10.1038/s42003-021-01835-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial translation appears to involve two stalled-ribosome rescue factors (srRFs). One srRF is an ICT1 protein from humans that rescues a "non-stop" type of mitochondrial ribosomes (mitoribosomes) stalled on mRNA lacking a stop codon, while the other, C12orf65, reportedly has functions that overlap with those of ICT1; however, its primary role remains unclear. We herein demonstrated that the Saccharomyces cerevisiae homolog of C12orf65, Pth3 (Rso55), preferentially rescued antibiotic-dependent stalled mitoribosomes, which appear to represent a "no-go" type of ribosomes stalled on intact mRNA. On media containing a non-fermentable carbon source, which requires mitochondrial gene expression, respiratory growth was impaired significantly more by the deletion of PTH3 than that of the ICT1 homolog PTH4 in the presence of antibiotics that inhibit mitochondrial translation, such as tetracyclines and macrolides. Additionally, the in organello labeling of mitochondrial translation products and quantification of mRNA levels by quantitative RT-PCR suggested that in the presence of tetracycline, the deletion of PTH3, but not PTH4, reduced the protein expression of all eight mtDNA-encoded genes at the post-transcriptional or translational level. These results indicate that Pth3 can function as a mitochondrial srRF specific for ribosomes stalled by antibiotics and plays a role in antibiotic resistance in fungi.
Collapse
Affiliation(s)
- Soichiro Hoshino
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Ryohei Kanemura
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Yukihiro Soutome
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Masak Takaine
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan.
| |
Collapse
|
11
|
Ul Haq I, Müller P, Brantl S. Intermolecular Communication in Bacillus subtilis: RNA-RNA, RNA-Protein and Small Protein-Protein Interactions. Front Mol Biosci 2020; 7:178. [PMID: 32850966 PMCID: PMC7430163 DOI: 10.3389/fmolb.2020.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
In bacterial cells we find a variety of interacting macromolecules, among them RNAs and proteins. Not only small regulatory RNAs (sRNAs), but also small proteins have been increasingly recognized as regulators of bacterial gene expression. An average bacterial genome encodes between 200 and 300 sRNAs, but an unknown number of small proteins. sRNAs can be cis- or trans-encoded. Whereas cis-encoded sRNAs interact only with their single completely complementary mRNA target transcribed from the opposite DNA strand, trans-encoded sRNAs are only partially complementary to their numerous mRNA targets, resulting in huge regulatory networks. In addition to sRNAs, uncharged tRNAs can interact with mRNAs in T-box attenuation mechanisms. For a number of sRNA-mRNA interactions, the stability of sRNAs or translatability of mRNAs, RNA chaperones are required. In Gram-negative bacteria, the well-studied abundant RNA-chaperone Hfq fulfils this role, and recently another chaperone, ProQ, has been discovered and analyzed in this respect. By contrast, evidence for RNA chaperones or their role in Gram-positive bacteria is still scarce, but CsrA might be such a candidate. Other RNA-protein interactions involve tmRNA/SmpB, 6S RNA/RNA polymerase, the dual-function aconitase and protein-bound transcriptional terminators and antiterminators. Furthermore, small proteins, often missed in genome annotations and long ignored as potential regulators, can interact with individual regulatory proteins, large protein complexes, RNA or the membrane. Here, we review recent advances on biological role and regulatory principles of the currently known sRNA-mRNA interactions, sRNA-protein interactions and small protein-protein interactions in the Gram-positive model organism Bacillus subtilis. We do not discuss RNases, ribosomal proteins, RNA helicases or riboswitches.
Collapse
Affiliation(s)
| | | | - Sabine Brantl
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
12
|
Kurita D, Abo T, Himeno H. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue. J Biol Chem 2020; 295:13326-13337. [PMID: 32727848 DOI: 10.1074/jbc.ra120.014664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Translation termination in bacteria requires that the stop codon be recognized by release factor RF1 or RF2, leading to hydrolysis of the ester bond between the peptide and tRNA on the ribosome. As a consequence, normal termination cannot proceed if the translated mRNA lacks a stop codon. In Escherichia coli, the ribosome rescue factor ArfA releases the nascent polypeptide from the stalled ribosome with the help of RF2 in a stop codon-independent manner. Interestingly, the reaction does not proceed if RF1 is instead provided, even though the structures of RF1 and RF2 are very similar. Here, we identified the regions of RF2 required for the ArfA-dependent ribosome rescue system. Introduction of hydrophobic residues from RF2 found at the interface between RF2 and ArfA into RF1 allowed RF1 to associate with the ArfA-ribosome complex to a certain extent but failed to promote peptidyl-tRNA hydrolysis, whereas WT RF1 did not associate with the complex. We also identified the key residues required for the process after ribosome binding. Our findings provide a basis for understanding how the ArfA-ribosome complex is specifically recognized by RF2 and how RF2 undergoes a conformational change upon binding to the ArfA-ribosome complex.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| |
Collapse
|
13
|
Nagao M, Tsuchiya F, Motohashi R, Abo T. Ribosome rescue activity of an Arabidopsis thaliana ArfB homolog. Genes Genet Syst 2020; 95:119-131. [PMID: 32611934 DOI: 10.1266/ggs.20-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A homolog of the bacterial ribosome rescue factor ArfB was identified in Arabidopsis thaliana. The factor, named AtArfB for Arabidopsis thaliana ArfB, showed ribosome rescue activity in both in vivo and in vitro assays based on the bacterial translation system. As has been shown for ArfB, the ribosome rescue activity of AtArfB was dependent on the GGQ motif, the crucial motif for the function of class I release factors and ArfB. The C-terminal region of AtArfB was also important for its function. The N-terminal region of AtArfB, which is absent in bacterial ArfB, functioned as a transit peptide for chloroplast targeting in tobacco cells. These results strongly suggest that AtArfB is a ribosome rescue factor that functions in chloroplasts.
Collapse
Affiliation(s)
- Michiaki Nagao
- Graduate School of Natural Science and Technology, Okayama University
| | - Fumina Tsuchiya
- Graduate School of Integrated Science and Technology, Shizuoka University
| | - Reiko Motohashi
- Graduate School of Integrated Science and Technology, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| | - Tatsuhiko Abo
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
14
|
Peng M, Cao X, Tang Y, Li H, Ma X, Liu Z. Large-scale identification of trans-translation substrates targeted by tmRNA in Aeromonas veronii. Microb Pathog 2020; 145:104226. [PMID: 32353577 DOI: 10.1016/j.micpath.2020.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Transfer-messenger RNA (tmRNA) is ubiquitous in bacteria, acting as the core component for the trans-translation system that contributes to label the aberrantly synthesized peptides for degradation and to release the stalled ribosomes. Deletion of tmRNA causes a variety of phenotypes related to important physiological processes in bacteria. To illustrate the molecular mechanism of the versatility of tmRNA in aquatic pathogen Aeromonas veronii, we mutated the C-terminal nucleotides of tmRNA (MutmRNA) for encoding a tag containing six histidine residues (His6tag), so as to capture and enrich the trans-translation substrates from the cell lysates through a Ni2+-NTA affinity chromatograph. The results showed that the concentrated substrates were detected as distinct and specific bands in western blotting using anti-His antibody, demonstrating that specific defective mRNAs were frequently and intensively rescued by trans-translation during the translation process in A. veronii. The substrates were analyzed by LC-MS/MS and further identified by searching a theoretically constructed database specific for A. veronii. Total of 24 potential substrates were identified, with various functions involved in metabolism, as well as structure and signal-based cellular events. Among the identified substrates, PspA and AsmA were labeled by Flag, and expressed in the presence of the modified trans-translation system in E. coli. Their labelings with MutmRNA were validated by purification through Ni2+-NTA column followed by western blotting using anti-Flag antibody. This study provided the most abundant set of endogenous targets for tmRNA in A. veronii, and facilitated further investigations about the molecular mechanism and signal pathway of tmRNA-mediated trans-translation.
Collapse
Affiliation(s)
- Muzhi Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Xin Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 570228, Haikou, China.
| |
Collapse
|
15
|
Inada T. Quality controls induced by aberrant translation. Nucleic Acids Res 2020; 48:1084-1096. [PMID: 31950154 PMCID: PMC7026593 DOI: 10.1093/nar/gkz1201] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022] Open
Abstract
During protein synthesis, translating ribosomes encounter many challenges imposed by various types of defective mRNAs that can lead to reduced cellular fitness and, in some cases, even threaten cell viability. Aberrant translation leads to activation of one of several quality control pathways depending on the nature of the problem. These pathways promote the degradation of the problematic mRNA as well as the incomplete translation product, the nascent polypeptide chain. Many of these quality control systems feature critical roles for specialized regulatory factors that work in concert with conventional factors. This review focuses on the mechanisms used by these quality control pathways to recognize aberrant ribosome stalling and discusses the conservation of these systems.
Collapse
Affiliation(s)
- Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
16
|
Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nat Commun 2019; 10:5397. [PMID: 31776341 PMCID: PMC6881298 DOI: 10.1038/s41467-019-13408-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Rescue of the ribosomes from dead-end translation complexes, such as those on truncated (non-stop) mRNA, is essential for the cell. Whereas bacteria use trans-translation for ribosome rescue, some Gram-negative species possess alternative and release factor (RF)-dependent rescue factors, which enable an RF to catalyze stop-codon-independent polypeptide release. We now discover that the Gram-positive Bacillus subtilis has an evolutionarily distinct ribosome rescue factor named BrfA. Genetic analysis shows that B. subtilis requires the function of either trans-translation or BrfA for growth, even in the absence of proteotoxic stresses. Biochemical and cryo-electron microscopy (cryo-EM) characterization demonstrates that BrfA binds to non-stop stalled ribosomes, recruits homologous RF2, but not RF1, and induces its transition into an open active conformation. Although BrfA is distinct from E. coli ArfA, they use convergent strategies in terms of mode of action and expression regulation, indicating that many bacteria may have evolved as yet unidentified ribosome rescue systems. In bacteria, the conserved trans-translation system serves as the primary pathway of ribosome rescue, but many species can also use alternative rescue pathways. Here the authors report that in B. subtilis, the rescue factor BrfA binds to non-stop stalled ribosomes, recruits RF2 but not RF1, and induces transition of the ribosome into an open active conformation.
Collapse
|
17
|
Liu X, Tang K, Zhang D, Li Y, Liu Z, Yao J, Wood TK, Wang X. Symbiosis of a P2‐family phage and deep‐sea
Shewanella putrefaciens. Environ Microbiol 2019; 21:4212-4232. [DOI: 10.1111/1462-2920.14781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Dali Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention Guangdong Provincial Institute of Public Health Guangzhou 511430 China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Thomas K. Wood
- Department of Chemical Engineering Pennsylvania State University University Park PA 16802‐4400 USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Yang J, Hong J, Luo L, Liu K, Meng C, Ji ZL, Lin D. Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:139-149. [PMID: 30615070 DOI: 10.1093/abbs/gmy164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the key devastating bacterial pathogen responsible for tuberculosis. Increasing emergence of multi-drug-resistant, extensively drug-resistant, and rifampicin/isoniazid-resistant strains of Mtb makes the discovery of validated drug targets an urgent priority. As a vital translational component of the protein biosynthesis system, elongation factor Tu (EF-Tu) is an important molecular switch responsible for selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. In addition, EF-Tu from Mtb (MtbEF-Tu) is involved in the initial step of trans-translation which is an effective system for rescuing the stalled ribosomes from non-stop translation complexes under stress conditions. Given its crucial role in protein biosynthesis, EF-Tu is identified as an excellent molecular target for drug design. Here, we reported the recombinant expression, purification, biophysical characterization, and structural modeling of the MtbEF-Tu protein. Our results demonstrated that prokaryotic expression plasmids of pET28a-MtbEF-Tu could be expressed efficiently in Escherichia coli. We successfully purified the 6× His-tagged proteins with a yield of 16.8 mg from 1 l of Luria Bertani medium. Dynamic light scattering experiments showed that MtbEF-Tu existed in a monomeric form, and circular dichroism experiments indicated that MtbEF-Tu was well structured. Moreover, isothermal titration calorimetry experiments displayed that the purified MtbEF-Tu protein possessed intermediate binding affinities for guanosine-5'-triphosphate (GTP) and GDP. The GTP/GDP-binding sites were predicted by flexible molecular docking approach which reveals that GTP/GDP binds to MtbEF-Tu mainly through hydrogen bonds. Our work lays the essential basis for further structural and functional studies of MtbEF-Tu as well as MtbEF-Tu-related novel drug developments.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Jing Hong
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ling Luo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ke Liu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Zhi-liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Donghai Lin
- High-Field NMR Center, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Wada M, Ito K. Misdecoding of rare CGA codon by translation termination factors, eRF1/eRF3, suggests novel class of ribosome rescue pathway in S. cerevisiae. FEBS J 2019; 286:788-802. [PMID: 30471181 PMCID: PMC7379694 DOI: 10.1111/febs.14709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
The CGA arginine codon is a rare codon in Saccharomyces cerevisiae. Thus, full-length mature protein synthesis from reporter genes with internal CGA codon repeats are markedly reduced, and the reporters, instead, produce short-sized polypeptides via an unknown mechanism. Considering the product size and similar properties between CGA sense and UGA stop codons, we hypothesized that eukaryote polypeptide-chain release factor complex eRF1/eRF3 catalyses polypeptide release at CGA repeats. Herein, we performed a series of analyses and report that the CGA codon can be, to a certain extent, decoded as a stop codon in yeast. This also raises an intriguing possibility that translation termination factors eRF1/eRF3 rescue ribosomes stalled at CGA codons, releasing premature polypeptides, and competing with canonical tRNAICG to the CGA codon. Our results suggest an alternative ribosomal rescue pathway in eukaryotes. The present results suggest that misdecoding of low efficient codons may play a novel role in global translation regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Miki Wada
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
- Technical officeThe Institute of Medical ScienceThe University of TokyoMinato‐kuJapan
| | - Koichi Ito
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwa‐cityJapan
| |
Collapse
|
20
|
Expression, purification and characterization of the full-length SmpB protein from Mycobacterium tuberculosis. Protein Expr Purif 2018; 151:9-17. [DOI: 10.1016/j.pep.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
|
21
|
Peng S, Sun R, Wang W, Chen C. Single-molecule FRET studies on interactions between elongation factor 4 (LepA) and ribosomes. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Condon C, Piton J, Braun F. Distribution of the ribosome associated endonuclease Rae1 and the potential role of conserved amino acids in codon recognition. RNA Biol 2018; 15:683-688. [PMID: 29557713 DOI: 10.1080/15476286.2018.1454250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We recently identified a novel ribonuclease in Bacillus subtilis called Rae1 that cleaves mRNAs in a translation-dependent manner. Rae1 is a member of the NYN/PIN family of ribonucleases and is highly conserved in the Firmicutes, the Cyanobacteria and the chloroplasts of photosynthetic algae and plants. We have proposed a model in which Rae1 enters the A-site of ribosomes that are paused following translation of certain sequences that are still ill-defined. In the only case identified thus far, Rae1 cleaves between a conserved glutamate and lysine codon during translation of a short peptide called S1025. Certain other codons are also tolerated on either side of the cleavage site, but these are recognized less efficiently. The model of Rae1 docked in the A-site allows us to make predictions about which conserved residues may be important for recognition of mRNA, the tRNA in the adjacent P-site and binding to the 50S ribosome subunit.
Collapse
Affiliation(s)
- Ciarán Condon
- a UMR 8261 (CNRS - Univ. Paris Diderot), Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, Paris , France
| | | | - Frédérique Braun
- a UMR 8261 (CNRS - Univ. Paris Diderot), Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, Paris , France
| |
Collapse
|
23
|
KKL-35 Exhibits Potent Antibiotic Activity against Legionella Species Independently of trans-Translation Inhibition. Antimicrob Agents Chemother 2018; 62:AAC.01459-17. [PMID: 29158279 PMCID: PMC5786812 DOI: 10.1128/aac.01459-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/04/2017] [Indexed: 11/20/2022] Open
Abstract
trans-Translation is a ribosome-rescue system that is ubiquitous in bacteria. Small molecules defining a new family of oxadiazole compounds that inhibit trans-translation have been found to have broad-spectrum antibiotic activity. We sought to determine the activity of KKL-35, a potent member of the oxadiazole family, against the human pathogen Legionella pneumophila and other related species that can also cause Legionnaires' disease (LD). Consistent with the essential nature of trans-translation in L. pneumophila, KKL-35 inhibited the growth of all tested strains at submicromolar concentrations. KKL-35 was also active against other LD-causing Legionella species. KKL-35 remained equally active against L. pneumophila mutants that have evolved resistance to macrolides. KKL-35 inhibited the multiplication of L. pneumophila in human macrophages at several stages of infection. No resistant mutants could be obtained, even during extended and chronic exposure. Surprisingly, KKL-35 was not synergistic with other ribosome-targeting antibiotics and did not induce the filamentation phenotype observed in cells defective for trans-translation. Importantly, KKL-35 remained active against L. pneumophila mutants expressing an alternate ribosome-rescue system and lacking transfer-messenger RNA, the essential component of trans-translation. These results indicate that the antibiotic activity of KKL-35 is not related to the specific inhibition of trans-translation and its mode of action remains to be identified. In conclusion, KKL-35 is an effective antibacterial agent against the intracellular pathogen L. pneumophila with no detectable resistance development. However, further studies are needed to better understand its mechanism of action and to assess further the potential of oxadiazoles in treatment.
Collapse
|
24
|
Butzin NC, Mather WH. Crosstalk between Diverse Synthetic Protein Degradation Tags in Escherichia coli. ACS Synth Biol 2018; 7:54-62. [PMID: 29193958 DOI: 10.1021/acssynbio.7b00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a synthetic circuit in E. coli demonstrated that two proteins engineered with LAA tags targeted to the native protease ClpXP are susceptible to crosstalk due to competition for degradation between proteins. To understand proteolytic crosstalk beyond the single protease regime, we investigated in E. coli a set of synthetic circuits designed to probe the dynamics of existing and novel degradation tags fused to fluorescent proteins. These circuits were tested using both microplate reader and single-cell assays. We first quantified the degradation rates of each tag in isolation. We then tested if there was crosstalk between two distinguishable fluorescent proteins engineered with identical or different degradation tags. We demonstrated that proteolytic crosstalk was indeed not limited to the LAA degradation tag, but was also apparent between other diverse tags, supporting the complexity of the E. coli protein degradation system.
Collapse
Affiliation(s)
- Nicholas C. Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007, United States
| | - William H. Mather
- Quantitative Biosciences, Inc., Solana Beach, California 92075, United States
| |
Collapse
|
25
|
Alumasa JN, Manzanillo PS, Peterson ND, Lundrigan T, Baughn AD, Cox JS, Keiler KC. Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister Mycobacterium tuberculosis Cells. ACS Infect Dis 2017; 3:634-644. [PMID: 28762275 PMCID: PMC5594445 DOI: 10.1021/acsinfecdis.7b00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The
emergence of Mycobacterium tuberculosis (MTB) strains
that are resistant to most or all available antibiotics has created
a severe problem for treating tuberculosis and has spurred a quest
for new antibiotic targets. Here, we demonstrate that trans-translation is essential for growth of MTB and is a viable target
for development of antituberculosis drugs. We also show that an inhibitor
of trans-translation, KKL-35, is bactericidal against
MTB under both aerobic and anoxic conditions. Biochemical experiments
show that this compound targets helix 89 of the 23S rRNA. In silico molecular docking predicts a binding pocket for
KKL-35 adjacent to the peptidyl-transfer center in a region not targeted
by conventional antibiotics. Computational solvent mapping suggests
that this pocket is a druggable hot spot for small molecule binding.
Collectively, our findings reveal a new target for antituberculosis
drug development and provide critical insight on the mechanism of
antibacterial action for KKL-35 and related 1,3,4-oxadiazole benzamides.
Collapse
Affiliation(s)
- John N. Alumasa
- Department of Biochemistry
and Molecular Biology, The Pennsylvania State University, 401 Althouse Laboratory, University Park, Pennsylvania 16802, United States
| | - Paolo S. Manzanillo
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Nicholas D. Peterson
- Department of Microbiology and Immunology,
Microbiology Research Facility, University of Minnesota, Rm4-115, 689 23rd Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Tricia Lundrigan
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Anthony D. Baughn
- Department of Microbiology and Immunology,
Microbiology Research Facility, University of Minnesota, Rm4-115, 689 23rd Ave. SE, Minneapolis, Minnesota 55455, United States
| | - Jeffery S. Cox
- Department
of Molecular and Cell Biology, University of California, Berkeley, #3370, 375E Li Ka Shing Center, Berkeley, California 94720, United States
| | - Kenneth C. Keiler
- Department of Biochemistry
and Molecular Biology, The Pennsylvania State University, 401 Althouse Laboratory, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Abstract
The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; .,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
27
|
Huter P, Müller C, Arenz S, Beckert B, Wilson DN. Structural Basis for Ribosome Rescue in Bacteria. Trends Biochem Sci 2017. [PMID: 28629612 DOI: 10.1016/j.tibs.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribosomes that translate mRNAs lacking stop codons become stalled at the 3' end of the mRNA. Recycling of these stalled ribosomes is essential for cell viability. In bacteria three ribosome rescue systems have been identified so far, with the most ubiquitous and best characterized being the trans-translation system mediated by transfer-messenger RNA (tmRNA) and small protein B (SmpB). The two additional rescue systems present in some bacteria employ alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent structures have revealed how ArfA mediates ribosome rescue by recruiting the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs. This now provides us with the opportunity to compare and contrast the available structures of all three bacterial ribosome rescue systems.
Collapse
Affiliation(s)
- Paul Huter
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Claudia Müller
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Stefan Arenz
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Bertrand Beckert
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany; Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany; Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
28
|
A New Essential Cell Division Protein in Caulobacter crescentus. J Bacteriol 2017; 199:JB.00811-16. [PMID: 28167520 DOI: 10.1128/jb.00811-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex process that relies on a multiprotein complex composed of a core of widely conserved and generally essential proteins and on accessory proteins that vary in number and identity in different bacteria. The assembly of this complex and, particularly, the initiation of constriction are regulated processes that have come under intensive study. In this work, we characterize the function of DipI, a protein conserved in Alphaproteobacteria and Betaproteobacteria that is essential in Caulobacter crescentus Our results show that DipI is a periplasmic protein that is recruited late to the division site and that it is required for the initiation of constriction. The recruitment of the conserved cell division proteins is not affected by the absence of DipI, but localization of DipI to the division site occurs only after a mature divisome has formed. Yeast two-hybrid analysis showed that DipI strongly interacts with the FtsQLB complex, which has been recently implicated in regulating constriction initiation. A possible role of DipI in this process is discussed.IMPORTANCE Bacterial cell division is a complex process for which most bacterial cells assemble a multiprotein complex that consists of conserved proteins and of accessory proteins that differ among bacterial groups. In this work, we describe a new cell division protein (DipI) present only in a group of bacteria but essential in Caulobacter crescentus Cells devoid of DipI cannot constrict. Although a mature divisome is required for DipI recruitment, DipI is not needed for recruiting other division proteins. These results, together with the interaction of DipI with a protein complex that has been suggested to regulate cell wall synthesis during division, suggest that DipI may be part of the regulatory mechanism that controls constriction initiation.
Collapse
|
29
|
Mraheil MA, Frantz R, Teubner L, Wendt H, Linne U, Wingerath J, Wirth T, Chakraborty T. Requirement of the RNA-binding protein SmpB during intracellular growth of Listeria monocytogenes. Int J Med Microbiol 2017; 307:166-173. [PMID: 28202229 DOI: 10.1016/j.ijmm.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022] Open
Abstract
Bacterial trans-translation is the main quality control mechanism employed to relieve stalled ribosomes. Trans-translation is mediated by the small protein B (SmpB) and transfer-mRNA (tmRNA) ribonucleoprotein complex, which interacts with translational complexes stalled at the 3' end of non-stop mRNAs to release the stalled ribosomes thereby targeting the nascent polypeptides and truncated mRNAs for degradation. The trans-translation system exists with a few exceptions in all bacteria. In the present study, we assessed the contribution of SmpB to the growth and virulence of Listeria monocytogenes, a human intracellular food-borne pathogen that colonizes host tissues to cause severe invasive infections. A smpB knockout significantly decreased the intracellular growth rate of L. monocytogenes during infection of murine macrophages. In addition, the mutant strain was attenuated for virulence when examined with the Galleria mellonella larvae killing assay and the organ colonisation model of mice following infection. Proteomic analysis of whole cell extracts of ΔsmpB deletion mutant revealed elevated protein levels of several proteins involved in ribosome assembly and interaction with tRNA substrates. These included the elongation factor Tu [EF-Tu] which promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis as well as the CysK which is known to interact with bacterial toxins that cleave tRNA substrates. The data presented here shed light on the role of SmpB and trans-translation during intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| | - Renate Frantz
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Teubner
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Heiko Wendt
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Uwe Linne
- Department of Chemistry, and LOEWE-Center for Synthetic Microbiology Core Facility for Mass Spectrometry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Jessica Wingerath
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
30
|
Two Isoforms of Clp Peptidase in Pseudomonas aeruginosa Control Distinct Aspects of Cellular Physiology. J Bacteriol 2017; 199:JB.00568-16. [PMID: 27849175 DOI: 10.1128/jb.00568-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023] Open
Abstract
Caseinolytic peptidases (ClpPs) regulate diverse aspects of cellular physiology in bacteria. Some species have multiple ClpPs, including the opportunistic pathogen Pseudomonas aeruginosa, in which there is an archetypical isoform, ClpP1, and a second isoform, ClpP2, about which little is known. Here, we use phenotypic assays to investigate the biological roles of ClpP1 and ClpP2 and biochemical assays to characterize purified ClpP1, ClpP2, ClpX, and ClpA. Interestingly, ClpP1 and ClpP2 have distinct intracellular roles for motility, pigment production, iron scavenging, and biofilm formation. Of particular interest, ClpP2, but not ClpP1, is required for microcolony organization, where multicellular organized structures first form on the pathway to biofilm production. We found that purified ClpP1 with ClpX or ClpA was enzymatically active, yet to our surprise, ClpP2 was inactive and not fully assembled in vitro; attempts to assist ClpP2 assembly and activation by mixing with the other Clp components failed to turn on ClpP2, as did solution conditions that have helped activate other ClpPs in vitro We postulate that the active form of ClpP2 has yet to be discovered, and we present several potential models to explain its activation as well as the unique role ClpP2 plays in the development of the clinically important biofilms in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is responsible for severe infections of immunocompromised patients. Our work demonstrates that two different isoforms of the Clp peptidase, ClpP1 and ClpP2, control distinct aspects of cellular physiology for this organism. In particular, we identify ClpP2 as being necessary for microcolony organization. Pure active forms of ClpP1 and either ClpX or ClpA were characterized as assembled and active, and ClpP2 was incompletely assembled and inactive. By establishing both the unique biological roles of ClpP1 and ClpP2 and their initial biochemical assemblies, we have set the stage for important future work on the structure, function, and biological targets of Clp proteolytic enzymes in this important opportunistic pathogen.
Collapse
|
31
|
Mechanistic insights into the alternative translation termination by ArfA and RF2. Nature 2016; 541:550-553. [PMID: 27906160 DOI: 10.1038/nature20822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/25/2016] [Indexed: 01/07/2023]
Abstract
During cellular translation of messenger RNAs by ribosomes, the translation apparatus sometimes pauses or stalls at the elongation and termination steps. With the exception of programmed stalling, which is usually used by cells for regulatory purposes, ribosomes stalled on mRNAs need to be terminated and recycled to maintain adequate translation capacity. Much ribosome stalling originates in aberrant mRNAs that lack a stop codon. Transcriptional errors, misprocessing of primary transcripts, and undesired mRNA cleavage all contribute to the formation of non-stop mRNAs. Ribosomes stalled at the 3' end of non-stop mRNAs do not undergo normal termination owing to the lack of specific stop-codon recognition by canonical peptide release factors at the A-site decoding centre. In bacteria, the transfer-messenger RNA (tmRNA)-SmpB-mediated trans-translation rescue system reroutes stalled ribosomes to the normal elongation cycle and translation termination. Two additional rescue systems, ArfA-RF2 (refs 13, 14, 15, 16) and ArfB (formerly known as YaeJ), are also present in many bacterial species, but their mechanisms are not fully understood. Here, using cryo-electron microscopy, we characterize the structure of the Escherichia coli 70S ribosome bound with ArfA, the release factor RF2, a short non-stop mRNA and a cognate P-site tRNA. The C-terminal loop of ArfA occupies the mRNA entry channel on the 30S subunit, whereas its N terminus is sandwiched between the decoding centre and the switch loop of RF2, leading to marked conformational changes in both the decoding centre and RF2. Despite the distinct conformation of RF2, its conserved catalytic GGQ motif is precisely positioned next to the CCA-end of the P-site tRNA. These data illustrate a stop-codon surrogate mechanism for ArfA in facilitating the termination of non-stop ribosomal complexes by RF2.
Collapse
|
32
|
Liu P, Chen Y, Wang D, Tang Y, Tang H, Song H, Sun Q, Zhang Y, Liu Z. Genetic Selection of Peptide Aptamers That Interact and Inhibit Both Small Protein B and Alternative Ribosome-Rescue Factor A of Aeromonas veronii C4. Front Microbiol 2016; 7:1228. [PMID: 27588015 PMCID: PMC4988972 DOI: 10.3389/fmicb.2016.01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus, the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Yong Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Dan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Yanqiong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Hongqian Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Haichao Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Qun Sun
- Department of Biotechnology, College of Life Sciences, Sichuan University Chengdu, China
| | - Yueling Zhang
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| |
Collapse
|
33
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Shcherbik N, Chernova TA, Chernoff YO, Pestov DG. Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Res 2016; 44:6840-52. [PMID: 27325745 PMCID: PMC5001609 DOI: 10.1093/nar/gkw566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/13/2016] [Indexed: 11/24/2022] Open
Abstract
Cotranslational degradation of polypeptide nascent chains plays a critical role in quality control of protein synthesis and the rescue of stalled ribosomes. In eukaryotes, ribosome stalling triggers release of 60S subunits with attached nascent polypeptides, which undergo ubiquitination by the E3 ligase Ltn1 and proteasomal degradation facilitated by the ATPase Cdc48. However, the identity of factors acting upstream in this process is less clear. Here, we examined how the canonical release factors Sup45–Sup35 (eRF1–eRF3) and their paralogs Dom34-Hbs1 affect the total population of ubiquitinated nascent chains associated with yeast ribosomes. We found that the availability of the functional release factor complex Sup45–Sup35 strongly influences the amount of ubiquitinated polypeptides associated with 60S ribosomal subunits, while Dom34-Hbs1 generate 60S-associated peptidyl-tRNAs that constitute a relatively minor fraction of Ltn1 substrates. These results uncover two separate pathways that target nascent polypeptides for Ltn1-Cdc48-mediated degradation and suggest that in addition to canonical termination on stop codons, eukaryotic release factors contribute to cotranslational protein quality control.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30322, USA Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Dimitri G Pestov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
35
|
Ribosome-associated protein quality control. Nat Struct Mol Biol 2016; 23:7-15. [PMID: 26733220 DOI: 10.1038/nsmb.3147] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.
Collapse
|
36
|
Ogawa T. tRNA-targeting ribonucleases: molecular mechanisms and insights into their physiological roles. Biosci Biotechnol Biochem 2016; 80:1037-45. [PMID: 26967967 DOI: 10.1080/09168451.2016.1148579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Most bacteria produce antibacterial proteins known as bacteriocins, which aid bacterial defence systems to provide a physiological advantage. To date, many kinds of bacteriocins have been characterized. Colicin has long been known as a plasmidborne bacteriocin that kills other Escherichia coli cells lacking the same plasmid. To defeat other cells, colicins exert specific activities such as ion-channel, DNase, and RNase activity. Colicin E5 and colicin D impair protein synthesis in sensitive E. coli cells; however, their physiological targets have not long been identified. This review describes our finding that colicins E5 and D are novel RNases targeting specific E. coli tRNAs and elucidates their enzymatic properties based on biochemical analyses and X-ray crystal structures. Moreover, tRNA cleavage mediates bacteriostasis, which depends on trans-translation. Based on these results and others, cell growth regulation depending on tRNA cleavage is also discussed.
Collapse
Affiliation(s)
- Tetsuhiro Ogawa
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
37
|
Liu Q, Fredrick K. Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 2016; 428:2146-64. [PMID: 26880335 DOI: 10.1016/j.jmb.2016.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 02/02/2023]
Abstract
The ribosome is a large two-subunit ribonucleoprotein machine that translates the genetic code in all cells, synthesizing proteins according to the sequence of the mRNA template. During translation, the primary substrates, transfer RNAs, pass through binding sites formed between the two subunits. Multiple interactions between the ribosomal subunits, termed intersubunit bridges, keep the ribosome intact and at the same time govern dynamics that facilitate the various steps of translation such as transfer RNA-mRNA movement. Here, we review the molecular nature of these intersubunit bridges, how they change conformation during translation, and their functional roles in the process.
Collapse
Affiliation(s)
- Qi Liu
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, Department of Microbiology, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Lluch-Senar M, Mancuso FM, Climente-González H, Peña-Paz MI, Sabido E, Serrano L. Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome. Proteomics 2015; 16:554-63. [PMID: 26702875 DOI: 10.1002/pmic.201500187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 11/06/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023]
Abstract
A common problem encountered when performing large-scale MS proteome analysis is the loss of information due to the high percentage of unassigned spectra. To determine the causes behind this loss we have analyzed the proteome of one of the smallest living bacteria that can be grown axenically, Mycoplasma pneumoniae (729 ORFs). The proteome of M. pneumoniae cells, grown in defined media, was analyzed by MS. An initial search with both Mascot and a species-specific NCBInr database with common contaminants (NCBImpn), resulted in around 79% of the acquired spectra not having an assignment. The percentage of non-assigned spectra was reduced to 27% after re-analysis of the data with the PEAKS software, thereby increasing the proteome coverage of M. pneumoniae from the initial 60% to over 76%. Nonetheless, 33,413 spectra with assigned amino acid sequences could not be mapped to any NCBInr database protein sequence. Approximately, 1% of these unassigned peptides corresponded to PTMs and 4% to M. pneumoniae protein variants (deamidation and translation inaccuracies). The most abundant peptide sequence variants (Phe-Tyr and Ala-Ser) could be explained by alterations in the editing capacity of the corresponding tRNA synthases. About another 1% of the peptides not associated to any protein had repetitions of the same aromatic/hydrophobic amino acid at the N-terminus, or had Arg/Lys at the C-terminus. Thus, in a model system, we have maximized the number of assigned spectra to 73% (51,453 out of the 70,040 initial acquired spectra). All MS data have been deposited in the ProteomeXchange with identifier PXD002779 (http://proteomecentral.proteomexchange.org/dataset/PXD002779).
Collapse
Affiliation(s)
- Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco M Mancuso
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Héctor Climente-González
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marcia I Peña-Paz
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Eduard Sabido
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
39
|
Sakai F, Sugita R, Chang JW, Ogawa T, Tsumadori N, Takahashi K, Hidaka M, Masaki H. Transfer-messenger RNA and SmpB mediate bacteriostasis in Escherichia coli cells against tRNA cleavage. MICROBIOLOGY-SGM 2015. [PMID: 26199088 DOI: 10.1099/mic.0.000144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNAs, such as mRNA, rRNA and tRNA, are essential macromolecules for cell survival and maintenance. Any perturbation of these molecules, such as by degradation or mutation, can be toxic to cells and may occasionally induce cell death. Therefore, cells have mechanisms known as quality control systems to eliminate abnormal RNAs. Although tRNA is a stable molecule, the anticodon loop is quite susceptible to tRNA-targeting RNases such as colicin E5 and colicin D. However, the mechanism underlying cellular reaction to tRNA cleavage remains unclear. It had long been believed that tRNA cleavage by colicins E5 and D promptly induces cell death because colony formation of the sensitive cells is severely reduced; this indicates that cells do not resist the tRNA cleavage. Here, we show that Escherichia coli cells enter a bacteriostatic state against the tRNA cleavage of colicins D and E5. The bacteriostasis requires small protein B (SmpB) and transfer-messenger RNA (tmRNA), which are known to mediate trans-translation. Furthermore, another type of colicin, colicin E3 cleaving rRNA, immediately reduces the viability of sensitive cells. Moreover, nascent peptide degradation has an additive effect on bacteriostasis. Considering the recent observation that tRNA cleavage may be used as a means of cell-to-cell communication, tRNA cleavage could be used by bacteria not only to dominate other bacteria living in the same niche, but also to regulate growth of their own or other cells.
Collapse
Affiliation(s)
- Fusako Sakai
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Risa Sugita
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jung-Wei Chang
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsuko Tsumadori
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazutoshi Takahashi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Hidaka
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
40
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
41
|
Gamper HB, Masuda I, Frenkel-Morgenstern M, Hou YM. The UGG Isoacceptor of tRNAPro Is Naturally Prone to Frameshifts. Int J Mol Sci 2015; 16:14866-83. [PMID: 26140378 PMCID: PMC4519876 DOI: 10.3390/ijms160714866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022] Open
Abstract
Native tRNAs often contain post-transcriptional modifications to the wobble position to expand the capacity of reading the genetic code. Some of these modifications, due to the ability to confer imperfect codon-anticodon pairing at the wobble position, can induce a high propensity for tRNA to shift into alternative reading frames. An example is the native UGG isoacceptor of E. coli tRNAPro whose wobble nucleotide U34 is post-transcriptionally modified to cmo5U34 to read all four proline codons (5ʹ-CCA, 5ʹ-CCC, 5ʹ-CCG, and 5ʹ-CCU). Because the pairing of the modified anticodon to CCC codon is particularly weak relative to CCA and CCG codons, this tRNA can readily shift into both the +1 and +2-frame on the slippery mRNA sequence CCC-CG. We show that the shift to the +2-frame is more dominant, driven by the higher stability of the codon-anticodon pairing at the wobble position. Kinetic analysis suggests that both types of shifts can occur during stalling of the tRNA in a post-translocation complex or during translocation from the A to the P-site. Importantly, while the +1-frame post complex is active for peptidyl transfer, the +2-frame complex is a poor peptidyl donor. Together with our recent work, we draw a mechanistic distinction between +1 and +2-frameshifts, showing that while the +1-shifts are suppressed by the additional post-transcriptionally modified m1G37 nucleotide in the anticodon loop, the +2-shifts are suppressed by the ribosome, supporting a role of the ribosome in the overall quality control of reading-frame maintenance.
Collapse
Affiliation(s)
- Howard B Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
42
|
Regulatory small RNAs from the 3' regions of bacterial mRNAs. Curr Opin Microbiol 2015; 24:132-9. [PMID: 25677420 DOI: 10.1016/j.mib.2015.01.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/29/2022]
Abstract
Most studies of small regulatory RNAs in bacteria have focussed on conserved transcripts in intergenic regions. However, several recent developments including single-nucleotide resolution transcriptome profiling by RNA-seq and increased knowledge of the cellular targets of the RNA chaperone Hfq suggest that the bacterial world of functional small RNAs is more diverse. One emerging class are small RNAs that are identical to the 3' regions of known mRNAs, but are produced either by transcription from internal promoters or by mRNA processing. Using several recently discovered examples of such sRNAs, we discuss their biogenesis and modes of action, and illustrate how they can facilitate mRNA crosstalk in various physiological processes.
Collapse
|