1
|
Structural Characterization of Rat Galectin-5, an N-Tailed Monomeric Proto-Type-like Galectin. Biomolecules 2021; 11:biom11121854. [PMID: 34944498 PMCID: PMC8699261 DOI: 10.3390/biom11121854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Galectins are multi-purpose effectors acting via interactions with distinct counterreceptors based on protein-glycan/protein recognition. These processes are emerging to involve several regions on the protein so that the availability of a detailed structural characterization of a full-length galectin is essential. We report here the first crystallographic information on the N-terminal extension of the carbohydrate recognition domain of rat galectin-5, which is precisely described as an N-tailed proto-type-like galectin. In the ligand-free protein, the three amino-acid stretch from Ser2 to Ser5 is revealed to form an extra β-strand (F0), and the residues from Thr6 to Asn12 are part of a loop protruding from strands S1 and F0. In the ligand-bound structure, amino acids Ser2–Tyr10 switch position and are aligned to the edge of the β-sandwich. Interestingly, the signal profile in our glycan array screening shows the sugar-binding site to preferentially accommodate the histo-blood-group B (type 2) tetrasaccharide and N-acetyllactosamine-based di- and oligomers. The crystal structures revealed the characteristically preformed structural organization around the central Trp77 of the CRD with involvement of the sequence signature’s amino acids in binding. Ligand binding was also characterized calorimetrically. The presented data shows that the N-terminal extension can adopt an ordered structure and shapes the hypothesis that a ligand-induced shift in the equilibrium between flexible and ordered conformers potentially acts as a molecular switch, enabling new contacts in this region.
Collapse
|
2
|
Characterizing ligand-induced conformational changes in clinically relevant galectin-1 by H N/H 2O (D 2O) exchange. Biochimie 2021; 187:48-56. [PMID: 34022292 DOI: 10.1016/j.biochi.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023]
Abstract
Glycans of cellular glycoconjugates serve as biochemical signals for a multitude of (patho)physiological processes via binding to their receptors (e.g. lectins). In the case of human adhesion/growth-regulatory galectin-1 (Gal-1), small angle neutron scattering and fluorescence correlation spectroscopy have revealed a significant decrease of its gyration radius and increase of its diffusion coefficient upon binding lactose, posing the pertinent question on the nature and region(s) involved in the underlying structural alterations. Requiring neither a neutron source nor labeling, diffusion measurements by 1H NMR spectroscopy are shown here to be sufficiently sensitive to detect this ligand-induced change. In order to figure out which region(s) of Gal-1 is (are) affected at the level of peptides, we first explored the use of H/D exchange mass spectrometry (HDX MS). Hereby, we found a reduction in proton exchange kinetics beyond the lactose-binding site. The measurement of fast HN/H2O exchange by phase-modulated NMR clean chemical exchange (CLEANEX) NMR on 15N-labeled Gal-1 then increased the spatial resolution to the level of individual amino acids. The mapped regions with increased protection from HN/H2O (D2O) exchange that include the reduction of solvent exposure around the interface can underlie the protein's compaction. These structural changes have potential to modulate this galectin's role in lattice formation on the cell surface and its interaction(s) with protein(s) at the F-face.
Collapse
|
3
|
Belkhadem K, Cao Y, Roy R. Synthesis of Galectin Inhibitors by Regioselective 3'- O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Molecules 2020; 26:E115. [PMID: 33383774 PMCID: PMC7795656 DOI: 10.3390/molecules26010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022] Open
Abstract
Vanillin-based lactoside derivatives were synthetized using phase-transfer catalyzed reactions from per-O-acetylated lactosyl bromide. The aldehyde group of the vanillin moiety was then modified to generate a series of related analogs having variable functionalities in the para- position of the aromatic residue. The corresponding unprotected lactosides, obtained by Zemplén transesterification, were regioselectively 3'-O-sulfated using tin chemistry activation followed by treatment with sulfur trioxide-trimethylamine complex (Men3N-SO3). Additional derivatives were also prepared from the vanillin's aldehyde using a Knoevenagel reaction to provide extended α, β-unsaturated carboxylic acid which was next reduced to the saturated counterpart.
Collapse
Affiliation(s)
- Karima Belkhadem
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
| | - Yihong Cao
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
| | - René Roy
- Department of Chemistry, University of Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (K.B.); (Y.C.)
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
4
|
Klein ML, Romero A, Kaltner H, Percec V, Gabius HJ. From examining the relationship between (corona)viral adhesins and galectins to glyco-perspectives. Biophys J 2020; 120:1031-1039. [PMID: 33248129 DOI: 10.1016/j.bpj.2020.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Glycan-lectin recognition is vital to processes that impact human health, including viral infections. Proceeding from crystallographical evidence of case studies on adeno-, corona-, and rotaviral spike proteins, the relationship of these adhesins to mammalian galectins was examined by computational similarity assessments. Intrafamily diversity among human galectins was in the range of that to these viral surface proteins. Our findings are offered to inspire the consideration of lectin-based approaches to thwart infection by present and future viral threats, also mentioning possible implications for vaccine development.
Collapse
Affiliation(s)
- Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania.
| | - Antonio Romero
- Department of Structural and Chemical Biology, CIB Margarita Salas, CSIC, Madrid, Spain
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
5
|
García Caballero G, Kaltner H, Kutzner TJ, Ludwig AK, Manning JC, Schmidt S, Sinowatz F, Gabius HJ. How galectins have become multifunctional proteins. Histol Histopathol 2020; 35:509-539. [PMID: 31922250 DOI: 10.14670/hh-18-199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having identified glycans of cellular glycoconjugates as versatile molecular messages, their recognition by sugar receptors (lectins) is a fundamental mechanism within the flow of biological information. This type of molecular interplay is increasingly revealed to be involved in a wide range of (patho)physiological processes. To do so, it is a vital prerequisite that a lectin (and its expression) can develop more than a single skill, that is the general ability to bind glycans. By studying the example of vertebrate galectins as a model, a total of five relevant characteristics is disclosed: i) access to intra- and extracellular sites, ii) fine-tuned gene regulation (with evidence for co-regulation of counterreceptors) including the existence of variants due to alternative splicing or single nucleotide polymorphisms, iii) specificity to distinct glycans from the glycome with different molecular meaning, iv) binding capacity also to peptide motifs at different sites on the protein and v) diversity of modular architecture. They combine to endow these lectins with the capacity to serve as multi-purpose tools. Underscoring the arising broad-scale significance of tissue lectins, their numbers in terms of known families and group members have steadily grown by respective research that therefore unveiled a well-stocked toolbox. The generation of a network of (ga)lectins by evolutionary diversification affords the opportunity for additive/synergistic or antagonistic interplay in situ, an emerging aspect of (ga)lectin functionality. It warrants close scrutiny. The realization of the enormous potential of combinatorial permutations using the five listed features gives further efforts to understand the rules of functional glycomics/lectinomics a clear direction.
Collapse
Affiliation(s)
- Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sebastian Schmidt
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
6
|
Chicken lens development: complete signature of expression of galectins during embryogenesis and evidence for their complex formation with α-, β-, δ-, and τ-crystallins, N-CAM, and N-cadherin obtained by affinity chromatography. Cell Tissue Res 2019; 379:13-35. [PMID: 31773304 DOI: 10.1007/s00441-019-03129-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022]
Abstract
The emerging multifunctionality of galectins by specific protein-glycan/protein interactions explains the interest to determine their expression during embryogenesis. Complete network analysis of all seven chicken galectins (CGs) is presented in the course of differentiation of eye lens that originates from a single type of progenitor cell. It answers the questions on levels of expression and individual patterns of distribution. A qualitative difference occurs in the CG-1A/B paralogue pair, underscoring conspicuous divergence. Considering different cell phenotypes, lens fiber and also epithelial cells can both express the same CG, with developmental upregulation for CG-3 and CG-8. Except for expression of the lens-specific CG (C-GRIFIN), no other CG appeared to be controlled by the transcription factors L-Maf and Pax6. Studying presence and nature of binding partners for CGs, we tested labeled galectins in histochemistry and in ligand blotting. Mass spectrometric (glyco)protein identification after affinity chromatography prominently yielded four types of crystallins, N-CAM, and, in the cases of CG-3 and CG-8, N-cadherin. Should such pairing be functional in situ, it may be involved in tightly packing intracellular lens proteins and forming membrane contact as well as in gaining plasticity and stability of adhesion processes. The expression of CGs throughout embryogenesis is postulated to give meaning to spatiotemporal alterations in the local glycome.
Collapse
|
7
|
Kutzner TJ, Higuero AM, Süßmair M, Kopitz J, Hingar M, Díez-Revuelta N, Caballero GG, Kaltner H, Lindner I, Abad-Rodríguez J, Reusch D, Gabius HJ. How presence of a signal peptide affects human galectins-1 and -4: Clues to explain common absence of a leader sequence among adhesion/growth-regulatory galectins. Biochim Biophys Acta Gen Subj 2019; 1864:129449. [PMID: 31678146 DOI: 10.1016/j.bbagen.2019.129449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Galectins are multifunctional effectors, which all share absence of a signal sequence. It is not clear why galectins belong to the small set of proteins, which avoid the classical export route. METHODS Products of recombinant galectin expression in P. pastoris were analyzed by haemagglutination, gel filtration and electrophoresis and lectin blotting as well as mass spectrometry on the level of tryptic peptides and purified glycopeptides(s). Density gradient centrifugation and confocal laser scanning microscopy facilitated localization in transfected human and rat cells, proliferation assays determined activity as growth mediator. RESULTS Directing galectin-1 to the classical secretory pathway in yeast produces N-glycosylated protein that is active. It cofractionates and -localizes with calnexin in human cells, only Gal-4 is secreted. Presence of N-glycan(s) reduces affinity of cell binding and growth regulation by Gal-1. CONCLUSIONS Folding and activity of a galectin are maintained in signal-peptide-directed routing, N-glycosylation occurs. This pathway would deplete cytoplasm and nucleus of galectin, presence of N-glycans appears to interfere with lattice formation. GENERAL SIGNIFICANCE Availability of glycosylated galectins facilitates functional assays to contribute to explain why galectins invariably avoid classical routing for export.
Collapse
Affiliation(s)
- Tanja J Kutzner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Martina Süßmair
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Michael Hingar
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82777 Penzberg, Germany.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
8
|
Ludwig AK, Michalak M, Xiao Q, Gilles U, Medrano FJ, Ma H, FitzGerald FG, Hasley WD, Melendez-Davila A, Liu M, Rahimi K, Kostina NY, Rodriguez-Emmenegger C, Möller M, Lindner I, Kaltner H, Cudic M, Reusch D, Kopitz J, Romero A, Oscarson S, Klein ML, Gabius HJ, Percec V. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc Natl Acad Sci U S A 2019; 116:2837-2842. [PMID: 30718416 PMCID: PMC6386680 DOI: 10.1073/pnas.1813515116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.
Collapse
Affiliation(s)
- Anna-Kristin Ludwig
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Malwina Michalak
- Institute of Pathology, Department of Applied Tumor Pathology, Faculty of Medicine, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Ulrich Gilles
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Francisco J Medrano
- Structural and Chemical Biology, Centro Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Hanyue Ma
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Forrest G FitzGerald
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| | - William D Hasley
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Adriel Melendez-Davila
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Khosrow Rahimi
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Nina Yu Kostina
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Cesar Rodriguez-Emmenegger
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Martin Möller
- Deutsches Wollforschungsinstitut-Leibniz Institute for Interactive Materials, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen, 52074 Aachen
| | - Ingo Lindner
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| | - Dietmar Reusch
- Pharma Biotech Development Penzberg, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Jürgen Kopitz
- Institute of Pathology, Department of Applied Tumor Pathology, Faculty of Medicine, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Antonio Romero
- Structural and Chemical Biology, Centro Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany;
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323;
| |
Collapse
|
9
|
Chicken GRIFIN: binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6. Cell Tissue Res 2018; 375:665-683. [PMID: 30328540 DOI: 10.1007/s00441-018-2931-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 01/11/2023]
Abstract
Tissue lectins appear to be involved in a broad range of physiological processes, as reflected for the members of the family of galectins by referring to them as adhesion/growth-regulatory effectors. In order to clarify the significance of galectin presence, key challenges are to define their binding partners and the profile of localization. Having identified the chicken galectin-related interfiber protein (C-GRIFIN) as lens-specific protein present in the main body of adult lens, we here report its interaction with lens proteins in ligand blotting. The assumption for pairing with α-, β- and δ-crystallins was ascertained by mass spectrometric detection of their presence in eluted fractions obtained by affinity chromatography. Biochemical and immunohistochemical monitoring revealed protein presence from about 3-day-old embryos onwards, mostly in the cytoplasm of elongated posterior cells, later in secondary lens fiber cells. On the level of gene expression, its promoter was activated by transcription factor L-Maf alone and together with Pax6 like a crystallin gene, substantiating C-GRIFIN's status as lens-specific galectin. Using this combined strategy for counterreceptor and expression profiling by bio- and histochemical methods including light, electron and fluorescence microscopy, respective monitoring in lens development can now be taken to the level of the complete galectin family.
Collapse
|
10
|
Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Three-step monitoring of glycan and galectin profiles in the anterior segment of the adult chicken eye. Ann Anat 2018; 217:66-81. [PMID: 29501632 DOI: 10.1016/j.aanat.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023]
Abstract
A histochemical three-step approach is applied for processing a panel of sections that covers the different regions of fixed anterior segment of the adult chicken eye. This analysis gains insight into the presence of binding partners for functional pairing by galectin/lectin recognition in situ. Glycophenotyping with 11 fungal and plant lectins (step 1) revealed a complex pattern of reactivity with regional as well as glycan- and cell-type-dependent differences. When characterizing expression of the complete set of the seven adhesion/growth-regulatory chicken galectins immunohistochemically (step 2), the same holds true, clearly demonstrating profiles with individual properties, even for the CG-1A/B paralogue pair. Testing this set of labeled tissue lectins as probes (step 3) detected binding sites in a galectin-type-dependent manner. The results of steps 2 and 3 reflect the divergence of sequences and argue against functional redundancy among the galectins. These data shape the concept of an in situ network of galectins. As consequence, experimental in vitro studies will need to be performed from the level of testing a single protein to work with mixtures that mimic the (patho)physiological situation, a key message of this report.
Collapse
Affiliation(s)
- Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gabriel García Caballero
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Clemens Knospe
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|