1
|
Ntanzi N, Khan RB, Nxumalo MB, Kumalo HM. Mechanisms of H2pmen-Induced cell death: Necroptosis and apoptosis in MDA cells, necrosis in MCF7 cells. Heliyon 2024; 10:e40654. [PMID: 39660197 PMCID: PMC11629215 DOI: 10.1016/j.heliyon.2024.e40654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women around the world. Several cancer therapeutics have already been discovered and are being used to treat breast cancer. However, most of them cause severe side effects. H2pmen, a tetradentate ligand, was used in this study to investigate its cytotoxic effects on growth, viability, and induction of cell death in MCF7 and MDA cells. The cell viability was determined by treating cells with different concentrations of H2pmen. MTT assay was used to obtain an IC50, and the cells were then assayed for membrane damage, apoptotic induction, and metabolism. Protein expression of Bax, p53, Bcl2, and xIAP was identified using Western blot analysis. The gene expression of RIPK1, RIPK3, and MKLK was determined using qPCR. In MDA cells, H2pmen increases cytotoxicity, as evidenced by upregulated LDH and JC-10, and enhances apoptosis, indicated by upregulated caspase-3/7 and Bax. In contrast, MCF7 cells exhibit a more stable profile with downregulated LDH and Annexin V Activity. MCF7 cells also show reduced necroptosis and increased necrosis. These findings highlight that H2pmen induces varied cytotoxic effects across MDA and MCF7 cells, with MDA cells exhibiting more pronounced apoptosis and necroptosis alongside complex anti-apoptotic responses.
Collapse
Affiliation(s)
- Nosipho Ntanzi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mthokozisi B. Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Raposo A, Raheem D, Zandonadi RP, Suri N, Olukosi A, de Lima BR, Carrascosa C, Sharifi-Rad J, Ryu HB, Han H, Calina D. Anethole in cancer therapy: Mechanisms, synergistic potential, and clinical challenges. Biomed Pharmacother 2024; 180:117449. [PMID: 39326099 DOI: 10.1016/j.biopha.2024.117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer remains a major global health challenge, prompting the search for effective and less toxic treatments. Anethole, a bioactive compound found in essential oils of anise and fennel, commonly used as a food preservative, has recently garnered attention for its potential anti-cancer properties. This comprehensive review aims to systematically assess the anti-cancer effects of anethole, elucidating its mechanisms of action, pharmacokinetics, bioavailability, and synergistic potential with conventional cancer therapies. A detailed literature search was conducted across databases including PubMed, Embase, Scopus, Science Direct, Web of Science, and Google Scholar. Criteria for inclusion were experimental studies in peer-reviewed journals focusing on the anti-cancer properties of anethole. Extracted data included study design, intervention specifics, measured outcomes, and mechanistic insights. Anethole demonstrates multiple anti-cancer mechanisms, such as inducing apoptosis, causing cell cycle arrest, exhibiting anti-proliferative and anti-angiogenic effects, and modulating critical signaling pathways including NF-κB, PI3K/Akt/mTOR, and caspases. It enhances the efficacy of chemotherapeutic agents like cisplatin and doxorubicin while reducing their toxicity. In vitro and in vivo studies have shown its effectiveness against various cancers, including breast, prostate, lung, and colorectal cancers. Anethole shows significant potential as an anti-cancer agent, with its multi-faceted mechanisms of action and ability to synergize with existing chemotherapy. Further clinical research is essential to fully understand its therapeutic potential and application in oncology.
Collapse
Affiliation(s)
- António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Dele Raheem
- Arctic Centre, University of Lapland, Rovaniemi 96101, Finland
| | - Renata Puppin Zandonadi
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília 70910-900, Brazil
| | - Narinder Suri
- Department of Chemistry, Moi University, P.O. Box 4606, Eldoret 30100, Kenya
| | - Adeola Olukosi
- Department of Medical Biochemistry, Eko University of Medical Sciences, Lagos 102004, Nigeria
| | - Bernardo Romão de Lima
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília 70910-900, Brazil
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, Arucas 35413, Spain
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico; Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Hyungseo Bobby Ryu
- Foodservice & Culinary Art, Department of the College of Health Sciences, Kyungnam University, 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do 51767, Republic of Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| |
Collapse
|
3
|
Khalaf AT, Abdalla AN, Ren K, Liu X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur J Med Res 2024; 29:487. [PMID: 39367460 PMCID: PMC11453049 DOI: 10.1186/s40001-024-02088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
Cold atmospheric plasma (CAP) technology has emerged as a revolutionary therapeutic technology in dermatology, recognized for its safety, effectiveness, and minimal side effects. CAP demonstrates substantial antimicrobial properties against bacteria, viruses, and fungi, promotes tissue proliferation and wound healing, and inhibits the growth and migration of tumor cells. This paper explores the versatile applications of CAP in dermatology, skin health, and skincare. It provides an in-depth analysis of plasma technology, medical plasma applications, and CAP. The review covers the classification of CAP, its direct and indirect applications, and the penetration and mechanisms of action of its active components in the skin. Briefly introduce CAP's suppressive effects on microbial infections, detailing its impact on infectious skin diseases and its specific effects on bacteria, fungi, viruses, and parasites. It also highlights CAP's role in promoting tissue proliferation and wound healing and its effectiveness in treating inflammatory skin diseases such as psoriasis, atopic dermatitis, and vitiligo. Additionally, the review examines CAP's potential in suppressing tumor cell proliferation and migration and its applications in cosmetic and skincare treatments. The therapeutic potential of CAP in treating immune-mediated skin diseases is also discussed. CAP presents significant promise as a dermatological treatment, offering a safe and effective approach for various skin conditions. Its ability to operate at room temperature and its broad spectrum of applications make it a valuable tool in dermatology. Finally, introduce further research is required to fully elucidate its mechanisms, optimize its use, and expand its clinical applications.
Collapse
Grants
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Medical College, Anhui University of Science and Technology (AUST), Huainan, 232001, China
| | - Ahmed N Abdalla
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kaixuan Ren
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Xiaoming Liu
- Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Villaorduña C, Barrios-Arpi L, Lira-Mejía B, Ramos-Gonzalez M, Ramos-Coaguila O, Inostroza-Ruiz L, Romero A, Rodríguez JL. The Fungicide Ipconazole Can Activate Mediators of Cellular Damage in Rat Brain Regions. TOXICS 2024; 12:638. [PMID: 39330566 PMCID: PMC11435560 DOI: 10.3390/toxics12090638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to investigate the toxicity of the fungicide ipconazole on oxidative status, cell death and inflammasome complex activation in the hypothalamus, cerebral cortex, striatum and hippocampus of rats. Female albino rats were randomly divided into a control group and four groups treated with ipconazole at doses of 1, 5, 10 and 20 mg/kg b.w., administered for six days. Ipconazole significantly increased MDA and ROS levels in all brain regions studied, while reducing catalase enzyme activity. The molecular expression of cell death-related genes (AKT1, APAF1, BNIP3, CASP3 and BAX) and the inflammasome complex (CASP1, IL1β, IL6, NLRP3, NFĸB and TNFα) was also assessed, showing increased expression in at least one brain region. The findings demonstrate that ipconazole induces central nervous system toxicity in mammals, highlighting its potential role as a risk factor in the development of neurodegenerative disorders in individuals exposed to this contaminant.
Collapse
Affiliation(s)
- Carlos Villaorduña
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Luis Barrios-Arpi
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Boris Lira-Mejía
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Mariella Ramos-Gonzalez
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Olger Ramos-Coaguila
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Luis Inostroza-Ruiz
- Toxicology Laboratory, Faculty of Pharmacy and Biochemistry, Major National University of San Marcos, Lima 15021, Peru
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José-Luis Rodríguez
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Kaplan Ö, Gökşen Tosun N. Molecular pathway of anticancer effect of next-generation HSP90 inhibitors XL-888 and Debio0932 in neuroblastoma cell line. Med Oncol 2024; 41:194. [PMID: 38958814 PMCID: PMC11222184 DOI: 10.1007/s12032-024-02428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.
Collapse
Affiliation(s)
- Özlem Kaplan
- Department of Genetics and Bioengineering, Rafet Kayış Faculty of Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye.
| | - Nazan Gökşen Tosun
- Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat Vocational School of Health Services, Tokat, Türkiye.
| |
Collapse
|
8
|
Ahmed KR, Rahman MM, Islam MN, Fahim MMH, Rahman MA, Kim B. Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer. Biomed Pharmacother 2024; 174:116497. [PMID: 38552443 DOI: 10.1016/j.biopha.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
The study of chemicals extracted from natural sources should be encouraged due to the significant number of cancer deaths each year and the financial burden imposed by this disease on society. The causes of almost all cancers involve a combination of lifestyle, environmental factors, and genetic and inherited factors. Modern medicine researchers are increasingly interested in traditional phytochemicals as they hold potential for new bioactive compounds with medical applications. Recent publications have provided evidence of the antitumor properties of phytochemicals, a key component of traditional Chinese medicine, thereby opening new avenues for their use in modern medicine. Various studies have demonstrated a strong correlation between apoptosis and autophagy, two critical mechanisms involved in cancer formation and regulation, indicating diverse forms of crosstalk between them. Phytochemicals have the ability to activate both pro-apoptotic and pro-autophagic pathways. Therefore, understanding how phytochemicals influence the relationship between apoptosis and autophagy is crucial for developing a new cancer treatment strategy that targets these molecular mechanisms. This review aims to explore natural phytochemicals that have demonstrated anticancer effects, focusing on their role in regulating the crosstalk between apoptosis and autophagy, which contributes to uncontrolled tumor cell growth. Additionally, the review highlights the limitations and challenges of current research methodologies while suggesting potential avenues for future research in this field.
Collapse
Affiliation(s)
- Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Md Masudur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Nahidul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Md Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
9
|
Cavalu S, Saber S, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Youssef ME. Orexins in apoptosis: a dual regulatory role. Front Cell Neurosci 2024; 18:1336145. [PMID: 38699177 PMCID: PMC11064656 DOI: 10.3389/fncel.2024.1336145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
The orexins, also referred to as hypocretins, are neuropeptides that originate from the lateral hypothalamus (LH) region of the brain. They are composed of two small peptides, orexin-A, and orexin-B, which are broadly distributed throughout the central and peripheral nervous systems. Orexins are recognized to regulate diverse functions, involving energy homeostasis, the sleep-wake cycle, stress responses, and reward-seeking behaviors. Additionally, it is suggested that orexin-A deficiency is linked to sleepiness and narcolepsy. The orexins bind to their respective receptors, the orexin receptor type 1 (OX1R) and type 2 (OX2R), and activate different signaling pathways, which results in the mediation of various physiological functions. Orexin receptors are widely expressed in different parts of the body, including the skin, muscles, lungs, and bone marrow. The expression levels of orexins and their receptors play a crucial role in apoptosis, which makes them a potential target for clinical treatment of various disorders. This article delves into the significance of orexins and orexin receptors in the process of apoptosis, highlighting their expression levels and their potential contributions to different diseases. The article offers an overview of the existing understanding of the orexin/receptor system and how it influences the regulation of apoptosis.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
10
|
Asiwe JN, Yovwin GD, Ekene NE, Ovuakporaye SI, Nnamudi AC, Nwangwa EK. Ginkgo biloba modulates ET-I/NO signalling in Lead Acetate induced rat model of endothelial dysfunction: Involvement of oxido-inflammatory mediators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:979-990. [PMID: 36960596 DOI: 10.1080/09603123.2023.2194612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the modulatory effect of Ginkgo biloba extract on lead acetate-induced endothelial dysfunction. Animals were administered GBE (50 mg/kg and 100 mg/kg orally) after exposures to lead acetate (25 mg/kg orally) for 14 days. Aorta was harvested after euthanasia, the tissue was homogenised, and supernatants were decanted after centrifuging. Oxidative, nitrergic, inflammatory, and anti-apoptotic markers were assayed using standard biochemical procedure, ELISA, and immunohistochemistry, respectively. GBE reduced lead-induced oxidative stress by increasing SOD, GSH, and CAT as well as reducing MDA levels in endothelium. Pro-inflammatory cytokines (TNF-α and IL-6) were reduced while increasing Bcl-2 protein expression. GBE lowered endothelin-I and raised nitrite levels. Histological changes caused by lead acetate were normalised by GBE. Our findings suggest that Ginkgo biloba extract restored endothelin-I and nitric oxide functions by increasing Bcl-2 protein expression and reducing oxido-inflammatory stress in endothelium.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Godwin D Yovwin
- Department of Family Medicine, Delta State University, Abraka, Nigeria
| | | | | | | | | |
Collapse
|
11
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
12
|
Palumbo L, Genovese S, Collevecchio C, Epifano F, Fiorito S. Novel insights into the biomolecular mechanism of action of 4'-geranyloxyferulic acid, a colon cancer chemopreventive agent. PHYTOCHEMISTRY 2023; 211:113706. [PMID: 37149122 DOI: 10.1016/j.phytochem.2023.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In this manuscript the biomolecular mechanism of action of the natural colon cancer chemopreventive agent 4'-geranyloxyferulic acid in cultured Caco-2 cells has been investigated. It was first demonstrated how the application of this phytochemical led to a time- and dose-dependent decrease of cell viability and in parallel to a massive generation of reactive oxygen species and induction of caspases 3 and 9, finally providing apoptosis. This event is accompanied by deep modifications in key pro-apoptotic targets like CD95, DR4 and 5, cytochrome c, Apaf-1, Bcl-2, and Bax. Such effects can explain the large apoptosis recorded in Caco-2 cells treated with 4'-geranyloxyferulic acid.
Collapse
Affiliation(s)
- Lucia Palumbo
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy.
| | - Chiara Collevecchio
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy.
| | - Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy.
| |
Collapse
|
13
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
14
|
Expression Profiles of Long Noncoding RNAs and Messenger RNAs in a Rat Model of Spinal Cord Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:6033020. [PMID: 36714328 PMCID: PMC9879695 DOI: 10.1155/2023/6033020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Spinal cord injury (SCI) is a serious disorder of the central nervous system with a high disability rate. Long noncoding RNAs (lncRNAs) are reported to mediate many biological processes. The aim of this study was to explore lncRNA and mRNA expression profiles and functional networks after SCI. Differentially expressed genes between SCI model rats and sham controls were identified by microarray assays and analyzed by functional enrichment. Key lncRNAs were identified using a support vector machine- (SVM-) recursive feature elimination (RFE) algorithm. A trans and cis regulation model was used to analyze the regulatory relationships between lncRNAs and their targets. An lncRNA-related ceRNA network was established. We identified 5465 differentially expressed lncRNAs (DE lncRNAs) and 8366 differentially expressed mRNAs (DE mRNAs) in the SCI group compared with the sham group (fold change > 2.0, p < 0.05). Four genes were confirmed by qRT-PCR which were consistent with the microarray data. GSEA analysis showed that most marked changes occurred in pathways related to immune inflammation and nerve cell function, including cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and GABAergic synapse. Enrichment analysis identified 30 signaling pathways, including those associated with immune inflammation response. A total of 40 key lncRNAs were identified using the SVM-RFE algorithm. A key lncRNA-mRNAs coexpression network was generated for 230 951 lncRNA-mRNA pairs with half showing positive correlations. Several key DE lncRNAs were predicted to have "cis"- or "trans"-regulated target genes. The transcription factors, Sp1, JUN, and SOX10, may regulate the interaction between XR_001837123.1 and ETS 1. In addition, five pairs of ceRNA regulatory sequences were constructed. Many mRNAs and lncRNAs were found to be dysregulated after SCI. Bioinformatic analysis showed that DE lncRNAs may play crucial roles in SCI. It is anticipated that these findings will provide new insights into the underlying mechanisms and potential therapeutic targets for SCI.
Collapse
|
15
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
16
|
Parfenov AA, Vyshtakalyuk AB, Galyametdinova IV, Semenov VE, Zobov VV. Antiapoptotic Effect of Pyrimidine-Derived Drug Xymedon and Its Conjugate with L-Ascorbic Acid on Chang Liver Cells Under Apoptosis Induced by d-Galactosamine. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Feng L, Tian R, Mu X, Chen C, Zhang Y, Cui J, Song Y, Liu Y, Zhang M, Shi L, Sun Y, Li L, Yi W. Identification of Genes Linking Natural Killer Cells to Apoptosis in Acute Myocardial Infarction and Ischemic Stroke. Front Immunol 2022; 13:817377. [PMID: 35432334 PMCID: PMC9012496 DOI: 10.3389/fimmu.2022.817377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are a type of innate lymphoid cell that are involved in the progression of acute myocardial infarction and ischemic stroke. Although multiple forms of programmed cell death are known to play important roles in these diseases, the correlation between NK cells and apoptosis-related genes during acute myocardial infarction and ischemic stroke remains unclear. In this study, we explored the distinct patterns of NK cell infiltration and apoptosis during the pathological progression of acute myocardial infarction and ischemic stroke using mRNA expression microarrays from the Gene Expression Omnibus database. Since the abundance of NK cells correlated positively with apoptosis in both diseases, we further examined the correlation between NK cell abundance and the expression of apoptosis-related genes. Interestingly, APAF1 and IRAK3 expression correlated negatively with NK cell abundance in both acute myocardial infarction and ischemic stroke, whereas ATM, CAPN1, IL1B, IL1R1, PRKACA, PRKACB, and TNFRSF1A correlated negatively with NK cell abundance in acute myocardial infarction. Together, these findings suggest that these apoptosis-related genes may play important roles in the mechanisms underlying the patterns of NK cell abundance and apoptosis in acute myocardial infarction and ischemic stroke. Our study, therefore, provides novel insights for the further elucidation of the pathogenic mechanism of ischemic injury in both the heart and the brain, as well as potential useful therapeutic targets.
Collapse
Affiliation(s)
- Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ruofei Tian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Xingdou Mu
- Department of Breast and Thyroid Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Cheng Chen
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Internal Medicine, Central Health Center of Huilong Town, Shangluo, China
| | - Yuxi Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yingying Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- College of Life Science, Northwest University, Xi’an, China
| | - Miao Zhang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- The Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|