1
|
Krafčíková MD, Beriashvili D, Bahri S, Bergmeijer M, Howes SC, Gurinov A, Förster FG, Folkers GE, Baldus M. A DNP-Supported Solid-State NMR Approach to Study Nucleic Acids In Situ Reveals Berberine-Stabilized Hoogsteen Structures in Mitochondria. Angew Chem Int Ed Engl 2025; 64:e202424131. [PMID: 40052409 DOI: 10.1002/anie.202424131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Mitochondria are central to cellular bioenergetics, with the unique ability to translate and transcribe a subset of their own proteome. Given the critical importance of energy production, mitochondria seem to utilize higher-order nucleic acid structures to regulate gene expression, much like nuclei. Herein, we introduce a tailored approach to probe the formation of such structures, specifically G-quadruplexes, within intact mitochondria by using sensitivity-enhanced dynamic nuclear polarization-supported solid-state NMR (DNP-ssNMR). We acquired NMR spectra on isolated intact isotopically labeled mitochondria treated with berberine, a known high-affinity G-quadruplex stabilizer. The DNP-ssNMR data revealed spectral changes in nucleic acid sugar correlations, increased signal intensity for guanosine carbons, and enhanced Hoogsteen hydrogen bond formation, providing evidence of in vivo G-quadruplex formation in mitochondria. Together, our workflow enables the study of mitochondrial nucleic acid-ligand interactions at endogenous concentrations within biologically relevant environments by DNP-ssNMR, thus paving the way for future research into mitochondrial diseases and their potential treatments.
Collapse
Affiliation(s)
- Michaela Dzurov Krafčíková
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Menno Bergmeijer
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Stuart C Howes
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Friedrich G Förster
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht, 3584CG, The Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| |
Collapse
|
2
|
Han Z, Wen L. G-quadruplex in cancer energy metabolism: A potential therapeutic target. Biochim Biophys Acta Gen Subj 2025; 1869:130810. [PMID: 40254103 DOI: 10.1016/j.bbagen.2025.130810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
In recent years, energy metabolism in cancer has received increasing attention as an important component of tumor biology, and the functions of transcription factors, mitochondria, reactive oxygen species (ROS) and the autophagy-lysosome system in which have been elucidated. G-quadruplex (G4) is a molecular switch that regulates gene transcription or translation. As an anticancer target, the effect of G4 on cancer cell proliferation, apoptosis, cycle and autophagy has been recognized. The energy metabolism system is a unified whole composed of transcription factors, metabolic regulators, metabolites and signaling pathways that run through the entire cancer process. However, the role of G4 in this complex metabolic network has not been systematically elucidated. In this review, we analyze the close correlation between G4 and transcription factors, mitochondria, ROS and the autophagy-lysosome system and suggest that G4 can exert a marked effect on cancer energy metabolism by regulating the above mentioned key regulatory elements. The anticancer effects of some G4 ligands through regulation of energy metabolism have also been summarized, confirming the clear involvement of G4 in energy metabolism. Although much more research is needed, we propose that G4 may play a critical role in the complex energy metabolism system of cancer, which is a promising target for anticancer strategies focusing on energy metabolism.
Collapse
Affiliation(s)
- Zongqiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Lina Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
3
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Brázda V, Šislerová L, Cucchiarini A, Mergny JL. G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes. NAR Genom Bioinform 2024; 6:lqae060. [PMID: 38817800 PMCID: PMC11137754 DOI: 10.1093/nargab/lqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anne Cucchiarini
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
5
|
Brázda V, Valková N, Dobrovolná M, Mergny JL. Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes. ACS OMEGA 2024; 9:4096-4101. [PMID: 38284014 PMCID: PMC10809645 DOI: 10.1021/acsomega.3c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Hepatitis delta virus (HDV) is a highly unusual RNA satellite virus that depends on the presence of hepatitis B virus (HBV) to be infectious. Its compact and variable single-stranded RNA genome consists of eight major genotypes distributed unevenly across different continents. The significance of noncanonical secondary structures such as G-quadruplexes (G4s) is increasingly recognized at the DNA and RNA levels, particularly for transcription, replication, and translation. G4s are formed from guanine-rich sequences and have been identified in the vast majority of viral, eukaryotic, and prokaryotic genomes. In this study, we analyzed the G4 propensity of HDV genomes by using G4Hunter. Unlike HBV, which has a G4 density similar to that of the human genome, HDV displays a significantly higher number of potential quadruplex-forming sequences (PQS), with a density more than four times greater than that of the human genome. This finding suggests a critical role for G4s in HDV, especially given that the PQS regions are conserved across HDV genotypes. Furthermore, the prevalence of G4-forming sequences may represent a promising target for therapeutic interventions to control HDV replication.
Collapse
Affiliation(s)
- Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, Brno 61200, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, Brno 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau 91120, France
| |
Collapse
|
6
|
Valle-Orero J, Rieu M, Allemand JF, Bujaa D, Joubert A, Tran PLT, Croquette V, Boulé JB. Observing G4 formation and its resolution by Pif1 in real time by manipulation under magnetic tweezers. Methods Enzymol 2024; 695:119-158. [PMID: 38521583 DOI: 10.1016/bs.mie.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplexes (G4s) are nucleic acids secondary structures that may form in guanine-rich sequences, either intra or inter-molecularly. Ability of a primary sequence to form a G4 can be predicted computationally with an improving accuracy as well as tested in bulk using biophysical measurements. As a result, G4 density maps have been devised for a large number of genomes from all life kingdoms. Experimental validation of the formation of G4s in vivo however remains indirect and relies on their stabilization with small molecules, antibodies or proteins, or mutational studies, in order to measure downstream effects on gene expression or genome stability for example. Although numerous techniques exist to observe spontaneous formation of G4s in single-stranded DNA, observing G4 formation in double-stranded DNA (dsDNA) is more challenging. However, it is particularly relevant to understand if a given G4 sequence forms stably in a dsDNA context, if it is stable enough to dock proteins or pose a challenge to molecular motors such as helicases or polymerases. In essence, G4s can be a threat to genomic stability but carry as well as the potential to be elements of a structural language in the non-replicating genome. To study quantitatively the formation dynamics and stability of single intramolecular G4s embedded in dsDNA, we have adapted techniques of DNA manipulation under magnetic tweezers. This technique also allows to study encounters of molecular motors with G4 at a single molecule resolution, in order to gain insight into the specificity of G4 resolution by molecular motors, and its efficiency. The procedures described here include the design of the G4 substrate, the study of G4 formation probability and lifetime in dsDNA, as well as procedures to characterize the encounter between the Pif1 helicase and a G4 until G4 resolution. The procedures that we described here can easily be extended to the study of other G4s or molecular motors.
Collapse
Affiliation(s)
- Jessica Valle-Orero
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France; Department of Computer Science, Mathematics and Environmental Sciences, The American University of Paris, Paris, France.
| | - Martin Rieu
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France; Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Jean-François Allemand
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France
| | - Dulamkhuu Bujaa
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France
| | - Alexandra Joubert
- Genome Structure and Instability Laboratory, National Museum of Natural History, CNRS, INSERM, Sorbonne University Alliance, Paris, France
| | - Phong Lan Thao Tran
- Genome Structure and Instability Laboratory, National Museum of Natural History, CNRS, INSERM, Sorbonne University Alliance, Paris, France; Depixus SAS, 3-5 impasse Reille, Paris, France
| | - Vincent Croquette
- Physics Laboratory of the École Normale Supérieure, CNRS, ENS, PSL University, Sorbonne University, Paris-Cité University, Paris, France; Biology Institute of the École Normale Supérieure (IBENS), ENS, CNRS, INSERM, PSL University, Paris, France; ESPCI Paris, PSL University, Paris, France.
| | - Jean-Baptiste Boulé
- Genome Structure and Instability Laboratory, National Museum of Natural History, CNRS, INSERM, Sorbonne University Alliance, Paris, France.
| |
Collapse
|
7
|
Porubiaková O, Havlík J, Indu, Šedý M, Přepechalová V, Bartas M, Bidula S, Šťastný J, Fojta M, Brázda V. Variability of Inverted Repeats in All Available Genomes of Bacteria. Microbiol Spectr 2023; 11:e0164823. [PMID: 37358458 PMCID: PMC10434271 DOI: 10.1128/spectrum.01648-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
Noncanonical secondary structures in nucleic acids have been studied intensively in recent years. Important biological roles of cruciform structures formed by inverted repeats (IRs) have been demonstrated in diverse organisms, including humans. Using Palindrome analyser, we analyzed IRs in all accessible bacterial genome sequences to determine their frequencies, lengths, and localizations. IR sequences were identified in all species, but their frequencies differed significantly across various evolutionary groups. We detected 242,373,717 IRs in all 1,565 bacterial genomes. The highest mean IR frequency was detected in the Tenericutes (61.89 IRs/kbp) and the lowest mean frequency was found in the Alphaproteobacteria (27.08 IRs/kbp). IRs were abundant near genes and around regulatory, tRNA, transfer-messenger RNA (tmRNA), and rRNA regions, pointing to the importance of IRs in such basic cellular processes as genome maintenance, DNA replication, and transcription. Moreover, we found that organisms with high IR frequencies were more likely to be endosymbiotic, antibiotic producing, or pathogenic. On the other hand, those with low IR frequencies were far more likely to be thermophilic. This first comprehensive analysis of IRs in all available bacterial genomes demonstrates their genomic ubiquity, nonrandom distribution, and enrichment in genomic regulatory regions. IMPORTANCE Our manuscript reports for the first time a complete analysis of inverted repeats in all fully sequenced bacterial genomes. Thanks to the availability of unique computational resources, we were able to statistically evaluate the presence and localization of these important regulatory sequences in bacterial genomes. This work revealed a strong abundance of these sequences in regulatory regions and provides researchers with a valuable tool for their manipulation.
Collapse
Affiliation(s)
- Otília Porubiaková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Havlík
- Mendel University in Brno, Brno, Czech Republic
| | - Indu
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Šedý
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Veronika Přepechalová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jiří Šťastný
- Mendel University in Brno, Brno, Czech Republic
- Brno University of Technology, Faculty of Mechanical Engineering, Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| |
Collapse
|
8
|
Pečinka P, Bohálová N, Volná A, Kundrátová K, Brázda V, Bartas M. Analysis of G-Quadruplex-Forming Sequences in Drought Stress-Responsive Genes, and Synthesis Genes of Phenolic Compounds in Arabidopsis thaliana. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010199. [PMID: 36676148 PMCID: PMC9865073 DOI: 10.3390/life13010199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Sequences of nucleic acids with the potential to form four-stranded G-quadruplex structures are intensively studied mainly in the context of human diseases, pathogens, or extremophile organisms; nonetheless, the knowledge about their occurrence and putative role in plants is still limited. This work is focused on G-quadruplex-forming sites in two gene sets of interest: drought stress-responsive genes, and genes related to the production/biosynthesis of phenolic compounds in the model plant organism Arabidopsis thaliana. In addition, 20 housekeeping genes were analyzed as well, where the constitutive gene expression was expected (with no need for precise regulation depending on internal or external factors). The results have shown that none of the tested gene sets differed significantly in the content of G-quadruplex-forming sites, however, the highest frequency of G-quadruplex-forming sites was found in the 5'-UTR regions of phenolic compounds' biosynthesis genes, which indicates the possibility of their regulation at the mRNA level. In addition, mainly within the introns and 1000 bp flanks downstream gene regions, G-quadruplex-forming sites were highly underrepresented. Finally, cluster analysis allowed us to observe similarities between particular genes in terms of their PQS characteristics. We believe that the original approach used in this study may become useful for further and more comprehensive bioinformatic studies in the field of G-quadruplex genomics.
Collapse
Affiliation(s)
- Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 70833 Ostrava, Czech Republic
| | - Natália Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Adriana Volná
- Department of Physics, University of Ostrava, 70833 Ostrava, Czech Republic
| | - Kristýna Kundrátová
- Department of Biology and Ecology, University of Ostrava, 70833 Ostrava, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 70833 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Dobrovolná M, Brázda V, Warner EF, Bidula S. Inverted repeats in the monkeypox virus genome are hot spots for mutation. J Med Virol 2023; 95:e28322. [PMID: 36400742 PMCID: PMC10100261 DOI: 10.1002/jmv.28322] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The current monkeypox virus (MPXV) strain differs from the strain arising in 2018 by 50+ single nucleotide polymorphisms (SNPs) and is mutating much faster than expected. The cytidine deaminase apolipoprotein B messenger RNA editing enzyme, catalytic subunit B (APOBEC3) was hypothesized to be driving this increased mutation. APOBEC has recently been identified to preferentially mutate cruciform DNA secondary structures formed by inverted repeats (IRs). IRs were recently identified as hot spots for mutation in severe acute respiratory syndrome coronavirus 2, and we aimed to identify whether IRs were also hot spots for mutation within MPXV genomes. We found that MPXV genomes were replete with IR sequences. Of the 50+ SNPs identified in the 2022 outbreak strain, 63.9% of these were found to have arisen within IR regions in the 2018 reference strain (MT903344.1). Notably, IR sequences found in the 2018 reference strain were significantly lost over time, with an average of 32.5% of these sequences being conserved in the 2022 MPXV genomes. This evidence was highly indicative that mutations were arising within IRs. This data provides further support to the hypothesis that APOBEC may be driving MPXV mutation and highlights the necessity for greater surveillance of IRs of MPXV genomes to detect new mutations.
Collapse
Affiliation(s)
- Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Emily F Warner
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
10
|
Sahayasheela VJ, Yu Z, Hidaka T, Pandian GN, Sugiyama H. Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends Genet 2023; 39:15-30. [PMID: 36414480 PMCID: PMC9772288 DOI: 10.1016/j.tig.2022.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria. In this review, we report the observation that the number of potential G4-forming sequences in the mitochondrial genome increases with the evolutionary complexity of different species, suggesting that G4s have a beneficial role in higher-order organisms. We also discuss the possible function of G4s in mitochondrial (mt)DNA and long noncoding (lnc)RNA and their role in various biological processes.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Dobrovolná M, Bohálová N, Peška V, Wang J, Luo Y, Bartas M, Volná A, Mergny JL, Brázda V. The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation. Int J Mol Sci 2022; 23:8482. [PMID: 35955617 PMCID: PMC9369095 DOI: 10.3390/ijms23158482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
Collapse
Affiliation(s)
- Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
| | - Jiawei Wang
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
| | - Yu Luo
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, CEDEX, 91405 Orsay, France
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Detecting G4 unwinding. Methods Enzymol 2022; 672:261-281. [DOI: 10.1016/bs.mie.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|