1
|
Burge KY, Georgescu C, Zhong H, Wilson AP, Gunasekaran A, Yu Z, Franca A, Eckert JV, Wren JD, Chaaban H. Spatial transcriptomics delineates potential differences in intestinal phenotypes of cardiac and classical necrotizing enterocolitis. iScience 2025; 28:112166. [PMID: 40201118 PMCID: PMC11978348 DOI: 10.1016/j.isci.2025.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease, often resulting in multi-organ failure and death. While classical NEC is strictly associated with prematurity, cardiac NEC is a subset of the disease occurring in infants with comorbid congenital heart disease. Despite similar symptomatology, the NEC subtypes vary slightly in presentation and may represent etiologically distinct diseases. We compared ileal spatial transcriptomes of patients with cardiac and classical NEC. Epithelial and immune cells cluster well by cell-type segment and NEC subtype. Differences in metabolism and immune cell activation functionally differentiate the cell-type makeup of the NEC subtypes. The classical NEC phenotype is defined by dysbiosis-induced inflammatory signaling and metabolic acidosis, while that of cardiac NEC involves reduced angiogenesis and endoplasmic reticulum stress-induced apoptosis. Despite subtype-associated clinical and demographic variability, spatial transcriptomics has substantiated pathway and network differences within immune and epithelial segments between cardiac and classical NEC.
Collapse
Affiliation(s)
- Kathryn Y. Burge
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P. Wilson
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Aarthi Gunasekaran
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Addison Franca
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeffrey V. Eckert
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Walker EM, Pearson GL, Lawlor N, Stendahl AM, Lietzke A, Sidarala V, Zhu J, Stromer T, Reck EC, Li J, Levi-D’Ancona E, Pasmooij MB, Hubers DL, Renberg A, Mohamed K, Parekh VS, Zhang IX, Thompson B, Zhang D, Ware SA, Haataja L, Qi N, Parker SCJ, Arvan P, Yin L, Kaufman BA, Satin LS, Sussel L, Stitzel ML, Soleimanpour SA. Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues. Science 2025; 388:eadf2034. [PMID: 39913641 PMCID: PMC11985298 DOI: 10.1126/science.adf2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/13/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Mitochondrial damage is a hallmark of metabolic diseases, including diabetes, yet the consequences of compromised mitochondria in metabolic tissues are often unclear. In this work, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity in β cells, hepatocytes, and brown adipocytes. Targeted deficiency throughout the mitochondrial quality control pathway, including genome integrity, dynamics, or turnover, impaired the oxidative phosphorylation machinery, activating the mitochondrial integrated stress response, eliciting chromatin remodeling, and promoting cellular immaturity rather than apoptosis to yield metabolic dysfunction. Pharmacologic blockade of the integrated stress response in vivo restored β cell identity after the loss of mitochondrial quality control. Targeting mitochondrial retrograde signaling may therefore be promising in the treatment or prevention of metabolic disorders.
Collapse
Affiliation(s)
- Emily M. Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gemma L. Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ava M. Stendahl
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anne Lietzke
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tracy Stromer
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma C. Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jin Li
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Levi-D’Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mabelle B. Pasmooij
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dre L. Hubers
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kawthar Mohamed
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vishal S. Parekh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Irina X. Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Thompson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A. Ware
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C. J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brett A. Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leslie S. Satin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Borgne-Sanchez A, Fromenty B. Mitochondrial dysfunction in drug-induced hepatic steatosis: Recent findings and current concept. Clin Res Hepatol Gastroenterol 2025; 49:102529. [PMID: 39798918 DOI: 10.1016/j.clinre.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα). Many drugs have been shown to cause mitochondrial dysfunction, which can lead to acute and chronic liver lesions. While severe inhibition of mitochondrial FAO would eventually cause microvesicular steatosis, hypoglycemia, and liver failure, moderate impairment of this metabolic pathway can induce macrovacuolar steatosis, which can progress in the long term to steatohepatitis and cirrhosis. Drugs can impair mitochondrial FAO through several mechanisms including direct inhibition of FAO enzymes, sequestration of coenzyme A and l-carnitine, impairment of the activity of one or several MRC complexes and reduced PPARα expression. In drug-induced macrovacuolar steatosis, non-mitochondrial mechanisms can also be involved in lipid accumulation including increased de novo lipogenesis and reduced very-low-density lipoprotein secretion. Nonetheless, mitochondrial dysfunction and subsequent oxidative stress appear to be key events in the progression of steatosis to steatohepatitis. Patients suffering from metabolic dysfunction-associated steatotic liver disease (MASLD) and treated with mitochondriotoxic drugs should be closely monitored to reduce the risk of acute liver injury or a faster transition of steatosis to steatohepatitis. Therapies based on the mitochondrial cofactor l-carnitine, the antioxidant N-acetylcysteine, or thyromimetics might be useful to prevent or treat drug-induced mitochondrial dysfunction, steatosis, and steatohepatitis.
Collapse
Affiliation(s)
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France.
| |
Collapse
|
4
|
Wang Z, Gu Y, Wang H, Chen Y, Chen H, Wang X, Yuan W. FOXG1 interaction with SATB2 promotes autophagy to alleviate neuroinflammation and mechanical abnormal pain in rats with lumbar disc herniation. Ann Med 2024; 56:2399967. [PMID: 39624968 PMCID: PMC11616759 DOI: 10.1080/07853890.2024.2399967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Most patients with lumbar disc herniation can be relieved or cured by surgical or non-surgical treatment; however, postoperative persistent radiculopathy is common. This study demonstrates the regulation of autophagy by the FOXG1/SATB2 axis in lumbar disc herniation (LDH). METHODS Rat dorsal root neurons were induced with TNF-α in vitro. Sprague Dawley (SD) rats were used to construct the LDH rat model, which was treated with L. paracasei S16 or oe-FOXG1. Paw withdrawal threshold or latency assay (PWT/L) was performed. Peripheral blood samples were collected and analysed using ELISA and miRNAseq. RT-qPCR was used to analyse the expression of FOXG1, LC3B, Beclin1, p62, and SATB2. TUNEL staining and flow cytometry were used to analyse apoptosis. The expression of Cyclin D1, PCNA, Ki67, FOXG1, SATB2, and autophagy proteins was measured using western blotting. RESULTS TNF-α induced low expression of FOXG1 and SATB2 in dorsal root ganglion (DRG) neurons of rats. TNF-α induced an increase in p62 protein and a decrease in LC3II/I and Beclin-1 proteins in neurons, which were blocked by oe-FOXG1. oe-FOXG1 suppressed inflammation and apoptosis in TNF-α-induced DRG neurons and LDH rats and promoted the expression of Cyclin D1, PCNA, and Ki67. Many miRNAs were increased in the peripheral blood of LDH rats, but decreased after L. paracasei S16 intervention. L. paracasei S16 affects miR-31a-5p and SATB2 expression. Dual luciferase reporter gene assay confirmed that miR-31a-5p bound to SATB2. Co-IP analysis confirmed the interaction between FOXG1 and SATB2. Silencing of SATB2 inhibited the beneficial effects of oe-FOXG1 in TNF-α-induced dorsal root ganglion neurons. Animal experiments further demonstrated that oe-FOXG1 improved LDH disease characteristics by downregulating PWT, PWL, inflammation, and apoptosis levels and upregulating SATB2-autophagy levels. CONCLUSIONS MiR-31a-5p/SATB2 is involved in the treatment of L. paracasei S16 in LDH rats. Overexpression of FOXG1 promotes autophagy through SATB2 to improve LDH levels This provides a new approach for the treatment of LDH.
Collapse
Affiliation(s)
- Zhanchao Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifei Gu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hui Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huajiang Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinwei Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Chen S, Sun D, Zhang S, Xu L, Wang N, Li H, Xu X, Wei F. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. Cell Death Differ 2024; 31:1487-1505. [PMID: 39080375 PMCID: PMC11519896 DOI: 10.1038/s41418-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive dysfunction of the retinal pigment epithelium (RPE) and the adjacent photoreceptor cells in the outer retina plays a pivotal role in the pathogenesis of diabetic retinopathy (DR). Here, we observed a marked increase in oxidative stress-induced apoptosis in parallel with higher expression of telomeric protein TIN2 in RPE cells under hyperglycemia in vivo and in vitro. Delving deeper, we confirm that high glucose-induced elevation of mitochondria-localized TIN2 compromises mitochondrial activity and weakens the intrinsic antioxidant defense, thereby leading to the activation of mitochondria-dependent apoptotic pathways. Mechanistically, mitochondrial TIN2 promotes the phosphorylation of FOXO1 and its relocation to the mitochondria. Such translocation of transcription factor FOXO1 not only promotes its binding to the D-loop region of mitochondrial DNA-resulting in the inhibition of mitochondrial respiration-but also hampers its availability to nuclear target DNA, thereby undermining the intrinsic antioxidant defense. Moreover, TIN2 knockdown effectively mitigates oxidative-induced apoptosis in diabetic mouse RPE by preserving mitochondrial homeostasis, which concurrently prevents secondary photoreceptor damage. Our study proposes the potential of TIN2 as a promising molecular target for therapeutic interventions for diabetic retinopathy, which emphasizes the potential significance of telomeric proteins in the regulation of metabolism and mitochondrial function. Created with BioRender ( https://www.biorender.com/ ).
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
6
|
Wei X, Xiong X, Wang P, Zhang S, Peng D. SIRT1-mediated deacetylation of FOXO3 enhances mitophagy and drives hormone resistance in endometrial cancer. Mol Med 2024; 30:147. [PMID: 39266959 PMCID: PMC11391609 DOI: 10.1186/s10020-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The complex interplay between Sirtuin 1 (SIRT1) and FOXO3 in endometrial cancer (EC) remains understudied. This research aims to unravel the interactions of deacetylase SIRT1 and transcription factor FOXO3 in EC, focusing on their impact on mitophagy and hormone resistance. METHODS High-throughput sequencing, cell experiments, and bioinformatics tools were employed to investigate the roles and interactions of SIRT1 and FOXO3 in EC. Co-immunoprecipitation (Co-IP) assay was used to assess the interaction between SIRT1 and FOXO3 in RL95-2 cells. Functional assays were used to assess cell viability, proliferation, migration, invasion, apoptosis, and the expression of related genes and proteins. A mouse model of EC was established to evaluate tumor growth and hormone resistance under different interventions. Immunohistochemistry and TUNEL assays were used to assess protein expression and apoptosis in tumor tissues. RESULTS High-throughput transcriptome sequencing revealed a close association between SIRT1, FOXO3, and EC development. Co-IP showed a protein-protein interaction between SIRT1 and FOXO3. Overexpression of SIRT1 enhanced FOXO3 deacetylation and activity, promoting BNIP3 transcription and PINK1/Parkin-mediated mitophagy, which in turn promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro, as well as increased tumor growth and hormone resistance in vivo. These findings highlighted SIRT1 as an upstream regulator and potential therapeutic target in EC. CONCLUSION This study reveals a novel molecular mechanism underlying the functional relevance of SIRT1 in regulating mitophagy and hormone resistance through the deacetylation of FOXO3 in EC, thereby providing valuable insights for new therapeutic strategies.
Collapse
Affiliation(s)
- Xuehua Wei
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Xiangpeng Xiong
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 336000, China
| | - Pingping Wang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Shufang Zhang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, 518000, China
| | - Dongxian Peng
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Xie C, Chan L, Pang Y, Shang Y, Cao W, Tuohan M, Deng Q, Wang Y, Zhao L, Wang W. Caffeic acid inhibits the tumorigenicity of triple-negative breast cancer cells through the FOXO1/FIS pathway. Biomed Pharmacother 2024; 178:117158. [PMID: 39042963 DOI: 10.1016/j.biopha.2024.117158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) still one of the most challenging sub-type in breast cancer clinical. Caffeic acid (CA) derived from effective components of traditional Chinese herbal medicine has been show potential against TNBCs. Our research has found that CA can inhibit the proliferation of TNBC cells while also suppressing the size of cancer stem cell spheres. Additionally, it reduces reactive oxygen species (ROS) levels and disruption of mitochondrial membrane potential. Simultaneously, CA influences the stemness of TNBC cells by reducing the expression of the stem cell marker protein CD44. Furthermore, we have observed that CA can modulate the FOXO1/FIS signaling pathway, disrupting mitochondrial function, inducing mitochondrial autophagy, and exerting anti-tumor activity. Additionally, changes in the immune microenvironment were detected using a mass cytometer, we found that CA can induce M1 polarization of macrophages, enhancing anti-tumor immune responses to exert anti-tumor activity. In summary, CA can be considered as a lead compound for further research in targeting TNBC.
Collapse
Affiliation(s)
- Chufei Xie
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang 550025, China
| | - Liujia Chan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Yuheng Pang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, 150, Haping Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Yuefeng Shang
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, 150, Haping Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Weifang Cao
- Institute of Basic Medicine, Chinese Academy of Medical Science, 5, Third Dongdan Alley, Dongcheng District, Beijing 100000, China
| | - Marmar Tuohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Qian Deng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, 10, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China.
| | - Lichun Zhao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang 550025, China; Science Experimental Center, Guangxi University of Traditional Chinese Medicine, 13, Wuhe Avenue, Qingxiu District, Nanning 530200, China.
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, 8, Xitoutiao, Right Anmen West, Fengtai District, Beijing 100069, China.
| |
Collapse
|
8
|
Niu Q, Lin C, Yang S, Rong S, Wei J, Zhao T, Peng Y, Cheng Z, Xie Y, Wang Y. FoxO1-Overexpressed Small Extracellular Vesicles Derived from hPDLSCs Promote Periodontal Tissue Regeneration by Reducing Mitochondrial Dysfunction to Regulate Osteogenesis and Inflammation. Int J Nanomedicine 2024; 19:8751-8768. [PMID: 39220194 PMCID: PMC11365494 DOI: 10.2147/ijn.s470419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Qingru Niu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Chuanmiao Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Shuqing Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Shuxuan Rong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Junbin Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Tingting Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yingying Peng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Zhilan Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yunyi Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, People’s Republic of China
- Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
9
|
Nomura K, Kimira Y, Kobayashi R, Shiobara Y, Osawa Y, Kataoka-Matsushita A, Shimizu J, Wada M, Mano H. Collagen-derived dipeptide prolyl-hydroxyproline cooperates with Foxg1 to activate the PGC-1α promoter and induce brown adipocyte-like phenotype in rosiglitazone-treated C3H10T1/2 cells. Front Nutr 2024; 11:1375532. [PMID: 38812940 PMCID: PMC11133597 DOI: 10.3389/fnut.2024.1375532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Background The global obesity epidemic is a significant public health issue, often leading to metabolic disorders such as diabetes and cardiovascular diseases. Collagen peptides (CP) and their bioactive component, Prolyl-hydroxyproline (Pro-Hyp), have shown potential in reducing adipocyte size, with unclear mechanisms concerning brown adipocyte differentiation. Methods We investigated the effects of Pro-Hyp on the differentiation of brown adipocytes in C3H10T1/2 mesenchymal stem cells, focusing on its impact on adipocyte size, gene expression related to brown fat function, and mitochondrial activity. Results Pro-Hyp treatment decreased adipocyte size and upregulated brown fat-specific genes, including C/EBPα, PGC-1α, and UCP-1. Remarkably, it did not alter PPARγ expression. Pro-Hyp also elevated mitochondrial activity, suggesting enhanced brown adipocyte functionality. A Pro-Hyp responsive element was identified in the PGC-1α gene promoter, which facilitated the binding of the Foxg1 transcription factor, indicating a novel regulatory mechanism. Conclusion Pro-Hyp promotes brown adipocyte differentiation, potentially offering a therapeutic strategy for obesity management. This study provides a molecular basis for the anti-obesity effects of CP, although further in vivo studies are needed to confirm these findings and to investigate the potential impact on beige adipocyte differentiation.
Collapse
Affiliation(s)
- Kaho Nomura
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoshifumi Kimira
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Ryosuke Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yuna Shiobara
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yoshihiro Osawa
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | | | - Jun Shimizu
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Masahiro Wada
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Hiroshi Mano
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| |
Collapse
|
10
|
Lin X, Fei MZ, Huang AX, Yang L, Zeng ZJ, Gao W. Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion. Free Radic Biol Med 2024; 212:477-492. [PMID: 38190924 DOI: 10.1016/j.freeradbiomed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Forkhead box O3a (FOXO3a)-mediated mitochondrial dysfunction plays a pivotal effect on cardiac hypertrophy and heart failure (HF). However, the role and underlying mechanisms of FOXO3a, regulated by breviscapine (BRE), on mitochondrial function in HF therapy remain unclear. This study reveals that BRE-induced nuclear translocation of FOXO3a facilitates mitofusin-1 (MFN-1)-dependent mitochondrial fusion in cardiac hypertrophy and HF. BRE effectively promotes cardiac function and ameliorates cardiac remodeling in pressure overload-induced mice. In addition, BRE mitigates phenylephrine (PE)-induced cardiac hypertrophy in cardiomyocytes and fibrosis remodeling in fibroblasts by inhibiting ROS production and promoting mitochondrial fusion, respectively. Transcriptomics analysis underscores the close association between the FOXO pathway and the protective effect of BRE against HF, with FOXO3a emerging as a potential target of BRE. BRE potentiates the nuclear translocation of FOXO3a by attenuating its phosphorylation, other than its acetylation in cardiac hypertrophy. Mechanistically, over-expression of FOXO3a significantly inhibits cardiac hypertrophy and mitochondrial injury by promoting MFN-1-mediated mitochondrial fusion. Furthermore, BRE demonstrates its ability to substantially curb cardiac hypertrophy, reduce mitochondrial ROS production, and enhance MFN-1-mediated mitochondrial fusion through a FOXO3a-dependent mechanism. In conclusion, nuclear FOXO3a translocation induced by BRE presents a successful therapeutic avenue for addressing cardiac hypertrophy and HF through promoting MFN-1-dependent mitochondrial fusion.
Collapse
Affiliation(s)
- Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ming-Zhou Fei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - An-Xian Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
11
|
Zhou L, Su W, Wang Y, Zhang Y, Xia Z, Lei S. FOXO1 reduces STAT3 activation and causes impaired mitochondrial quality control in diabetic cardiomyopathy. Diabetes Obes Metab 2024; 26:732-744. [PMID: 37961034 DOI: 10.1111/dom.15369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
AIMS To investigate the role of FOXO1 in STAT3 activation and mitochondrial quality control in the diabetic heart. METHODS Type 1 diabetes mellitus (T1DM) was induced in rats by a single intraperitoneal injection of 60 mg · kg-1 streptozotocin (STZ), while type 2 diabetes mellitus (T2DM) was induced in rats with a high-fat diet through intraperitoneal injection of 35 mg · kg-1 STZ. Primary neonatal mouse cardiomyocytes and H9c2 cells were exposed to low glucose (5.5 mM) or high glucose (HG; 30 mM) with or without treatment with the FOXO1 inhibitor AS1842856 (1 μM) for 24 hours. In addition, the diabetic db/db mice (aged 8 weeks) and sex- and age-matched non-diabetic db/+ mice were treated with vehicle or AS1842856 by oral gavage for 15 days at a dose of 5 mg · kg-1 · d-1 . RESULTS Rats with T1DM or T2DM had excessive cardiac FOXO1 activation, accompanied by decreased STAT3 activation. Immunofluorescence and immunoprecipitation analysis showed colocalization and association of FOXO1 and STAT3 under basal conditions in isolated cardiomyocytes. Selective inhibition of FOXO1 activation by AS1842856 or FOXO1 siRNA transfection improved STAT3 activation, mitophagy and mitochondrial fusion, and decreased mitochondrial fission in isolated cardiomyocytes exposed to HG. Transfection with STAT3 siRNA further reduced mitophagy, mitochondrial fusion and increased mitochondrial fission in HG-treated cardiomyocytes. AS1842856 alleviated cardiac dysfunction, pathological damage and improved STAT3 activation, mitophagy and mitochondrial dynamics in diabetic db/db mice. Additionally, AS1842856 improved mitochondrial function indicated by increased mitochondrial membrane potential and adenosine triphosphate production and decreased mitochondrial reactive oxygen species production in isolated cardiomyocytes exposed to HG. CONCLUSIONS Excessive FOXO1 activation during diabetes reduces STAT3 activation, with subsequent impairment of mitochondrial quality, ultimately promoting the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuefu Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 669] [Impact Index Per Article: 334.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
13
|
Buczyńska A, Sidorkiewicz I, Kościuszko M, Adamska A, Siewko K, Dzięcioł J, Szumowski P, Myśliwiec J, Popławska-Kita A, Krętowski AJ. The Relationship between Oxidative Status and Radioiodine Treatment Qualification among Papillary Thyroid Cancer Patients. Cancers (Basel) 2023; 15:cancers15092436. [PMID: 37173902 PMCID: PMC10177082 DOI: 10.3390/cancers15092436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Total oxidative status (TOS), total antioxidant capacity (TAC), tumor protein 53 (p53), nuclear factor kappa B (NF-κB), forkhead box protein O1 (FOXO), and sirtuin 1 (SIRT1) play crucial roles in oxidative homeostasis and the progression of papillary thyroid cancer (PTC), as previously demonstrated in the literature. Therefore, profiling these markers among PTC patients may be useful in determining their eligibility for radioiodine (RAI) treatment. Since treatment indications are based on multiple and dynamic recommendations, additional criteria for adjuvant RAI therapy are still needed. In our study, we evaluated the TOS, TAC, and serum concentrations of p53, NF-κB, FOXO, and SIRT1 to analyze the relationship between oxidative status and qualification for RAI treatment. For the purpose of this study, we enrolled 60 patients with PTC allocated for RAI treatment as the study group and 25 very low-risk PTC patients not allocated for RAI treatment as a reference group. The serum TOS and SIRT1 concentrations were significantly higher in the study group compared to the reference group (both p < 0.001), whereas the TAC and p53, NK-κB, and FOXO concentrations were significantly lower (all p < 0.05). We also demonstrated the diagnostic utility of TAC (AUC = 0.987), FOXO (AUC = 0.648), TOS (AUC = 0.664), SIRT1 (AUC = 0.709), p53 (AUC = 0.664), and NF-κB (AUC = 0.651) measurements as indications for RAI treatment based on American Thyroid Association recommendations. Our study revealed that oxidative status-related markers may become additional criteria for RAI treatment in PTC patients.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Maria Kościuszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland
| | - Piotr Szumowski
- Nuclear Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Janusz Myśliwiec
- Nuclear Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej 24a, 15-276 Bialystok, Poland
| |
Collapse
|
14
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
15
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|