1
|
Meng S, Han S, Kong M, Liu Z, Lin A, Qu C, Li L, Ma X, Wang Y. Melatonin Promotes Osteogenic Differentiation of Rat Adipose-Derived Stem Cells via the p38/MAPK Signaling Pathway. FASEB J 2025; 39:e70647. [PMID: 40387393 DOI: 10.1096/fj.202403193rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
While adipose-derived stem cells (ADSCs) transplantation represents an appealing therapeutic strategy for bone defect repair, the osteogenic capacity of ADSCs is largely limited. Melatonin has been demonstrated to contribute to the bone marrow stem cell (BMSC) osteogenesis. However, its effect on the osteogenic differentiation of ADSCs has not yet been determined. This study aims to identify whether melatonin exerts influences on the osteogenic differentiation in rat ADSCs. Rat ADSCs were isolated and identified. Subsequently, the impact of melatonin on the proliferation of rat ADSCs was examined. The effects of melatonin on the phenotypic features as well as marker genes and proteins of osteogenic differentiation were determined through the use of alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red staining (ARS), RT-qPCR, western blot assay, and cellular immunofluorescence assay. To investigate the potential molecular mechanism through which melatonin promotes osteogenic differentiation of rat ADSCs, RNA sequencing, MAPK signaling pathway blocking assay and p38 mRNA interference assay were carried out. The results showed that melatonin at concentrations of 0-100 μM was safe and nontoxic for the proliferation of rat ADSCs, with the concentration at 100 μM exhibiting the most pronounced osteogenesis. Additionally, melatonin was observed to activate the p38/MAPK signaling pathway in rat ADSCs. Moreover, the p38/MAPK pathway inhibitor (SB203580) and siRNA targeting p38 mRNA (p38 siRNA) were found to inhibit the melatonin-promoted osteogenic differentiation of rat ADSCs. In conclusion, the results of this study indicate that melatonin promotes osteogenic differentiation of rat ADSCs through the activation of the p38/MAPK signaling pathway. In light of these findings, melatonin treatment represents an effective strategy for promoting osteogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Shengwei Meng
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
- Department of Spinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong Province, China
| | - Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Meng Kong
- Department of Spinal Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong Province, China
| | - Zhiming Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Antao Lin
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Changpeng Qu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Dong X, Liu H, Yuan D, Gulati K, Liu Y. Re-engineering bone: pathogenesis, diagnosis and emerging therapies for osteoporosis. J Mater Chem B 2025; 13:4938-4963. [PMID: 40192254 DOI: 10.1039/d4tb02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Osteoporosis, a multifaceted metabolic bone disease, is becoming increasingly prevalent and poses a significant burden on global healthcare systems. Given the limitations of traditional treatments such as pharmacotherapy, tissue engineering has emerged as a promising alternative for osteoporosis management. This review begins by exploring the pathogenesis of osteoporosis, with a focus on the abnormal metabolic, cellular, and molecular signalling microenvironments that drive the disease. We also examine commonly used clinical diagnostic techniques, discussing their strengths and limitations. Notably, this review evaluates various advanced tissue engineering strategies for osteoporosis treatment. Delivery systems, including injectable hydrogels and nanomaterials, are detailed alongside bone tissue engineering materials such as bioactive ceramics, bone cements, and polymers. Additionally, biologically active substances, including exosomes and cytokines, and emerging therapies that leverage small-molecule drugs are explored. Through a comprehensive analysis of the advantages and limitations of current biomaterials and therapeutic approaches, this review provides insights into future directions for tissue engineering-based solutions. By synthesizing current advancements, it aims to inspire innovative perspectives for the clinical management of osteoporosis.
Collapse
Affiliation(s)
- Xinyi Dong
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center for Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & Translational Research Center for Oro-craniofacial Stem Cells and Systemic Health, Beijing 100081, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- National Center for Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & Translational Research Center for Oro-craniofacial Stem Cells and Systemic Health, Beijing 100081, China
| | - Dian Yuan
- Hubei University of Science and Technology, School of Dentistry and Optometry, Xianning 430030, China
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Herston, QLD 4006, Australia
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
3
|
Pejon TMM, Messias LHD, de Oliveira Nascimento RH, Bertolucci V, Ninomiya AF, Beck WR. Melatonin administration on bone properties of animals under hypoestrogenism: A systematic review. Rev Endocr Metab Disord 2025; 26:279-291. [PMID: 40009141 DOI: 10.1007/s11154-025-09953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Hypoestrogenism is associated with loss of bone mass and strength. Melatonin has become a strategy due to its actions on bone tissue. This review summarizes the available data on the effects of chronic melatonin administration on bone tissue in animal models with hypoestrogenism. DATA SOURCES A systematic search of the PubMed, Web of Science, and Scopus, databases up to November 27, 2023, was conducted using specified key terms and Boolean operators (bone AND bones OR bone density OR bone diseases OR osteogenesis OR osteoporosis AND melatonin). STUDY SELECTION only controlled studies in English and with rodents. STUDY DESIGN systematic review. DATA EXTRACTION animals' characteristics (sex and hypoestrogenism confirmation), dose, route, and duration of administration of melatonin, and outcomes from the properties of bone. RESULTS A total of 25 studies were identified after the screening process. In the hypoestrogenic state, melatonin administration improved bone mineral density, bone volume ratio, trabecular number in 19 studies, and maximal load/strength and stiffness test in 7. 4 studies reported improved matrix mineralization in bone marrow mesenchymal stem cells. Melatonin increased the expression of RUNX2 in 9 studies, OCN in 6, and OPG in 4, while decreasing RANKL in 3. In 4 studies the melatonin increased the serum osteocalcin levels. CONCLUSION Chronic administration of melatonin appears to improve the biophysical, biomechanical, molecular, and biochemical properties of bone tissue. These benefits promote an osteogenic effect, making melatonin an efficient strategy to preserve microarchitecture and tissue mass in a state of hypoestrogenism.
Collapse
Affiliation(s)
- Taciane Maria Melges Pejon
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, Washington Luis, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Rafael Henrique de Oliveira Nascimento
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, Washington Luis, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - André Felipe Ninomiya
- Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, 12916-900, Brazil
| | - Wladimir Rafael Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, Washington Luis, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
4
|
Zhang D, Zhu T, Bai J, Chen C, Wen J, Zhou Y, Guan X. Melatonin alleviates senile osteoporosis by regulating autophagy and enhancing fracture healing in aged mice. Bone Joint Res 2025; 14:97-110. [PMID: 39912870 PMCID: PMC11801226 DOI: 10.1302/2046-3758.142.bjr-2024-0112.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Aims In our previous research, we have found that melatonin (MEL) affects the osteoporotic process. By balancing bone remoulding, autophagy is involved in age-related bone loss. However, as a regulator of autophagy, whether MEL influences senile osteoporosis via regulating autophagy remains unclear. Methods Cellular, radiological, and histopathological evaluations were performed on 36 16-month-old male C57BL6/L mice or aged bone marrow-derived mesenchymal stem cells. A MEL-gelatin methacrylamide system was constructed to aid osteoporotic fracture healing. Results In this study, we found that bone loss, low level of MEL, and decreased autophagy coexisted in aged C57BL6/L mice. A physiological (low, 10 nM but not 100 nM) concentration of MEL restored bone loss, transformed the cytokine framework, and increased the autophagic level in aged mice, whereas inhibition of autophagy unfavourably reduced the positive effects of MEL on bone mass. The autophagy-conducted increased osteogenic lineage commitment and extracellular matrix mineralization, but not matrix synthesis of aged bone marrow-derived mesenchymal stem cells, was responsible for MEL anabolic effects on bone. PIK3C-AKT-MTOR signal was tested to be a main pathway that is involved in MEL-induced autophagy. Conclusion Our data suggest that the application of MEL can restore degenerative osteogenesis of aged bone marrow-derived mesenchymal stem cells, and has the potential to regain bone mass in aged mice through activating autophagy via the PIK3C-AKT-MTOR pathway. MEL therefore may serve as a potential clinical therapy to treat senile osteoporosis.
Collapse
Affiliation(s)
- Denghui Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Tianer Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jingyao Bai
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Chunchun Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Junru Wen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yi Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xiaoxu Guan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Aykora D, Oral A, Aydeğer C, Uzun M. 3D Bioprinting Strategies for Melatonin‐Loaded Polymers in Bone Tissue Engineering. MACROMOLECULAR MATERIALS AND ENGINEERING 2025; 310. [DOI: 10.1002/mame.202400263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 05/14/2025]
Abstract
AbstractBone pathologies are still among the most challenging issues for orthopedics. Over the past decade, different methods are developed for bone repair. In addition to advanced surgical and graft techniques, polymer‐based biomaterials, bioactive glass, chitosan, hydrogels, nanoparticles, and cell‐derived exosomes are used for bone healing strategies. Owing to their variation and promising advantages, most of these methods are not translated into clinical practice. Three dimensonal (3D) bioprinting is an additive manufacturing technique that has become a next‐generation biomaterial technique adapted for anatomic modeling, artificial tissue or organs, grafting, and bridging tissues. Polymer‐based biomaterials are mostly used for the controlled release of various drugs, therapeutic agents, mesenchymal stem cells, ions, and growth factors. Polymers are now among the most preferable materials for 3D bioprinting. Melatonin is a well‐known antioxidant with many osteoinductive properties and is one of the key hormones in the brain–bone axis. 3D bioprinted melatonin‐loaded polymers with unique lipophilic, anti‐inflammatory, antioxidant, and osteoinductive properties for filling large bone gaps following fractures or congenital bone deformities may be developed in the future. This study summarized the benefits of 3D bioprinted and polymeric materials integrated with melatonin for sustained release in bone regeneration approaches.
Collapse
Affiliation(s)
- Damla Aykora
- Vocational School of Health Services, Bitlis Eren University Bitlis 13000 Türkiye
| | - Ayhan Oral
- Faculty of Science Department of Chemistry Çanakkale Onsekiz Mart University Çanakkale 17100 Türkiye
| | - Cemre Aydeğer
- Faculty of Medicine Department of Physiology Çanakkale Onsekiz Mart University Çanakkale 17100 Türkiye
| | - Metehan Uzun
- Faculty of Medicine Department of Physiology Çanakkale Onsekiz Mart University Çanakkale 17100 Türkiye
| |
Collapse
|
6
|
Petrosyan E, Fares J, Ahuja CS, Lesniak MS, Koski TR, Dahdaleh NS, El Tecle NE. Genetics and pathogenesis of scoliosis. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 20:100556. [PMID: 39399722 PMCID: PMC11470263 DOI: 10.1016/j.xnsj.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Background Scoliosis is defined as a lateral spine curvature of at least 10° with vertebral rotation, as seen on a posterior-anterior radiograph, often accompanied by reduced thoracic kyphosis. Scoliosis affects all age groups: idiopathic scoliosis is the most common spinal disorder in children and adolescents, while adult degenerative scoliosis typically affects individuals over fifty. In the United States, approximately 3 million new cases of scoliosis are diagnosed annually, with a predicted increase in part due to global aging. Despite its prevalence, the etiopathogenesis of scoliosis remains unclear. Methods This comprehensive review analyzes the literature on the etiopathogenetic evidence for both idiopathic and adult degenerative scoliosis. PubMed and Google Scholar databases were searched for studies on the genetic factors and etiopathogenetic mechanisms of scoliosis development and progression, with the search limited to articles in English. Results For idiopathic scoliosis, genetic factors are categorized into three groups: genes associated with susceptibility, disease progression, and both. We identify gene groups related to different biological processes and explore multifaceted pathogenesis of idiopathic scoliosis, including evolutionary adaptations to bipedalism and developmental and homeostatic spinal aberrations. For adult degenerative scoliosis, we segregate genetic and pathogenic evidence into categories of angiogenesis and inflammation, extracellular matrix degradation, neural associations, and hormonal influences. Finally, we compare findings in idiopathic scoliosis and adult degenerative scoliosis, discuss current limitations in scoliosis research, propose a new model for scoliosis etiopathogenesis, and highlight promising areas for future studies. Conclusions Scoliosis is a complex, multifaceted disease with largely enigmatic origins and mechanisms of progression, keeping it under continuous scientific scrutiny.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Christopher S. Ahuja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Tyler R. Koski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nader S. Dahdaleh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Najib E. El Tecle
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
7
|
Zhang K, Wang H, Mo L, Huang X, Yuan C, Liu C. Melatonin attenuates degenerative disc degression by downregulating DLX5 via the TGF/Smad2/3 pathway in nucleus pulposus cells. JOR Spine 2024; 7:e70014. [PMID: 39539538 PMCID: PMC11558270 DOI: 10.1002/jsp2.70014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 08/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, and apoptosis plays a key role in its pathogenesis. Distal-less homeobox 5 (Dlx5) has been reported to induce cell apoptosis. Melatonin, as a powerful antiapoptotic agent, has been widely reported. Aim This study aimed to investigate the role of DLX5 in the pathogenesis of IVDD and the potential therapeutic role of melatonin in targeting DLX5 in IVDD. Materials & Methods Western blotting, RT-qPCR, immunohistochemistry, si-DLX5, Ex-DLX5, flow cytometry, and immunofluorescence were used to examine the regulatory effect of DLX5 on apoptosis. Therapeutic efficacy was assessed by the intraperitoneal injection of melatonin into IVDD mice. Results The expression level of DLX5 is significantly increased in IVDD, and the expression levels were positively correlated with the grade of IVDD. DLX5 was significantly upregulated in TNF-α-induced degenerative NP cells. Degenerative NP cells transfected with si-DLX5 exhibited significantly less apoptosis than control cells. Melatonin significantly alleviated IVDD in surgically induced IVDD model mice. Discussion The results revealed that the expression of DLX5 was positively correlated with the severity of IVDD and that melatonin ameliorated DLX5-induced apoptosis and extracellular matrix imbalance by inhibiting the TGF-β/Smad signaling pathway. This study may provide therapeutic strategies to alleviate inflammation-induced apoptosis IVDD-associated inflammation-induced apoptosis. Conclusion DLX5 plays an important role in IVDD progression by promoting apoptosis, and melatonin represents a promising therapeutic strategy for alleviating IVDD-associated inflammation and apoptosis.
Collapse
Affiliation(s)
- Kuibo Zhang
- Department of Spine SurgeryThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Hua Wang
- Department of Spine SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Ling Mo
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouChina
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chao Yuan
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouChina
| | - Caijun Liu
- The Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong Research Institute for Orthopedics & Traumatology of Chinese MedicineGuangzhouChina
| |
Collapse
|
8
|
Turker Yavas F, Sevil Kilimci F, Akkoc AN, Sahiner HS, Bardakci Yilmaz Ö. Melatonin's protective role against Bisphenol F and S-induced skeletal damage: A morphometric and histological study in rat. Ann Anat 2024; 256:152314. [PMID: 39053668 DOI: 10.1016/j.aanat.2024.152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to evaluate the potential effects of Bisphenol F and S exposure on the skeletal structures of Sprague-Dawley rats. Given the increasing concern about the potential endocrine-disrupting effects of Bisphenol analogs on bone health, this research sought to elucidate their impact in conjunction with Melatonin. Using 80 male Sprague Dawley rats, bones were subjected to a 3-point bending test to assess mechanical properties, and histopathological evaluation was conducted after fixation and decalcification. Statistical analysis was performed using SPSS. The results of the mechanical tests revealed significant differences in deformation and elastic modulus values between groups treated with Bisphenol F+Melatonin and Bisphenol S+Melatonin compared to the control groups. However, the histological images showed no significant differences between the groups. In the discussion, it was noted that the injection of Bisphenol F and Melatonin together increased bone hardness, suggesting that Bisphenol F and Bisphenol S may mitigate the negative effects of melatonin on bone. We attributed the absence of histological differences to the male gender of the studied rats and previous exposure considerations. This study shows that Melatonin can reduce Bisphenol F and Bisphenol S' rapid adjustment effects and increase bone elasticity. The side effects of Bisphenol F and S, as well as the prophylactic effects of Melatonin, can be observed and improved by carefully adjusting the duration, dose, and gender selection.
Collapse
Affiliation(s)
- Firuze Turker Yavas
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Anatomy, Aydin 09016, Turkey.
| | - Figen Sevil Kilimci
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Anatomy, Aydin 09016, Turkey
| | - Ayse Nur Akkoc
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pathology, Aydin 09016, Turkey
| | - Hande Sultan Sahiner
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydin 09016, Turkey
| | - Özge Bardakci Yilmaz
- Aydın Adnan Menderes University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydin 09016, Turkey
| |
Collapse
|
9
|
Sun Q, Xu L, Hu Z, Liu J, Yu T, Li M, Zhang S, Shi F. Melatonin Regulates Osteoblast Differentiation through the m6A Reader hnRNPA2B1 under Simulated Microgravity. Curr Issues Mol Biol 2024; 46:9624-9638. [PMID: 39329924 PMCID: PMC11430354 DOI: 10.3390/cimb46090572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Recent studies have confirmed that melatonin and N6-methyladenosine (m6A) modification can influence bone cell differentiation and bone formation. Melatonin can also regulate a variety of biological processes through m6A modification. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) serves as a reader of m6A modification. In this study, we used the hindlimb unloading model as an animal model of bone loss induced by simulated microgravity and used 2D clinorotation to simulate a microgravity environment for cells on the ground. We found that hnRNPA2B1 was downregulated both in vitro and in vivo during simulated microgravity. Further investigations showed that hnRNPA2B1 could promote osteoblast differentiation and that overexpression of hnRNPA2B1 attenuated the suppression of osteoblast differentiation induced by simulated microgravity. We also discovered that melatonin could promote the expression of hnRNPA2B1 under simulated microgravity. Moreover, we found that promotion of osteoblast differentiation by melatonin was partially dependent on hnRNPA2B1. Therefore, this research revealed, for the first time, the role of the melatonin/hnRNPA2B1 axis in osteoblast differentiation under simulated microgravity. Targeting this axis may be a potential protective strategy against microgravity-induced bone loss and osteoporosis.
Collapse
Affiliation(s)
- Quan Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China; (Q.S.); (L.X.); (Z.H.); (M.L.)
| | - Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China; (Q.S.); (L.X.); (Z.H.); (M.L.)
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China; (Q.S.); (L.X.); (Z.H.); (M.L.)
| | - Jingchun Liu
- No. 5 Cadet Regiment, School of Basic Medical Sciences, Air Force Medical University, Xi’an 710032, China; (J.L.); (T.Y.)
| | - Tingfei Yu
- No. 5 Cadet Regiment, School of Basic Medical Sciences, Air Force Medical University, Xi’an 710032, China; (J.L.); (T.Y.)
| | - Meng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China; (Q.S.); (L.X.); (Z.H.); (M.L.)
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China; (Q.S.); (L.X.); (Z.H.); (M.L.)
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi’an 710032, China; (Q.S.); (L.X.); (Z.H.); (M.L.)
| |
Collapse
|
10
|
Lv N, Hou M, Deng L, Hua X, Zhou X, Liu H, Zhu X, Xu Y, Qian Z, Li Q, Liu M, He F. A sponge-like nanofiber melatonin-loaded scaffold accelerates vascularized bone regeneration via improving mitochondrial energy metabolism. Mater Today Bio 2024; 26:101078. [PMID: 38765244 PMCID: PMC11101953 DOI: 10.1016/j.mtbio.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT). The hypothesis posited that the sponge-like Scaffold@MT could potentially enhance bone regeneration and angiogenesis by modulating mitochondrial energy metabolism. Melatonin-loaded gelatin and poly-lactic-acid nanofibers were fabricated using electrospinning, then fragmented into shorter fibers. The sponge-like Scaffold@MT was created through a process involving homogenization, low-temperature lyophilization, and chemical cross-linking, while maintaining the microstructure of the continuous nanofibers. The incorporation of short nanofibers led to a low release of melatonin and increased Young's modulus of the scaffold. Scaffold@MT demonstrated positive biocompatibility by promoting a 14.2 % increase in cell proliferation. In comparison to the control group, Scaffold@MT significantly enhanced matrix mineralization by 3.2-fold and upregulated the gene expression of osteoblast-specific markers, thereby facilitating osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Significantly, Scaffold@MT led to a marked enhancement in the mitochondrial energy function of BMMSCs, evidenced by elevated adenosine triphosphate (ATP) production, mitochondrial membrane potential, and protein expression of respiratory chain factors. Furthermore, Scaffold@MT promoted the migration of human umbilical vein endothelial cells (HUVECs) and increased tube formation by 1.3 times compared to the control group, accompanied by an increase in vascular endothelial growth factor (VEGFA) expression. The results of in vivo experiments indicate that the implantation of Scaffold@MT significantly improved vascularized bone regeneration in a distal femur defect in rats. Micro-computed tomography analysis conducted 8 weeks post-surgery revealed that Scaffold@MT led to optimal development of new bone microarchitecture. Histological and immunohistochemical analyses demonstrated that Scaffold@MT facilitated bone matrix deposition and new blood vessel formation at the defect site. Overall, the utilization of melatonin-loaded nanofiber sponges exhibits significant promise as a scaffold that promotes bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Department of Orthopaedics, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopaedics, Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222003, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lei Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xi Hua
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xinfeng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Zhonglai Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Mingming Liu
- Department of Orthopaedics, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, 222003, China
- Department of Orthopaedics, Lianyungang Second People's Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222003, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou, 215000, China
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| |
Collapse
|
11
|
Ma W, Li C. Enhancing postmenopausal osteoporosis: a study of KLF2 transcription factor secretion and PI3K-Akt signaling pathway activation by PIK3CA in bone marrow mesenchymal stem cells. Arch Med Sci 2024; 20:918-937. [PMID: 39050179 PMCID: PMC11264107 DOI: 10.5114/aoms/171785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Mesenchymal stem cells can develop into osteoblasts, making them a promising cell-based osteoporosis treatment. Despite their therapeutic potential, their molecular processes are little known. Bioinformatics and experimental analysis were used to determine the molecular processes of bone marrow mesenchymal stem cell (BMSC) therapy for postmenopausal osteoporosis (PMO). Material and methods We used weighted gene co-expression network analysis (WGCNA) to isolate core gene sets from two GEO microarray datasets (GSE7158 and GSE56815). GeneCards found PMO-related genes. GO, KEGG, Lasso regression, and ROC curve analysis refined our candidate genes. Using the GSE105145 dataset, we evaluated KLF2 expression in BMSCs and examined the link between KLF2 and PIK3CA using Pearson correlation analysis. We created a protein-protein interaction network of essential genes involved in osteoblast differentiation and validated the functional roles of KLF2 and PIK3CA in BMSC osteoblast differentiation in vitro. Results We created 6 co-expression modules from 10 419 differentially expressed genes (DEGs). PIK3CA, the key gene in the PI3K-Akt pathway, was among 197 PMO-associated DEGs. KLF2 also induced PIK3CA transcription in PMO. BMSCs also expressed elevated KLF2. BMSC osteoblast differentiation involved the PI3K-Akt pathway. In vitro, KLF2 increased PIK3CA transcription and activated the PI3K-Akt pathway to differentiate BMSCs into osteoblasts. Conclusions BMSCs release KLF2, which stimulates the PIK3CA-dependent PI3K-Akt pathway to treat PMO. Our findings illuminates the involvement of KLF2 and the PI3K-Akt pathway in BMSC osteoblast development, which may lead to better PMO treatments.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chen Li
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Shi R, Liu Z, Yue H, Li M, Liu S, De D, Li R, Chen Y, Cheng S, Gu X, Jia M, Li J, Li J, Zhang S, Feng N, Fan R, Fu F, Liu Y, Ding M, Pei J. IP 3R1-mediated MAMs formation contributes to mechanical trauma-induced hepatic injury and the protective effect of melatonin. Cell Mol Biol Lett 2024; 29:22. [PMID: 38308199 PMCID: PMC10836028 DOI: 10.1186/s11658-023-00509-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 μmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.
Collapse
Affiliation(s)
- Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Huan Yue
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Simin Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dema De
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Runjing Li
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yunan Chen
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Shuli Cheng
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
13
|
Cardinali DP. Melatonin as a chronobiotic/cytoprotective agent in bone. Doses involved. J Pineal Res 2024; 76:e12931. [PMID: 38083808 DOI: 10.1111/jpi.12931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Because the chronobiotic and cytoprotective molecule melatonin diminishes with age, its involvement in postmenopausal and senescence pathology has been considered since long. One relevant melatonin target site in aging individuals is bone where melatonin chronobiotic effects mediated by MT1 and MT2 receptors are demonstrable. Precursors of bone cells located in bone marrow are exposed to high quantities of melatonin and the possibility arises that melatonin acts a cytoprotective compound via an autacoid effect. Proteins that are incorporated into the bone matrix, like procollagen type I c-peptide, augment after melatonin exposure. Melatonin augments osteoprotegerin, an osteoblastic protein that inhibits the differentiation of osteoclasts. Osteoclasts are target cells for melatonin as they degrade bone partly by generating free radicals. Osteoclast activity and bone resorption are impaired via the free radical scavenger properties of melatonin. The administration of melatonin in chronobiotic doses (less than 10 mg daily) is commonly used in clinical studies on melatonin effect on bone. However, human equivalent doses allometrically derived from animal studies are in the 1-1.5 mg/kg/day range for a 75 kg human adult, a dose rarely used clinically. In view of the absence of toxicity of melatonin in phase 1 pharmacological studies with doses up to 100 mg in normal volunteers, further investigation is needed to determine whether high melatonin doses have higher therapeutic efficacy in preventing bone loss.
Collapse
Affiliation(s)
- Daniel P Cardinali
- CENECON, Faculty of Medical Sciences, Universidad de Buenos Aires, Buenos Aires, Argentina
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
14
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
15
|
Karkehabadi H, Abbasi R, Najafi R, Khoshbin E. The effects of melatonin on the viability and osteogenic/odontogenic differentiation of human stem cells from the apical papilla. Mol Biol Rep 2023; 50:8959-8969. [PMID: 37715020 DOI: 10.1007/s11033-023-08747-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND An experimental study was conducted to examine whether melatonin influences osteogenic/odontogenic differentiation of human stem cells derived from the apical papilla (hSCAPs). MATERIALS AND METHODS In order to isolate hSCAPs, the undeveloped root of a third molar of a human tooth was used. Melatonin was administered to the experimental groups in an osteogenic medium. No treatment was administered to the control group. The methyl thiazolyl tetrazolium (MTT) assay was performed on days 1, 2, and 3 to assess cell viability (n = 8). A determination of odontogenic/osteogenic differentiation was accomplished using alkaline phosphatase (ALP) activity alizarin red staining (ARS) (n = 6), and the expression of osteogenic genes by real-time polymerase chain reaction (RT-PCR) (n = 3) on days 1, 2, and 7. Evaluation of the data was conducted using SPSS version 18. All experiments were conducted at least three times. The Mann Whitney U test, the ANOVA analysis, Tukey's test, and t-test was implemented to analyze the data (α = 0.05). RESULTS After 24 h, 48 h, and 72 h, No significant difference was observed between the control group and the melatonin treatment group in terms of viability of hSCAPs. (from 1 up to 10 µg/ml) (P > 0.05). The assessment of ARS and ALP activity showed that melatonin treatment enhanced osteogenic differentiation of hSCAPs (P < 0.001). Melatonin treatment caused hSCAPs to show an increase of genes related to osteogenic/odontogenic differentiation. These genes included ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1), and bone sialoprotein (BSP) (P < 0.001). CONCLUSIONS Melatonin treatment enhanced osteogenic/odontogenic differentiation of hSCAPs with a dose dependent effect on cell viability.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Khoshbin
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.
- Hamadan Dental School, Shahid Fahmideh Street, PO Box 6517838677, Hamadan, Iran.
| |
Collapse
|
16
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
17
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Wang H, Li S, Chen B, Wu M, Yin H, Shao Y, Wang J. Exploring the shared gene signatures of smoking-related osteoporosis and chronic obstructive pulmonary disease using machine learning algorithms. Front Mol Biosci 2023; 10:1204031. [PMID: 37251077 PMCID: PMC10213920 DOI: 10.3389/fmolb.2023.1204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Objectives: Cigarette smoking has been recognized as a predisposing factor for both osteoporosis (OP) and chronic obstructive pulmonary disease (COPD). This study aimed to investigate the shared gene signatures affected by cigarette smoking in OP and COPD through gene expression profiling. Materials and methods: Microarray datasets (GSE11784, GSE13850, GSE10006, and GSE103174) were obtained from Gene Expression Omnibus (GEO) and analyzed for differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) regression method and a random forest (RF) machine learning algorithm were used to identify candidate biomarkers. The diagnostic value of the method was assessed using logistic regression and receiver operating characteristic (ROC) curve analysis. Finally, immune cell infiltration was analyzed to identify dysregulated immune cells in cigarette smoking-induced COPD. Results: In the smoking-related OP and COPD datasets, 2858 and 280 DEGs were identified, respectively. WGCNA revealed 982 genes strongly correlated with smoking-related OP, of which 32 overlapped with the hub genes of COPD. Gene Ontology (GO) enrichment analysis showed that the overlapping genes were enriched in the immune system category. Using LASSO regression and RF machine learning, six candidate genes were identified, and a logistic regression model was constructed, which had high diagnostic values for both the training set and external validation datasets. The area under the curves (AUCs) were 0.83 and 0.99, respectively. Immune cell infiltration analysis revealed dysregulation in several immune cells, and six immune-associated genes were identified for smoking-related OP and COPD, namely, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), tissue-type plasminogen activator (PLAT), sodium channel 1 subunit alpha (SCNN1A), sine oculis homeobox 3 (SIX3), sperm-associated antigen 9 (SPAG9), and vacuolar protein sorting 35 (VPS35). Conclusion: The findings suggest that immune cell infiltration profiles play a significant role in the shared pathogenesis of smoking-related OP and COPD. The results could provide valuable insights for developing novel therapeutic strategies for managing these disorders, as well as shedding light on their pathogenesis.
Collapse
Affiliation(s)
- Haotian Wang
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaoshuo Li
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Baixing Chen
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Mao Wu
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Heng Yin
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yang Shao
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Graduate School of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Traumatology and Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|