1
|
Ricardo J, Duarte A, Chiussi S, Martins GV, Moreira FTC. Biomimetic Prussian Blue Sensor for Ultrasensitive Direct Detection of Myoglobin. Polymers (Basel) 2025; 17:630. [PMID: 40076122 PMCID: PMC11902790 DOI: 10.3390/polym17050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
This research presents a novel, cost-effective, and scalable approach for the direct detection of myoglobin (Myo) in point-of-care (PoC) applications. In this strategy, redox-active Prussian Blue nanocubes (PBNCs) are applied to a disposable platinum screen-printed electrode (Pt-SPE). Subsequently, a biomimetic sensing layer is generated by electropolymerization of ortho-phenylenediamine (o-PD) in the presence of Myo, which forms molecularly imprinted polymer (MIP) sites by cyclic voltammetry (CV). The electropolymerization process takes place in a potential range of -0.2 V to +0.8 V, for five cycles at a scan rate of 50 mV/s, in a 10 mmol/L o-PD solution. After polymerization, the electrode is incubated in trypsin for 2 h to create Myo-specifically imprinted cavities. The structural and morphological properties of the biomimetic layer were analyzed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The direct detection of Myo was analyzed by differential pulse voltammetry (DPV). The results showed a linear response to Myo concentrations ranging from 1.0 ag/mL to 10 ng/mL, a limit of detection (LOD) of 0.76 ag/mL, and a R2 value of 0.9775. The absence of an external liquid redox probe simplifies the sensor design, improves portability, and reduces the complexity of the assay, making it more suitable for PoC.
Collapse
Affiliation(s)
- Jacinta Ricardo
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | - Abel Duarte
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | | | - Gabriela V. Martins
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | - Felismina T. C. Moreira
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| |
Collapse
|
2
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
3
|
Lin CH, Lin MJ, Huang JD, Chuang YS, Kuo YF, Chen JC, Wu CC. Label-Free Impedimetric Immunosensors Modulated by Protein A/Bovine Serum Albumin Layer for Ultrasensitive Detection of Salbutamol. SENSORS 2020; 20:s20030771. [PMID: 32023863 PMCID: PMC7038488 DOI: 10.3390/s20030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
The sensing properties of immunosensors are determined not only by the amount of immobilized antibodies but also by the number of effective antigen-binding sites of the immobilized antibody. Protein A (PA) exhibits a high degree of affinity with the Fc part of IgG antibody to feasibly produce oriented antibody immobilization. This work proposes a simple method to control the PA surface density on gold nanostructure (AuNS)-deposited screen-printed carbon electrodes (SPCEs) by mixing concentration-varied PA and bovine serum albumin (BSA), and to explore the effect of PA density on the affinity attachment of anti-salbutamol (SAL) antibodies by electrochemical impedance spectroscopy. A concentration of 100 μg/mL PA and 100 μg/mL BSA can obtain a saturated coverage on the 3-mercaptoproponic acid (MPA)/AuNS/SPCEs and exhibit a 50% PA density to adsorb the amount of anti-SAL, more than other concentration-varied PA/BSA-modified electrodes. Compared with the randomly immobilized anti-SAL/MPA/AuNS/SPCEs and the anti-SAL/PA(100 μg/mL):BSA(0 μg/mL)/MPA/AuNS/SPCE, the anti-SAL/PA(100 μg/mL): BSA(100 μg/mL)/MPA/AuNS/SPCE-based immunosensors have better sensing properties for SAL detection, with an extremely low detection limit of 0.2 fg/mL and high reproducibility (<2.5% relative standard deviation). The mixture of PA(100 μg/mL):BSA(100 μg/mL) for the modification of AuNS/SPCEs has great promise for forming an optimal protein layer for the oriented adsorption of IgG antibodies to construct ultrasensitive SAL immunosensors.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Ming-Jie Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Jie-De Huang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Sheng Chuang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Fen Kuo
- Metal Industries Research & Development Centre, Kaohsiung 811, Taiwan;
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| |
Collapse
|
4
|
A disposable fiber optic SPR probe for immunoassay. Biosens Bioelectron 2019; 144:111621. [DOI: 10.1016/j.bios.2019.111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
|
5
|
Brambilla D, Chiari M, Gori A, Cretich M. Towards precision medicine: the role and potential of protein and peptide microarrays. Analyst 2019; 144:5353-5367. [PMID: 31384857 DOI: 10.1039/c9an01142k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Although the traditional strategy of developing general medical treatments for heterogeneous patient populations has a well-established track record, the acknowledgment that one-size-does-not-fit-all is pushing health-care to enter a new era of tailored interventions. The advent of precision medicine is fueled by the high-throughput analysis of individual DNA variants and mRNA expression profiles. However, due to the role of proteins in providing a more direct view of disease states than genomics alone, the ability to comprehensively analyze protein alterations and post translational modifications (PTMs) is a necessary step to unravel disease mechanisms, develop novel biomarkers and targeted therapies. Protein and peptide microarrays can play a major role in this frame, due to high-throughput, low sample consumption and wide applicability. Here, their current role and potentialities are discussed through the review of some promising applications in the fields of PTMs analysis, enzyme screening, high-content immune-profiling and the phenotyping of extracellular vesicles.
Collapse
Affiliation(s)
- Dario Brambilla
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131, Milano, Italy.
| | | | | | | |
Collapse
|
6
|
Groysbeck N, Stoessel A, Donzeau M, da Silva EC, Lehmann M, Strub JM, Cianferani S, Dembélé K, Zuber G. Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. NANOTECHNOLOGY 2019; 30:184005. [PMID: 30650397 DOI: 10.1088/1361-6528/aaff0a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Therapeutic monoclonal antibodies benefit to patients and the conjugation to gold nanoparticles (AuNPs) might bring additional activities to these macromolecules. However, the behavior of the conjugate will largely depend on the bulkiness of the AuNP and small sizes are moreover preferable for diffusion. Water-soluble thiolate-protected AuNPs having diameters of 2-3 nm can be synthesized with narrow polydispersity and can selectively react with incoming organic thiols via a SN2-like mechanism. We therefore synthesized a mixed thionitrobenzoic acid- , thioaminobenzoic acid-monolayered AuNP of 2.4 nm in diameter and developed a site-selective conjugation strategy to link the AuNP to Cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody used in clinic. The water-soluble 80 kDa AuNP was fully characterized and then reacted to the hinge area of Cetuximab, which was selectively reduced using mild concentration of TCEP. The conjugation proceeded smoothly and could be analyzed by polyacrylamide gel electrophoresis, indicating the formation of a 1:1 AuNP-IgG conjugate as the main product. When added to EGFR expressing glioblastoma cells, the AuNP-Cetuximab conjugate selectively bound to the cell surface receptor, inhibited EGFR autophosphorylation and entered into endosomes like Cetuximab. Altogether, we describe a simple and robust protocol for a site-directed conjugation of a thiolate-protected AuNP to Cetuximab, which could be easily monitored, thereby allowing to assess the quality of the product formation. The conjugated 2.4 nm AuNP did not majorly affect the biological behavior of Cetuximab, but provided it with the electronic properties of the AuNP. This offers the ability to detect the tagged antibody and opens application for targeted cancer radiotherapy.
Collapse
Affiliation(s)
- Nadja Groysbeck
- Université de Strasbourg-CNRS, UMR 7242, Laboratoire de Biotechnologie et Signalisation Cellulaire, Boulevard Sébastien Brant, F-67400 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Piezoelectric arsenite aptasensor based on the use of a self-assembled mercaptoethylamine monolayer and gold nanoparticles. Mikrochim Acta 2019; 186:268. [PMID: 30953172 DOI: 10.1007/s00604-019-3373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The authors describe a piezoelectric aptasensor for arsenite. A self assembeled monolayer (SAM) of mercaptoethylamine was prepared to immobilize arsenite on the surface of a quartz crystal microbalance. Gold nanoparticles were modified with arsenite aptamer to amplify the response frequency of the biosensor. Arsenite first binds to the SAM on the gold surface of the QCM. On addition of gold nanoparticles with aptamer (DNA-AuNp), the SAM-As(III)-aptamer sandwich is formed. This increases the resonance frequency of the sensor and allows trace concentration of arsenite to be determined. The aptasensor can detect arsenite in the 8 to 1000 nmol·L-1 concentration range with a 4.4 nmol·L-1 lower detection limit (at S/N = 3). The sandwich structure improves the specificity of the aptasensor without considering the conformational transition of the aptamer. The strategy described here conceivably has a large potential as it shows that small molecules can be sensed by using aptamers with unknown working mechanism. Graphical abstract Schematic presentation of a piezoelectric biosensor for arsenite detection by using a mercaptoethylamine monolayer and gold nanoparticles with respect to Arsenite first binds to the SAM on the gold surface of the QCM. Next, gold nanoparticles with aptamer (DNA-AuNp) are added to form a SAM-As(III)-aptamer sandwich which affects the resonance frequency.
Collapse
|
8
|
Gupta J, Hoque M, Ahmad MF, Khan RH, Saleemuddin M. Acid pH promotes bispecific antibody formation by the redox procedure. Int J Biol Macromol 2019; 125:469-477. [DOI: 10.1016/j.ijbiomac.2018.12.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 11/25/2022]
|
9
|
Yang F, Zuo X, Fan C, Zhang XE. Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. Natl Sci Rev 2018. [DOI: 10.1093/nsr/nwx134] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Biosensors are a type of important biodevice that integrate biological recognition elements, such as enzyme, antibody and DNA, and physical or chemical transducers, which have revolutionized clinical diagnosis especially under the context of point-of-care tests. Since the performance of a biosensor depends largely on the bio–solid interface, design and engineering of the interface play a pivotal role in developing quality biosensors. Along this line, a number of strategies have been developed to improve the homogeneity of the interface or the precision in regulating the interactions between biomolecules and the interface. Especially, intense efforts have been devoted to controlling the surface chemistry, orientation of immobilization, molecular conformation and packing density of surface-confined biomolecular probes (proteins and nucleic acids). By finely tuning these surface properties, through either gene manipulation or self-assembly, one may reduce the heterogeneity of self-assembled monolayers, increase the accessibility of target molecules and decrease the binding energy barrier to realize high sensitivity and specificity. In this review, we summarize recent progress in interfacial engineering of biosensors with particular focus on the use of protein and DNA nanostructures. These biomacromolecular nanostructures with atomistic precision lead to highly regulated interfacial assemblies at the nanoscale. We further describe the potential use of the high-performance biosensors for precision diagnostics.
Collapse
Affiliation(s)
- Fan Yang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, CAS Excellence Center for Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Moelleken J, Endesfelder M, Gassner C, Lingke S, Tomaschek S, Tyshchuk O, Lorenz S, Reiff U, Mølhøj M. GingisKHAN™ protease cleavage allows a high-throughput antibody to Fab conversion enabling direct functional assessment during lead identification of human monoclonal and bispecific IgG1 antibodies. MAbs 2017; 9:1076-1087. [PMID: 28805498 PMCID: PMC5627592 DOI: 10.1080/19420862.2017.1364325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 01/07/2023] Open
Abstract
The determination of the binding strength of immunoglobulins (IgGs) to targets can be influenced by avidity when the targets are soluble di- or multimeric proteins, or associated to cell surfaces, including surfaces introduced from heterogeneous assays. However, for the understanding of the contribution of a second drug-to-target binding site in molecular design, or for ranking of monovalent binders during lead identification, affinity-based assessment of the binding strength is required. Typically, monovalent binders like antigen-binding fragments (Fabs) are generated by proteolytic cleavage with papain, which often results in a combination of under- and over-digestion, and requires specific optimization and chromatographic purification of the desired Fabs. Alternatively, the Fabs are produced by recombinant approaches. Here, we report a lean approach for the functional assessment of human IgG1s during lead identification based on an in-solution digestion with the GingisKHAN™ protease, generating a homogenous pool of intact Fabs and Fcs and enabling direct assaying of the Fab in the digestion mixture. The digest with GingisKHAN™ is highly specific and quantitative, does not require much optimization, and the protease does not interfere with methods typically applied for lead identification, such as surface plasmon resonance or cell-based assays. GingisKHAN™ is highly suited to differentiate between affinity and avidity driven binding of human IgG1 monoclonal and bispecific antibodies during lead identification.
Collapse
Affiliation(s)
- Jörg Moelleken
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Manuel Endesfelder
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Christian Gassner
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Sabine Lingke
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Simone Tomaschek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Oksana Tyshchuk
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Stefan Lorenz
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Ulrike Reiff
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| | - Michael Mølhøj
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, Penzberg, Germany
| |
Collapse
|
11
|
Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017; 116:95-111. [PMID: 27876681 PMCID: PMC5374010 DOI: 10.1016/j.ymeth.2016.11.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| | - James Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 060
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
12
|
Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens Bioelectron 2017; 89:810-821. [DOI: 10.1016/j.bios.2016.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
|
13
|
Tran TB, Son SJ, Min J. Nanomaterials in label-free impedimetric biosensor: Current process and future perspectives. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0408-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Considerations in producing preferentially reduced half-antibody fragments. J Immunol Methods 2016; 429:50-6. [DOI: 10.1016/j.jim.2016.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
|
15
|
Mustafaoglu N, Alves NJ, Bilgicer B. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9728-9736. [PMID: 26273992 DOI: 10.1021/acs.langmuir.5b01734] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.
Collapse
Affiliation(s)
- Nur Mustafaoglu
- Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry and Biochemistry, §Advanced Diagnostics and Therapeutics, ∥Mike and Josie Harper Cancer Research Institute, and ⊥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Nathan J Alves
- Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry and Biochemistry, §Advanced Diagnostics and Therapeutics, ∥Mike and Josie Harper Cancer Research Institute, and ⊥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry and Biochemistry, §Advanced Diagnostics and Therapeutics, ∥Mike and Josie Harper Cancer Research Institute, and ⊥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Sun Y, Du H, Feng C, Lan Y. Oriented immobilization of antibody through carbodiimide reaction and controlling electric field. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2912-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Ultrasensitive Impedimetric Biosensor Fabricated by a New Immobilisation Technique for Parathyroid Hormone. Appl Biochem Biotechnol 2015; 176:1251-62. [DOI: 10.1007/s12010-015-1643-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
18
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
19
|
Subramanian P, Motorina A, Yeap WS, Haenen K, Coffinier Y, Zaitsev V, Niedziolka-Jonsson J, Boukherroub R, Szunerits S. An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst 2014; 139:1726-31. [PMID: 24527487 DOI: 10.1039/c3an02045b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanostructured boron-doped diamond has been investigated as a sensitive impedimetric electrode for the detection of immunoglobulin G (IgG). The immunosensor was constructed in a three-step process: (i) reactive ion etching of flat boron-doped diamond (BDD) interfaces to synthesize BDD nanowires (BDD NWs), (ii) electrochemical deposition of nickel nanoparticles (Ni NPs) on the BDD NWs, and (iii) immobilization of biotin-tagged anti-IgG onto the Ni NPs. Electrochemical impedance spectroscopy (EIS) was used to follow the binding of IgG at different concentrations without the use of any additional label. A detection limit of 0.3 ng mL(-1) (2 nM) with a dynamic range up to 300 ng mL(-1) (2 μM) was obtained with the interface. Moreover, the study demonstrated that this immunosensor exhibits good stability over time and allows regeneration by incubation in ethylenediaminetetraacetic acid (EDTA) aqueous solution.
Collapse
Affiliation(s)
- Palaniappan Subramanian
- Institut de Recherche Interdisciplinaire (IRI), CNRS USR 3078, Université Lille1, Parc de la Haute Borne, 50 avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang J, Kruss S, Hilmer AJ, Shimizu S, Schmois Z, De La Cruz F, Barone PW, Reuel NF, Heller DA, Strano MS. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors. Adv Healthc Mater 2014; 3:412-23. [PMID: 23966175 DOI: 10.1002/adhm.201300033] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 01/18/2023]
Abstract
Patients with chest pain account for 10% of US emergency room visits according to data from the Center for Disease Control and Prevention (2013). For triage of these patients, cardiac biomarkers troponin I and T are endorsed as standard indicators for acute myocardial infarction (AMI, or heart attack). Thus, there is significant interest in developing a rapid, point-of-care (POC) device for troponin detection. In this work, a rapid, quantitative, and label-free assay, which is specific for cardiac troponin T (cTnT) detection, using fluorescent single-walled carbon nanotubes (SWCNTs), is demonstrated. Chitosan-wrapped carbon nanotubes are cross-linked to form a thin gel that is further functionalized with nitrilotriacetic acid (NTA) moieties. Upon chelation of Ni(2+) , the Ni(2+) -NTA group binds to a hexa-histidine-modified troponin antibody, which specifically recognizes the target protein, troponin T. As the troponin T binds to the antibody, the local environment of the sensor changes, allowing direct troponin detection through intensity changes in SWCNT bandgap fluorescence. This platform represents the first near-infrared SWCNT sensor array for cTnT detection. Detection can be completed within 5 min, demonstrating a linear response to cTnT concentration and an experimental detection limit of 100 ng mL(-1) (2.5 nm). This platform provides a promising new tool for POC AMI detection in the future. Moreover, the work presents two new methods of quantifying the number of amines and carboxylic groups, respectively, in a carbon hydrogel matrices.
Collapse
Affiliation(s)
- Jingqing Zhang
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Sebastian Kruss
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Andrew J. Hilmer
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Steven Shimizu
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Zeke Schmois
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Flor De La Cruz
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Paul W. Barone
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Nigel F. Reuel
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| | - Daniel A. Heller
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
- Molecular Pharmacology & Chemistry Program; Memorial Sloan-Kettering Cancer Center; New York NY USA
| | - Michael S. Strano
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
21
|
Ahmed A, Rushworth JV, Wright JD, Millner PA. Novel impedimetric immunosensor for detection of pathogenic bacteria Streptococcus pyogenes in human saliva. Anal Chem 2013; 85:12118-25. [PMID: 24256123 DOI: 10.1021/ac403253j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Streptococcus pyogenes , also known as group A streptococcus (GAS), is a Gram positive human pathogen responsible for invasive and noninvasive human infections with a high incidence rate. Traditional detection methods involve cell culture and PCR, which are limited by long processing times or the need for high cost equipment. Impedance-based electrochemical immunosensors provide an alternative by which precise and rapid quantitative detection of the organism can help with rapid clinical decisions. To bring a biosensor for point-of-care applications to market, strict optimization of each level of construction and operation is required. In this paper, commercial screen-printed gold electrodes have been used to construct polytyramine (Ptyr)-based immunosensors. Biotin tagged whole antibodies against S. pyogenes were conjugated to Ptyr amine group via biotin-NeutrAvidin coupling. Sensors were optimized at each level of construction, particularly for Ptyr electrodeposition and antibody concentration, to optimize signal and specificity. Scanning electron microscopy, fluorescence microscopy, and on-sensor analysis (HRP conjugated enhanced chemiluminescence-based semiquantitative method) to detect Ptyr surface amine and bound antibody were performed as supporting techniques. Cumulative and single shot incubations had shown detection range of 100 to 10(5) cells per 10 μL and 100 to 10(4) cells per 10 μL of bacteria in PBS, respectively. Sensors were also able to specifically detect S. pyogenes in 50% (v/v) human saliva, with good selectivity and low cross-reactivity.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, U.K
| | | | | | | |
Collapse
|
22
|
Pandiaraj M, Sethy NK, Bhargava K, Kameswararao V, Karunakaran C. Designing label-free electrochemical immunosensors for cytochrome c using nanocomposites functionalized screen printed electrodes. Biosens Bioelectron 2013; 54:115-21. [PMID: 24262776 DOI: 10.1016/j.bios.2013.10.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/12/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
We have designed here a label-free direct electrochemical immunosensor for the detection of cytochrome c (cyt c), a heme containing metalloprotein using its specific monoclonal antibody. Two nanocomposite-based electrochemical immunosensor platforms were evaluated for the detection of cyt c; (i) self-assembled monolayer (SAM) on gold nanoparticles (GNP) in polypyrrole (PPy) grafted screen printed electrodes (SPE) and (ii) carbon nanotubes (CNT) integrated PPy/SPE. The nanotopologies of the modified electrodes were confirmed by scanning electron microscopy. Electrochemical impedance spectroscopy and cyclic voltammetry were employed to monitor the stepwise fabrication of the nanocomposite immunosensor platforms. In the present method, the label-free quantification of cyt c is based on the direct electron transfer between Fe (III)/Fe (II)-heme redox active site of cyt c selectively bound to anti-cyt c nanocomposite modified SPE. GNP/PPy and CNT/PPy nanocomposites promoted the electron transportation through the conductive pore channels. The overall analytical performance of GNP/PPy based immunosensor (detection limit 2 nM; linear range: 2 nM to 150 µM) was better than the anti-cyt c/CNT/PPy (detection limit 10 nM; linear range: 10 nM to 50 µM). Further, the measurement of cyt c release in cell lysates of cardiomyocytes using the GNP/PPy based immunosensor gave an excellent correlation with standard ELISA.
Collapse
Affiliation(s)
- Manickam Pandiaraj
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar 626001, Tamil Nadu, India
| | | | - Kalpana Bhargava
- Peptide and Proteomics Division, DIPAS, DRDO, Delhi 110054, India
| | - Vepa Kameswararao
- Defence Research & Development Establishment, Gwalior 474002, Madhya Pradesh, India
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar 626001, Tamil Nadu, India.
| |
Collapse
|
23
|
Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 2013; 47:1-11. [DOI: 10.1016/j.bios.2013.02.045] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
|
24
|
Trilling AK, Beekwilder J, Zuilhof H. Antibody orientation on biosensor surfaces: a minireview. Analyst 2013; 138:1619-27. [DOI: 10.1039/c2an36787d] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Novel impedimetric immunosensor for the detection and quantitation of Adenovirus using reduced antibody fragments immobilized onto a conducting copolymer surface. Biosens Bioelectron 2012; 32:104-10. [DOI: 10.1016/j.bios.2011.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/18/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
26
|
Hu X, O’Connor IB, Wall JG. Antibody Immobilization on Solid Surfaces: Methods and Applications. BIOLOGICAL INTERACTIONS WITH SURFACE CHARGE IN BIOMATERIALS 2011. [DOI: 10.1039/9781849733366-00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The correct immobilization of the antibody component is one of the most critical steps in the development of immunoassays, immunosensors and immunochromatography matrices. Advances in hybridoma technology and protein engineering have allowed traditional limitations of polyreactivity of antibody preparations, poor device stability and random orientation of binding pockets to be largely overcome, resulting in stable, sensitive, highly specific and enormously diverse immunoplatforms with applications in diagnostics, environmental monitoring, and food and public safety. In this Chapter we introduce antibody structure and antibody-derived fragments, describe the most common methods of their immobilization and discuss ‘traditional’ applications of immobilized antibodies such as enzyme immunoassays and immunoaffinity chromatography, as well as exciting emerging uses in immunosensors, microarrays and nanomedicine.
Collapse
Affiliation(s)
- X. Hu
- National University of Ireland, Galway, Microbiology and Network of Excellence in Functional Biomaterials University Road, Galway Ireland
- Dalian University, Medical School Dalian Development Zone, Dalian China
| | - I. B. O’Connor
- National University of Ireland, Galway, Microbiology and Network of Excellence in Functional Biomaterials University Road, Galway Ireland
| | - J. G. Wall
- National University of Ireland, Galway, Microbiology and Network of Excellence in Functional Biomaterials University Road, Galway Ireland
| |
Collapse
|
27
|
Noah NM, Marcells O, Almalleti A, Lim J, Sadik OA. Metal Enhanced Electrochemical Cyclooxygenase-2 (COX-2) Sensor for Biological Applications. ELECTROANAL 2011. [DOI: 10.1002/elan.201100241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Gruhl FJ, Rapp BE, Länge K. Biosensors for diagnostic applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 133:115-48. [PMID: 22223139 DOI: 10.1007/10_2011_130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors combine a transducer with a biorecognition element and thus are able to transform a biochemical event on the transducer surface directly into a measurable signal. By this they have the potential to provide rapid, real-time, and accurate results in a comparatively easy way, which makes them promising analytical devices. Since the first biosensor was introduced in 1962 as an "enzyme electrode" for monitoring glucose in blood, medical applications have been the main driving force for further biosensor development. In this chapter we outline potential biosensor setups, focusing on transduction principles, biorecognition layers, and biosensor test formats, with regard to potential applications. A summary of relevant aspects concerning biosensor integration in efficient analytical setups is included. We describe the latest applications of biosensors in diagnostic applications focusing on detection of molecular biomarkers in real samples. An overview of the current state and future trends of biosensors in this field is given.
Collapse
Affiliation(s)
- Friederike J Gruhl
- Karlsruhe Institute of Technology Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|