1
|
Chakraborty I, Olsson RT, Andersson RL, Pandey A. Glucose-based biofuel cells and their applications in medical implants: A review. Heliyon 2024; 10:e33615. [PMID: 39040310 PMCID: PMC11261083 DOI: 10.1016/j.heliyon.2024.e33615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers because of the eco-friendly nature of G-BFCs (as related to their construction) and their evolution from inexpensive bio-based materials. In addition, their excellent specificity towards glucose as an energy source, and other properties, such as small size and weight, make them attractive within various demanding applied environments. For example, G-BFCs have received much attention as implanted devices, especially for uses related to cardiac activities. Envisioned pacemakers and defibrillators powered by G-BFCs would not be required to have conventional lithium batteries exchanged every 5-10 years. However, future research is needed to develop G-BFCs demonstrating more stable power consistency and improved lifespan, as well as solving the challenges in converting laboratory-made implantable G-BFCs into implanted devices in the human body. The categorization of G-BFCs as a subcategory of different biofuel cells and their performance is reviewed in this article.
Collapse
Affiliation(s)
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Richard L. Andersson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Annu Pandey
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| |
Collapse
|
2
|
Oskin P, Demkina I, Dmitrieva E, Alferov S. Functionalization of Carbon Nanotubes Surface by Aryl Groups: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1630. [PMID: 37242046 PMCID: PMC10220858 DOI: 10.3390/nano13101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The review is devoted to the methods of introducing aryl functional groups to the CNT surface. Arylated nanotubes are characterized by extended solubility, and are widely used in photoelectronics, semiconductor technology, and bioelectrocatalysis. The main emphasis is on arylation methods according to the radical mechanism, such as the Gomberg-Bachmann and Billups reactions, and the decomposition of peroxides. At the same time, less common approaches are also considered. For each of the described reactions, a mechanism is presented in the context of the effect on the properties of functionalized nanotubes and their application. As a result, this will allow us to choose the optimal modification method for specific practical tasks.
Collapse
Affiliation(s)
- Pavel Oskin
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
| | - Iraida Demkina
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Elena Dmitrieva
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
3
|
Torrinha Á, Tavares M, Delerue-Matos C, Morais S. Microenergy generation and dioxygen sensing by bilirubin oxidase immobilized on a nanostructured carbon paper transducer. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
5
|
Haque SU, Duteanu N, Ciocan S, Nasar A. A review: Evolution of enzymatic biofuel cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113483. [PMID: 34391107 DOI: 10.1016/j.jenvman.2021.113483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.
Collapse
Affiliation(s)
- Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Stefania Ciocan
- Faculty of Industrial Chemistry and Environmental Engineering, University of Politehnica, Timisoara, Romania.
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun KB, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R. Nanobiocatalysts: Advancements and applications in enzyme technology. BIORESOURCE TECHNOLOGY 2021; 337:125491. [PMID: 34320770 DOI: 10.1016/j.biortech.2021.125491] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Nanobiocatalysts are one of the most promising biomaterials produced by synergistically integrating advanced biotechnology and nanotechnology. These have a lot of potential to improve enzyme stability, function, efficiencyand engineering performance in bioprocessing. Functional nanostructures have been used to create nanobiocatalystsbecause of their specific physicochemical characteristics and supramolecular nature. This review covers a wide range of nanobiocatalysts including polymeric, metallic, silica and carbon nanocarriers as well as their recent developments in controlling enzyme activity. The enormous potential of nanobiocatalysts in bioprocessing in designing effective laboratory trials forapplications in various fields such as food, pharmaceuticals, biofuel, and bioremediation is also discussed extensively.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, Kerala 690 110, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, Kerala 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | | | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695 019, India.
| |
Collapse
|
7
|
Nadolska M, Prześniak-Welenc M, Łapiński M, Sadowska K. Synthesis of Phosphonated Carbon Nanotubes: New Insight into Carbon Nanotubes Functionalization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2726. [PMID: 34064192 PMCID: PMC8196758 DOI: 10.3390/ma14112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes were successfully functionalized for the first time in a free radical phosphonylation reaction. Three synthetic protocols were proposed. Carbon nanotubes and diethylphosphite reacted in the presence of known radical initiator, such as azobisisobutyronitrile, single electron oxidant-Mn(OAc)3, or under UV radiation. The functionalized material was fully characterized by means of spectroscopic methods, together with microscopic, surface area and thermogravimetric analyses. UV-illumination was found to be the most effective approach for introducing phosphonates onto carbon nanotubes. X-ray photoelectron spectroscopy analysis showed 6% phosphorus in this sample. Moreover, the method was performed at room temperature for only one hour, using diethylphosphite as a reactant and as a solvent. The functionalized carbon nanotubes showed an improved thermal stability, with a decomposition onset temperature increase of more than 130 °C. This makes it very promising material for flame retarding applications.
Collapse
Affiliation(s)
- Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.N.); (M.P.-W.); (M.Ł.)
| | - Marta Prześniak-Welenc
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.N.); (M.P.-W.); (M.Ł.)
| | - Marcin Łapiński
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.N.); (M.P.-W.); (M.Ł.)
| | - Kamila Sadowska
- Institute of Biocybernetics, Biomedical Engineering of the Polish Academy of Sciences, 02-109 Warsaw, Poland
| |
Collapse
|
8
|
Swatek A, Staszczak M. Effect of Ferulic Acid, a Phenolic Inducer of Fungal Laccase, on 26S Proteasome Activities In Vitro. Int J Mol Sci 2020; 21:ijms21072463. [PMID: 32252291 PMCID: PMC7177946 DOI: 10.3390/ijms21072463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023] Open
Abstract
The 26S proteasome is an ATP-dependent protease complex (2.5 MDa) that degrades most cellular proteins in Eukaryotes, typically those modified by a polyubiquitin chain. The proteasome-mediated proteolysis regulates a variety of critical cellular processes such as transcriptional control, cell cycle, oncogenesis, apoptosis, protein quality control, and stress response. Previous studies conducted in our laboratory have shown that 26S proteasomes are involved in the regulation of ligninolytic enzymes (such as laccase) in white-rot fungi in response to nutrient starvation, cadmium exposure, and ER stress. Laccases are useful biocatalysts for a wide range of biotechnological applications. The goal of the current study was to determine the effect of ferulic acid (4-hydroxy-3-methoxycinnamic acid), a phenolic compound known to induce some ligninolytic enzymes, on proteasomes isolated from mycelia of the wood-decomposing basidiomycete Trametes versicolor. The peptidase activities of 26S proteasomes were assayed by measuring the hydrolysis of fluorogenic peptide substrates specific for each active site: Suc-LLVY-AMC, Z-GGR-AMC and Z-LLE-AMC for chymotrypsin-like, trypsin-like, and caspase-like site, respectively. Ferulic acid affected all peptidase activities of the 26S fungal proteasomes in a concentration-dependent manner. A possible inhibitory effect of ferulic acid on peptidase activities of the 26S human proteasomes was tested as well. Moreover, the ability of ferulic acid to inhibit (at concentrations known to induce laccase activity in white-rot fungi) the rate of 26S proteasome-catalyzed degradation of a model full-length protein substrate (β-casein) was demonstrated by a fluorescamine assay and by a gel-electrophoretic analysis. Our findings provide new insights into the role of ferulic acid in lignin-degrading fungi. However, the detailed molecular mechanisms involved remain to be elucidated by future studies.
Collapse
|
9
|
Sorrentino I, Gentil S, Nedellec Y, Cosnier S, Piscitelli A, Giardina P, Le Goff A. POXC Laccase from
Pleurotus ostreatus
: A High‐Performance Multicopper Enzyme for Direct Oxygen Reduction Reaction Operating in a Proton‐Exchange Membrane Fuel Cell. ChemElectroChem 2018. [DOI: 10.1002/celc.201801264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Solène Gentil
- Univ. Grenoble AlpesCNRS, DCM 38000 Grenoble
- Univ. Grenoble AlpesCEA, CNRS, BIG-LCBM 38000 Grenoble France
| | | | | | | | - Paola Giardina
- Department of Chemical SciencesUniversity Federico II Naples Italy
| | | |
Collapse
|
10
|
Brand I, Sęk S. Preface. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Bollella P, Hibino Y, Kano K, Gorton L, Antiochia R. Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02729] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy
| | - Yuya Hibino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens Bioelectron 2018; 124-125:40-52. [PMID: 30343155 DOI: 10.1016/j.bios.2018.09.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Wearable enzymatic biofuel cells would be the most prospective fuel cells for wearable devices because of their low cost, compactness and flexibility. As the high specificity and catalytic properties of enzymes, enzymatic biofuel cells (EBFCs) catalyze the fuel associated with the redox reaction and get electrical energy. Available biofuels such as glucose, lactate and pyruvate can be harvested from biofluids of sweat, tears and blood, which afford cells a favorable use in implantable and wearable devices. However, the development of wearable enzymatic biofuel cells requires significant improvements on the power density and enzymes lifetime. In this paper, some new advances in improving the performance of wearable enzymatic biofuel cells are reviewed based on the bioanode and biocathode by classifying single-enzyme and multi-enzyme catalysis system. Thereinto, the bioanode usually contains oxidases and dehydrogenases as catalyst, and the biocathode utilizes the catalysis of multi-copper oxidases (MCOs) in the single system. For further enhancing the power density, efforts to develop multi-enzyme catalysis strategies are discussed in bioanode and biocathode respectively. Moreover, some potential technologies in recent years, such as carbon nanodots, CNT sponges and mixed operational/storage electrode are summarized owing to notable efficiency and the capability of enhancing electron transfer on the electrode. Finally, major challenges and future prospects are discussed for the high power output, stable and practical wearable enzymatic biofuel cells.
Collapse
|
13
|
Blout A, Billon F, Calers C, Méthivier C, Pailleret A, Perrot H, Jolivalt C. Orientation of a Trametes versicolor laccase on amorphous carbon nitride coated graphite electrodes for improved electroreduction of dioxygen to water. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Gentil S, Che Mansor SM, Jamet H, Cosnier S, Cavazza C, Le Goff A. Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00708] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Solène Gentil
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Université Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Serge Cosnier
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Christine Cavazza
- Université Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | - Alan Le Goff
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
15
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
16
|
Wu F, Su L, Yu P, Mao L. Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. J Am Chem Soc 2017; 139:1565-1574. [DOI: 10.1021/jacs.6b11469] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fei Wu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Kizling M, Biedul P, Zabost D, Stolarczyk K, Bilewicz R. Application of Hydroxyethyl Methacrylate and Ethylene Glycol Methacrylate Phosphate Copolymer as Hydrogel Electrolyte in Enzymatic Fuel Cell. ELECTROANAL 2016. [DOI: 10.1002/elan.201600251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michał Kizling
- College of Inter-Faculty Individual Studies in Mathematic and Natural Sciences (MISMaP); Stefana Banacha 2C 02-097 Warsaw Poland
| | - Piotr Biedul
- Polymer Ionics Research Group; Warsaw University of Technology, Chemical Faculty; Noakowskiego 3 00-664 Warsaw Poland
| | - Dariusz Zabost
- Polymer Ionics Research Group; Warsaw University of Technology, Chemical Faculty; Noakowskiego 3 00-664 Warsaw Poland
| | | | - Renata Bilewicz
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-093 Warsaw Poland
| |
Collapse
|
18
|
5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O 2 biofuel cells. Biosens Bioelectron 2016; 87:957-963. [PMID: 27665518 DOI: 10.1016/j.bios.2016.09.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022]
Abstract
We report the functionalization of multi-walled carbon nanotubes (MWCNTs) electrodes by a bifunctional nitroaromatic molecule accomplished via π-π interactions of a pyrene derivative. DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) has the particularity to possess both electroactivable nitro groups and negatively charged carboxylic groups. The integration of the DTNB-modified MWCNTs was evaluated for different bioelectrocatalytic systems. The immobilized DTNB-based electrodes showed electrocatalytic activity toward the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) with low overpotential of -0.09V vs Ag/AgCl at neutral pH. Glucose dehydrogenase was successfully immobilized at the surface of DTNB-based electrodes and, in the presence of NAD+, the resulting bioelectrode achieved efficient glucose oxidation with high current densities of 2.03mAcm-2. On the other hand, the aromatic structure and the negatively charged nature of the DTNB provoked orientation of both laccase and bilirubin oxidase onto the electrode, which enhanced their ability to undergo a direct electron transfer for oxygen reduction. Due to the proper orientation, low overpotentials were obtained (ca. 0.6V vs Ag/AgCl) and high electrocatalytic currents of about 3.5mAcm-2 were recorded at neutral pH in O2 saturated conditions for bilirubin oxidase electrodes. The combination of these bioanodes and bilirubin oxidase biocathodes provided glucose/O2 enzymatic biofuel cells (EBFC) exhibiting an open-circuit potential of 0.640V, with an associated maximum current density of 2.10mAcm-2. Moreover, the fuel cell delivered a maximum power density of 0.50mWcm-2 at 0.36 V.
Collapse
|
19
|
Levrie K, Jans K, Vos R, Ardakanian N, Verellen N, Van Hoof C, Lagae L, Stakenborg T. Multiplexed site-specific electrode functionalization for multitarget biosensors. Bioelectrochemistry 2016; 112:61-6. [PMID: 27472099 DOI: 10.1016/j.bioelechem.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/18/2022]
Abstract
Multitarget biosensors hold great promise to improve point-of-care diagnostics as they enable simultaneous detection of different biomolecular markers. Multiplexed detection of different markers, like genes, proteins, or a combination of both, propels advancement in numerous fields such as genomics, medical diagnosis and therapy monitoring. The functionalization of these biosensors, however, necessitates patterned immobilization of different bioreceptors, which remains challenging and time-consuming. We demonstrate a simple method for the patterned multiplexing of bioreceptors on a multi-electrode chip. By using the lithographically defined electrodes for surface functionalization, additional patterning steps become obsolete. Using the electrodes for self-aligned immobilization provides a spatial resolution that is limited by the electrode patterning process and that cannot be easily obtained by alternative dispensing or coating techniques. Via electrochemical reduction of diazonium salts combined with click chemistry, we achieved site-specific immobilization of two different ssDNA probes side by side on a single chip. This method was experimentally verified by cyclic voltammetry (CV), Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS), and specific target recognition was visualized by fluorescence microscopy. The combination of the electroaddressability of electrografting with the chemoselectivity of click chemistry, offers a versatile platform for highly efficient site-specific functionalization of multitarget biosensors.
Collapse
Affiliation(s)
- Karen Levrie
- IMEC, 3001 Leuven, Belgium; KU Leuven Department of Electrical Engineering (ESAT), 3001 Leuven, Belgium.
| | | | | | | | - Niels Verellen
- KU Leuven Department of Physics and Astronomy, 3001 Leuven, Belgium; IMEC, 3001 Leuven, Belgium
| | - Chris Van Hoof
- IMEC, 3001 Leuven, Belgium; KU Leuven Department of Electrical Engineering (ESAT), 3001 Leuven, Belgium
| | - Liesbet Lagae
- IMEC, 3001 Leuven, Belgium; KU Leuven Department of Physics and Astronomy, 3001 Leuven, Belgium
| | | |
Collapse
|
20
|
Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 2016; 76:91-102. [DOI: 10.1016/j.bios.2015.06.029] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
|
21
|
Kim HJ, Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kan E, Kim YH, Lee SH. Biocompatible cellulose nanocrystals as supports to immobilize lipase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Lalaoui N, Le Goff A, Holzinger M, Cosnier S. Fully Oriented Bilirubin Oxidase on Porphyrin-Functionalized Carbon Nanotube Electrodes for Electrocatalytic Oxygen Reduction. Chemistry 2015; 21:16868-73. [DOI: 10.1002/chem.201502377] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 12/26/2022]
|
23
|
Kilic MS, Korkut S, Hazer B. A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:165-71. [DOI: 10.1016/j.msec.2014.10.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/08/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022]
|
24
|
Giroud F, Milton RD, Tan BX, Minteer SD. Simplifying Enzymatic Biofuel Cells: Immobilized Naphthoquinone as a Biocathodic Orientational Moiety and Bioanodic Electron Mediator. ACS Catal 2015. [DOI: 10.1021/cs501940g] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fabien Giroud
- Department of Chemistry, ‡Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ross D. Milton
- Department of Chemistry, ‡Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bo-Xuan Tan
- Department of Chemistry, ‡Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, ‡Department of Material Science
and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
25
|
Pseudocapacitive polypyrrole–nanocellulose composite for sugar-air enzymatic fuel cells. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2014.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Lalaoui N, Le Goff A, Holzinger M, Mermoux M, Cosnier S. Wiring Laccase on Covalently Modified Graphene: Carbon Nanotube Assemblies for the Direct Bio‐electrocatalytic Reduction of Oxygen. Chemistry 2014; 21:3198-201. [DOI: 10.1002/chem.201405557] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/09/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Noémie Lalaoui
- Univ. Grenoble Alpes, CNRS DCM UMR 5250, 38000 Grenoble (France)
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS DCM UMR 5250, 38000 Grenoble (France)
| | | | - Michel Mermoux
- Univ Grenoble Alpes, CNRS LEPMI UMR 5279, 38000 Grenoble (France)
| | - Serge Cosnier
- Univ. Grenoble Alpes, CNRS DCM UMR 5250, 38000 Grenoble (France)
| |
Collapse
|
27
|
Ortiz R, Ludwig R, Gorton L. Highly Efficient Membraneless Glucose Bioanode Based onCorynascus thermophilusCellobiose Dehydrogenase on Aryl Diazonium-Activated Single-Walled Carbon Nanotubes. ChemElectroChem 2014. [DOI: 10.1002/celc.201402197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
de Poulpiquet A, Ranava D, Monsalve K, Giudici-Orticoni MT, Lojou E. Biohydrogen for a New Generation of H2/O2Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014. [DOI: 10.1002/celc.201402249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
|
30
|
Giroud F, Hickey DP, Schmidtke DW, Glatzhofer DT, Minteer SD. A Monosaccharide-Based Coin-Cell Biobattery. ChemElectroChem 2014. [DOI: 10.1002/celc.201402162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Kilic MS, Korkut S, Hazer B, Erhan E. Development and operation of gold and cobalt oxide nanoparticles containing polypropylene based enzymatic fuel cell for renewable fuels. Biosens Bioelectron 2014; 61:500-5. [PMID: 24951919 DOI: 10.1016/j.bios.2014.05.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/09/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
Newly synthesized gold and cobalt oxide nanoparticle embedded Polypropylene-g-Polyethylene glycol was used for a compartment-less enzymatic fuel cell. Glucose oxidase and bilirubin oxidase were selected as anodic and cathodic enzymes, respectively. Electrode fabrication and EFC operation parameters were optimized to achieve high power output. Maximum power density of 23.5 µW cm(-2) was generated at a cell voltage of +560 mV vs Ag/AgCl, in 100mM PBS pH 7.4 with the addition of 20mM of synthetic glucose solution. 20 µg of polymer amount with 185 µg of glucose oxidase and 356 µg of bilirubin oxidase was sufficient to get maximum performance. The working electrodes could harvest glucose, produced during photosynthesis reaction of Carpobrotus Acinaciformis plant, and readily found in real domestic wastewater of Zonguldak City in Turkey.
Collapse
Affiliation(s)
| | - Seyda Korkut
- Department of Environmental Engineering, Bulent Ecevit University, 67100 Zonguldak, Turkey.
| | - Baki Hazer
- Department of Chemistry, Bulent Ecevit University, 67100 Zonguldak, Turkey
| | - Elif Erhan
- Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
32
|
Bhattacharya P, Du D, Lin Y. Bioinspired nanoscale materials for biomedical and energy applications. J R Soc Interface 2014; 11:20131067. [PMID: 24740959 PMCID: PMC4006234 DOI: 10.1098/rsif.2013.1067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/25/2014] [Indexed: 12/13/2022] Open
Abstract
The demand for green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on the one hand, the sophistication of hierarchical structures endows biological systems with multi-functionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Furthermore, the applications of bioinspired materials in tissue engineering and biomineralization are also discussed.
Collapse
Affiliation(s)
- Priyanka Bhattacharya
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, PO Box 999, Richland, WA 99352, USA
| | - Dan Du
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920, Pullman, WA 99164-2920, USA
| | - Yuehe Lin
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, PO Box 999, Richland, WA 99352, USA
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920, Pullman, WA 99164-2920, USA
| |
Collapse
|
33
|
Induced-fit binding of laccase to gold and carbon electrodes for the biological fuel cell applications. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Skunik-Nuckowska M, Grzejszczyk K, Stolarczyk K, Bilewicz R, Kulesza PJ. Integration of supercapacitors with enzymatic biobatteries toward more effective pulse-powered use in small-scale energy harvesting devices. J APPL ELECTROCHEM 2014. [DOI: 10.1007/s10800-013-0655-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Karaskiewicz M, Biernat JF, Rogalski J, Roberts KP, Bilewicz R. Fluoroaromatic substituents attached to carbon nanotubes help to increase oxygen concentration on biocathode in biosensors and biofuel cells. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Anthracene-modified pyrenes immobilized on carbon nanotubes for direct electroreduction of O2 by laccase. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Bourourou M, Elouarzaki K, Lalaoui N, Agnès C, Le Goff A, Holzinger M, Maaref A, Cosnier S. Supramolecular Immobilization of Laccase on Carbon Nanotube Electrodes Functionalized with (Methylpyrenylaminomethyl)anthraquinone for Direct Electron Reduction of Oxygen. Chemistry 2013; 19:9371-5. [DOI: 10.1002/chem.201301043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Indexed: 11/11/2022]
|
38
|
Lörcher S, Lopes P, Kartashov A, Ferapontova EE. Direct Bio-electrocatalysis of O2Reduction byStreptomyces coelicolorLaccase Orientated at Promoter-Modified Graphite Electrodes. Chemphyschem 2013; 14:2112-24. [DOI: 10.1002/cphc.201300069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 11/06/2022]
|
39
|
Halls JE, Wadhawan JD. A model for efficient, semiconductor-free solar cells via supersensitized electron transfer cascades in photogalvanic devices. Phys Chem Chem Phys 2013; 15:3218-26. [PMID: 23343977 DOI: 10.1039/c3cp00072a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A mathematical model for a photosynthesis-inspired regenerative photogalvanic device, for transient rather than exclusively steady-state conditions, based on molecular electrochemistry rather than electron transfer processes involving semiconductors, is considered within this work and which is adapted from an experimental system previously developed (J. E. Halls and J. D. Wadhawan, Energy Environ. Sci., 2012, 5, 6541). Computational simulations suggest that pragmatically achievable systems behave as middle-of-the-range photo-rechargeable electrochemical capacitors for light-to-electrical energy storage; in contrast the system performance as a light-to-electrical energy convertor (viz., solar cell), for cells constructed from electrochemically reversible redox couples with fast photo-induced electron transfer reactions is critically dependent on the concentration of the supersensitiser; maximum power conversion efficiency of ca. 6.5% under 500 nm light, 2.4 mW cm(-2) intensity for typical experimental parameters, neglecting Ohmic losses, and employing galvanostatic discharge, with a power conversion efficiency that is capable of being increased by a factor of five (to ca. 34%) when the supersensitizer concentration increases by an order of magnitude (from 5.0 to 50.0 mM). Under an AM 2.0 solar spectrum, numerical simulations suggest that one potentially pragmatically achievable embodiment of this regenerative system is able to perform with a solar-to-electrical power conversion efficiency of 4.5% - an attractive realistic single cell value.
Collapse
Affiliation(s)
- Jonathan E Halls
- Department of Chemistry, The University of Hull, Cottingham Road, Kingston-upon-Hull, HU6 7RX, UK.
| | | |
Collapse
|
40
|
Aryl and N-arylamide carbon nanotubes for electrical coupling of laccase to electrodes in biofuel cells and biobatteries. Biocybern Biomed Eng 2013. [DOI: 10.1016/j.bbe.2013.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Karaśkiewicz M, Nazaruk E, Żelechowska K, Biernat JF, Rogalski J, Bilewicz R. Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube–laccase composite cathodes. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|