1
|
Bruggeman PJ, Frontiera RR, Kortshagen U, Kushner MJ, Linic S, Schatz GC, Andaraarachchi H, Chaudhuri S, Chen HT, Clay CD, Dias TC, Doyle S, Jones LO, Meyer M, Mueller CM, Nam JH, Raisanen A, Rich CC, Srivastava T, Xu C, Xu D, Zhang Y. Advances in plasma-driven solution electrochemistry. J Chem Phys 2025; 162:071001. [PMID: 39968819 DOI: 10.1063/5.0248579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Energetic species produced by gas-phase plasmas that impinge on a liquid surface can initiate physicochemical processes at the gas/liquid interface and in the liquid phase. The interaction of these energetic species with the liquid phase can initiate chemical reaction pathways referred to as plasma-driven solution electrochemistry (PDSE). There are several processing opportunities and challenges presented by PDSE. These include the potential use of PDSE to activate chemical pathways that are difficult to activate with other approaches as well as the use of renewable electricity to generate plasmas that could make these liquid-phase chemical conversion processes more sustainable and environmentally friendly. In this review, we focus on PDSE as an approach for controlled and selective chemical conversion including the synthesis of nanoparticles and polymers with desired but currently uncontrollable or unattainable properties as the next step in the use of PDSE. The underpinning redox chemistry and transport processes of PDSE are reviewed as many PDSE-driven processes are transport-limited due to the many short-lived highly reactive species involved.
Collapse
Affiliation(s)
- Peter J Bruggeman
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Uwe Kortshagen
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Mark J Kushner
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Himashi Andaraarachchi
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Han-Ting Chen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Collin D Clay
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tiago C Dias
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Scott Doyle
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Mackenzie Meyer
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Chelsea M Mueller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Jae Hyun Nam
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Astrid Raisanen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122, USA
| | - Christopher C Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Tanubhav Srivastava
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Chi Xu
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Dongxuan Xu
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - Yi Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Lavrikova A, Janda M, Bujdáková H, Hensel K. Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178184. [PMID: 39718071 DOI: 10.1016/j.scitotenv.2024.178184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited. This study reports the effects of a cold plasma generated by a pulsed streamer corona discharge in air on single- and mixed-species biofilms of P. aeruginosa and S. aureus. The plasma causes significant biofilm biomass reduction, bacteria inactivation, and alteration in intracellular metabolism. For single-species biofilms S. aureus is found more tolerant to plasma than P. aeruginosa, and mixed-species biofilms display higher tolerance of both bacteria to plasma than in single-species biofilms. A comparison between wet and dehydrated biofilms reveals reduced plasma efficacy in wet environments. Consequently, biofilm dehydration prior to the plasma treatment facilitates penetration of plasma reactive species leading to higher bacteria inactivation. The evaluation of plasma-generated gaseous reactive species reveals O3 and NO2 being dominant species contributing to the etching mechanism of the overall plasma anti-biofilm effect. Despite the strong anti-biofilm effect is obtained, the biofilm regrowth on the next day after plasma treatment implies on the inability of pulsed streamer corona discharge to permanently eradicate biofilms on a surface. The search for adequate plasma treatment conditions of biofilms remains crucial to avoid the appearance of more adaptive biofilms.
Collapse
Affiliation(s)
- Aleksandra Lavrikova
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia; Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
| | - Mário Janda
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Karol Hensel
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| |
Collapse
|
3
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Hu S, Fu Y, Xue M, Lan Y, Xi W, Xu Z, Han W, Wu D, Cheng C. Simultaneous removal of antibiotic-resistant Escherichia coli and its resistance genes by dielectric barrier discharge plasma. ENVIRONMENTAL RESEARCH 2023; 231:116163. [PMID: 37217128 DOI: 10.1016/j.envres.2023.116163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
As emerging contaminants, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been widely detected in various aqueous environments. For antibiotic resistance to be inhibited in the environment, it is essential to control ARB and ARGs. In this study, dielectric barrier discharge (DBD) plasma was used to inactivate antibiotic resistant Escherichia coli (AR E. coli) and remove ARGs simultaneously. Within 15 s of plasma treatment, 108 CFU/mL of AR E. coli were inactivated by 97.9%. The rupture of the bacterial cell membrane and the increase of intracellular ROS are the main reasons for the rapid inactivation of bacteria. Intracellular ARGs (i-qnrB, i-blaCTX-M, i-sul2) and integron gene (i-int1) decreased by 2.01, 1.84, 2.40, and 2.73 log after 15 min of plasma treatment, respectively. In the first 5 min of discharge, extracellular ARGs (e-qnrB, e-blaCTX-M, e-sul2) and integron gene (e-int1) decreased by 1.99, 2.22, 2.66, and 2.80 log, respectively. The results of the ESR and quenching experiments demonstrated that ·OH and 1O2 played important roles in the removal of ARGs. This study shows that DBD plasma is an effective technique to control ARB and ARGs in waters.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yuhang Fu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Muen Xue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China
| | - Wenhao Xi
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China.
| | - Wei Han
- Institute of Health and Medical Technology/Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Danzhou Wu
- Anhui Engineering Consulting Institute, Hefei 230001, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China.
| |
Collapse
|
5
|
Zhao Y, Bhavya ML, Patange A, Sun DW, Tiwari BK. Plasma-activated liquids for mitigating biofilms on food and food contact surfaces. Compr Rev Food Sci Food Saf 2023; 22:1654-1685. [PMID: 36861750 DOI: 10.1111/1541-4337.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Plasma-activated liquids (PALs) are emerging and promising alternatives to traditional decontamination technologies and have evolved as a new technology for applications in food, agriculture, and medicine. Contamination caused by foodborne pathogens and their biofilms has posed challenges and concerns to the food industry in terms of safety and quality. The nature of the food and the food processing environment are major factors that contribute to the growth of various microorganisms, followed by the biofilm characteristics that ensure their survival in severe environmental conditions and against traditional chemical disinfectants. PALs show an efficient impact against microorganisms and their biofilms, with various reactive species (short- and long-lived ones), physiochemical properties, and plasma processing factors playing a crucial role in mitigating biofilms. Moreover, there is potential to improve and optimize disinfection strategies using a combination of PALs with other technologies for the inactivation of biofilms. The overarching aim of this study is to build a better understanding of the parameters that govern the liquid chemistry generated in a liquid exposed to plasma and how these translate into biological effects on biofilms. This review provides a current understanding of PALs-mediated mechanisms of action on biofilms; however, the precise inactivation mechanism is still not clear and is an important part of the research. Implementation of PALs in the food industry could help overcome the disinfection hurdles and can enhance biofilm inactivation efficacy. Future perspectives in this field to expand existing state of the art to seek breakthroughs for scale-up and implementation of PALs technology in the food industry are also discussed.
Collapse
Affiliation(s)
- Yunlu Zhao
- Teagasc Food Research Centre, Dublin, Ireland.,Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | | | | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin, Ireland
| | | |
Collapse
|
6
|
Control Measurements of Escherichia coli Biofilm: A Review. Foods 2022; 11:foods11162469. [PMID: 36010469 PMCID: PMC9407607 DOI: 10.3390/foods11162469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli (E. coli) is a common pathogen that causes diarrhea in humans and animals. In particular, E. coli can easily form biofilm on the surface of living or non-living carriers, which can lead to the cross-contamination of food. This review mainly summarizes the formation process of E. coli biofilm, the prevalence of biofilm in the food industry, and inhibition methods of E. coli biofilm, including chemical and physical methods, and inhibition by bioactive extracts from plants and animals. This review aims to provide a basis for the prevention and control of E. coli biofilm in the food industry.
Collapse
|
7
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
8
|
Su G, Li S, Deng X, Hu L, Praburaman L, He Z, Zhong H, Sun W. Low concentration of Tween-20 enhanced the adhesion and biofilm formation of Acidianus manzaensis YN-25 on chalcopyrite surface. CHEMOSPHERE 2021; 284:131403. [PMID: 34225118 DOI: 10.1016/j.chemosphere.2021.131403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Although Tween-20 was used as an important catalyst to increase chalcopyrite bioleaching rate by acidophiles, the effect of Tween-20 on initial adhesion and biofilm development of acidophiles on chalcopyrite has not been explored until now. Herein, the role of Tween-20 in early attachment behaviors and biofilm development by Acidianus manzaensis strain YN-25 were investigated by adhesion experiments, adhesion force measurement, visualization of biofilm assays and a series of analyses including extended Derjaguin Landau Verwey Overbeek (DLVO) theory, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The bacterial adhesion experiments showed that 2 mg/L of Tween-20 increased the adhesion percentage (by 8%) of A. manzaensis YN-25. Tween-20 could promote the early adhesion of A. manzaensis YN-25 by changing the Lewis acid-base interaction and electrostatic force to increase total interaction energy and adhesion force. Besides, the functional groups on the surface of cells (carboxyl, hydroxyl and amino functional groups) contributed to the adhesion of A. manzaensis YN-25 on chalcopyrite. Furthermore, the promotion of biofilm formation by Tween-20 was mainly attributed to the reduction of S0 passivation layer formation and complexing more Fe3+ on chalcopyrite surface, contributing to the erosion of chalcopyrite and creating more corrosion pits. Live/dead staining showed low live/dead ratio (ranged from 0.35 to 1.32) during the biofilm development process. This report offers a better understanding of the effects of Tween-20 on attachment and biofilm development of acidophilic microorganisms and would lay a theoretical foundation for the better application of catalyst in bioleaching.
Collapse
Affiliation(s)
- Guirong Su
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiaotao Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Loganathan Praburaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, 410083, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
9
|
The Role of HNO2 in the Generation of Plasma-Activated Water by Air Transient Spark Discharge. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient spark (TS), a DC-driven self-pulsing discharge generating a highly reactive atmospheric pressure air plasma, was employed as a rich source of NOx. In dry air, TS generates high concentrations of NO and NO2, increasing approximately linearly with increasing input energy density (Ed), reaching 1200 and 180 ppm of NO and NO2, at Ed = 400 J/L, respectively. In humid air, the concentration of NO2 decreased down to 120 ppm in favor of HNO2 that reached approximately 100 ppm at Ed = 400 J/L. The advantage of TS is its capability of simultaneous generation of the plasma and the formation of microdroplets by the electrospray (ES) of water directly inside the discharge zone. The TS discharge can thus efficiently generate plasma-activated water (PAW) with high concentration of H2O2−(aq), NO2−(aq) and NO3−(aq), because water microdroplets significantly increase the plasma-liquid interaction interface. This enables a fast transfer of species such as NO, NO2, HNO2 from the gas into water. In this study, we compare TS with water ES in a one stage system and TS operated in dry or humid air followed by water ES in a two-stage system, and show that gaseous HNO2, rather than NO or NO2, plays a major role in the formation of NO2−(aq) in PAW that reached the concentration up to 2.7 mM.
Collapse
|
10
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
11
|
Transport of Gaseous Hydrogen Peroxide and Ozone into Bulk Water vs. Electrosprayed Aerosol. WATER 2021. [DOI: 10.3390/w13020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Production and transport of reactive species through plasma–liquid interactions play a significant role in multiple applications in biomedicine, environment, and agriculture. Experimental investigations of the transport mechanisms of typical air plasma species: hydrogen peroxide (H2O2) and ozone (O3) into water are presented. Solvation of gaseous H2O2 and O3 from an airflow into water bulk vs. electrosprayed microdroplets was measured, while changing the water flow rate and applied voltage, during different treatment times and gas flow rates. The solvation rate of H2O2 and O3 increased with the treatment time and the gas–liquid interface area. The total surface area of the electrosprayed microdroplets was larger than that of the bulk, but their lifetime was much shorter. We estimated that only microdroplets with diameters below ~40 µm could achieve the saturation by O3 during their lifetime, while the saturation by H2O2 was unreachable due to its depletion from air. In addition to the short-lived flying microdroplets, the longer-lived bottom microdroplets substantially contributed to H2O2 and O3 solvation in water electrospray. This study contributes to a better understanding of the gaseous H2O2 and O3 transport into water and will lead to design optimization of the water spray and plasma-liquid interaction systems.
Collapse
|
12
|
Su G, Deng X, Hu L, Praburaman L, Zhong H, He Z. Comparative analysis of early-stage adsorption and biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite and pyrite surfaces. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Cheng JH, Lv X, Pan Y, Sun DW. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Xu Z, Zhou X, Yang W, Zhang Y, Ye Z, Hu S, Ye C, Li Y, Lan Y, Shen J, Ye X, Yang F, Cheng C. In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. PLASMA PROCESSES AND POLYMERS 2020; 17. [DOI: 10.1002/ppap.201900270] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2025]
Abstract
AbstractThe deactivation effects and mechanism of plasma‐activated water (PAW) against Staphylococcus aureus biofilm and the inhibitory effect on the biofilm regrowth capacity for the surviving S. aureus post PAW treatment were investigated in vitro. Systematic measurements on bacterial cultivability, metabolic capacity, membrane integrity and intracellular reactive oxygen species (ROS) concentration under two different experimental categories were carried out after PAW treatment. Considerable deactivation effects were discovered on biofilm S. aureus on both prolonging the PAW inducement or treatment time. The rising concentration of intracellular ROS and the PAW‐contained RS might exert synergistic effects in deactivating the biofilm S. aureus. Moreover, the biomass, bacterial cultivability and metabolic capacity of the regrown S. aureus biofilm all significantly declined along with the increasing PAW inducement or treatment time. Therefore, except for the short‐term rapid inactivation effects on the biofilm, the PAW treatment could also exert long‐term inhibitory effects on the regeneration of S. aureus biofilm.
Collapse
Affiliation(s)
- Zimu Xu
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| | - Xiaoxia Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Weishu Yang
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Yudi Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Zhengxin Ye
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Chaobin Ye
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Yunxia Li
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Yan Lan
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| | - Jie Shen
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| | - Xiaodong Ye
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Fan Yang
- School of Forestry & Landscape Architecture, Anhui Agricultural University Hefei P. R. China
| | - Cheng Cheng
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| |
Collapse
|
15
|
Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020; 8:4052-4066. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
Collapse
Affiliation(s)
- Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
16
|
Julák J, Vaňková E, Válková M, Kašparová P, Masák J, Scholtz V. Combination of non-thermal plasma and subsequent antibiotic treatment for biofilm re-development prevention. Folia Microbiol (Praha) 2020; 65:863-869. [PMID: 32424471 DOI: 10.1007/s12223-020-00796-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/04/2020] [Indexed: 01/01/2023]
Abstract
The influence of non-thermal plasma (NTP) treatment on the prevention of antibiotic resistance of microbial biofilms was studied. Staphylococcus epidermidis and Escherichia coli bacteria and a yeast Candida albicans, grown on the surface of Ti-6Al-4V alloy used in the manufacture of prosthetic implants, were employed. Their biofilms were exposed to NTP produced by DC cometary discharge and subsequently treated with antibiotics commonly used for the treatment of infections caused by them: erythromycin (ERY), polymyxin B (PMB), or amphotericin B (AMB), respectively. All biofilms displayed significant reduction of their metabolic activity after NTP exposure, the most sensitive was S. epidermidis. The subsequent action of antibiotics caused significant decrease in the metabolic activity of S. epidermidis and E. coli, but not C. albicans, although the area covered by biofilm decreased in all cases. The combined effect of NTP with antibiotics was thus proved to be a promising strategy in bacterial pathogen treatment.
Collapse
Affiliation(s)
- Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| | - Eva Vaňková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Markéta Válková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Petra Kašparová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
17
|
Effects of Atmospheric Plasma Corona Discharges on Soil Bacteria Viability. Microorganisms 2020; 8:microorganisms8050704. [PMID: 32403235 PMCID: PMC7284381 DOI: 10.3390/microorganisms8050704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Crop contamination by soil-borne pathogenic microorganisms often leads to serious infection outbreaks. Plant protection requires disinfection of agricultural lands. The chemical and the physical disinfection procedures have several disadvantages, including an irreversible change in the soil ecosystem. Plasma, the "fourth state of matter" is defined as an ionized gas containing an equal number of negatively and positively charged particles. Cold-plasma technology with air or oxygen as the working gas generates reactive oxygen species, which are found to efficiently eradicate bacteria. In this study, we examined the effect of atmospheric plasma corona discharges on soil bacteria viability. Soil that was exposed to plasma for 60 s resulted in bacterial reduction by two orders of magnitude, from 1.1 × 105 to 2.3 × 103 cells g-1 soil. Exposure for a longer period of 5 min did not lead to further significant reduction in bacterial concentration (a final reduction of only 2.5 orders of magnitude). The bacterial viability was evaluated using a colorimetric assay based on the bacterial hydrogenases immediately after exposure and at selected times during 24 h. The result showed no recovery in the bacterial viability. Plasma discharged directly on bacteria that were isolated from the soil resulted in a reduction by four orders of magnitude in the bacterial concentration compared to untreated isolated bacteria: 2.6 × 10-3 and 1.7 × 10-7, respectively. The plasma-resistant bacteria were found to be related to the taxonomic phylum Firmicutes (98.5%) and comprised the taxonomic orders Bacillales (95%) and Clostridiales (2%). To our knowledge, this is the first study of soil bacteria eradication using plasma corona discharges.
Collapse
|
18
|
Huang M, Zhuang H, Zhao J, Wang J, Yan W, Zhang J. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020; 132:107445. [DOI: 10.1016/j.bioelechem.2019.107445] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
|
19
|
Bauer G, Sersenová D, Graves DB, Machala Z. Cold Atmospheric Plasma and Plasma-Activated Medium Trigger RONS-Based Tumor Cell Apoptosis. Sci Rep 2019; 9:14210. [PMID: 31578342 PMCID: PMC6775051 DOI: 10.1038/s41598-019-50291-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023] Open
Abstract
The selective in vitro anti-tumor mechanisms of cold atmospheric plasma (CAP) and plasma-activated media (PAM) follow a sequential multi-step process. The first step involves the formation of primary singlet oxygen (1O2) through the complex interaction between NO2− and H2O2.1O2 then inactivates some membrane-associated catalase molecules on at least a few tumor cells. With some molecules of their protective catalase inactivated, these tumor cells allow locally surviving cell-derived, extracellular H2O2 and ONOO─ to form secondary 1O2. These species continue to inactivate catalase on the originally triggered cells and on adjacent cells. At the site of inactivated catalase, cell-generated H2O2 enters the cell via aquaporins, depletes glutathione and thus abrogates the cell’s protection towards lipid peroxidation. Optimal inactivation of catalase then allows efficient apoptosis induction through the HOCl signaling pathway that is finalized by lipid peroxidation. An identical CAP exposure did not result in apoptosis for nonmalignant cells. A key conclusion from these experiments is that tumor cell-generated RONS play the major role in inactivating protective catalase, depleting glutathione and establishing apoptosis-inducing RONS signaling. CAP or PAM exposure only trigger this response by initially inactivating a small percentage of protective membrane associated catalase molecules on tumor cells.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
20
|
Bauer G, Sersenová D, Graves DB, Machala Z. Dynamics of Singlet Oxygen-Triggered, RONS-Based Apoptosis Induction after Treatment of Tumor Cells with Cold Atmospheric Plasma or Plasma-Activated Medium. Sci Rep 2019; 9:13931. [PMID: 31558835 PMCID: PMC6763425 DOI: 10.1038/s41598-019-50329-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022] Open
Abstract
Treatment of tumor cells with cold atmospheric plasma (CAP) or with plasma-activated medium (PAM) leads to a biochemical imprint on these cells. This imprint is mediated by primary singlet oxygen, which is mainly generated through the interaction between CAP-derived H2O2 and NO2-. This imprint is induced with a low efficiency as local inactivation of a few membrane-associated catalase molecules. As sustained generation of secondary singlet oxygen by the tumor cells is activated at the site of the imprint, a rapid bystander effect-like spreading of secondary singlet oxygen generation and catalase inactivation within the cell population is thus induced. This highly dynamic process is essentially driven by NOX1 and NOS of the tumor cells, and finally leads to intercellular RONS-driven apoptosis induction. This dynamic process can be studied by kinetic analysis, combined with the use of specific inhibitors at defined time intervals. Alternatively, it can be demonstrated and quantified by transfer experiments, where pretreated cells are mixed with untreated cells and bystander signaling is determined. These studies allow to conclude that the specific response of tumor cells to generate secondary singlet oxygen is the essential motor for their self-destruction, after a singlet oxygen-mediated triggering process by CAP or PAM.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominika Sersenová
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - David B Graves
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California, 94720, USA
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
21
|
Plasma and Aerosols: Challenges, Opportunities and Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interaction of plasmas and liquid aerosols offers special advantages and opens new perspectives for plasma–liquid applications. The paper focuses on the key research challenges and potential of plasma-aerosol interaction at atmospheric pressure in several fields, outlining opportunities and benefits in terms of process tuning and throughputs. After a short overview of the recent achievements in plasma–liquid field, the possible application benefits from aerosol injection in combination with plasma discharge are listed and discussed. Since the nature of the chemicophysical plasma-droplet interactions is still unclear, a multidisciplinary approach is recommended to overcome the current lack of knowledge and to open the plasma communities to scientists from other fields, already active in biphasic systems diagnostic. In this perspective, a better understanding of the high chemical reactivity of gas–liquid reactions will bring new opportunities for plasma assisted in-situ and on-demand reactive species production and material processing.
Collapse
|
22
|
Múgica-Vidal R, Sainz-García E, Álvarez-Ordóñez A, Prieto M, González-Raurich M, López M, López M, Rojo-Bezares B, Sáenz Y, Alba-Elías F. Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02293-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 2018; 121:125-134. [DOI: 10.1016/j.bioelechem.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
24
|
Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli. Bioelectrochemistry 2018; 120:112-119. [DOI: 10.1016/j.bioelechem.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022]
|
25
|
Abstract
Microbial biofilms, which are elaborate and highly resistant microbial aggregates formed on surfaces or medical devices, cause two-thirds of infections and constitute a serious threat to public health. Immunocompromised patients, individuals who require implanted devices, artificial limbs, organ transplants, or external life support and those with major injuries or burns, are particularly prone to become infected. Antibiotics, the mainstay treatments of bacterial infections, have often proven ineffective in the fight against microbes when growing as biofilms, and to date, no antibiotic has been developed for use against biofilm infections. Antibiotic resistance is rising, but biofilm-mediated multidrug resistance transcends this in being adaptive and broad spectrum and dependent on the biofilm growth state of organisms. Therefore, the treatment of biofilms requires drug developers to start thinking outside the constricted "antibiotics" box and to find alternative ways to target biofilm infections. Here, we highlight recent approaches for combating biofilms focusing on the eradication of preformed biofilms, including electrochemical methods, promising antibiofilm compounds and the recent progress in drug delivery strategies to enhance the bioavailability and potency of antibiofilm agents.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sarah C. Mansour
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
26
|
Frugal Biotech Applications of Low-Temperature Plasma. Trends Biotechnol 2017; 36:579-581. [PMID: 28870409 DOI: 10.1016/j.tibtech.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 01/27/2023]
Abstract
Gas discharge low-temperature air plasma can be utilized for a variety of applications, including biomedical, at low cost. We term these applications 'frugal plasma' - an example of frugal innovation. We demonstrate how simple, robust, low-cost frugal plasma devices can be used to safely disinfect instruments, surfaces, and water.
Collapse
|
27
|
Zabielska J, Tyfa A, Kunicka-Styczyńska A. Methods for eradication of the biofilms formed by opportunistic pathogens using novel techniques – A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/fobio-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The inconvenient environmental conditions force microorganisms to colonize either abiotic surfaces or animal and plant tissues and, therefore, form more resistant structures – biofilms. The phenomenon of microbial adherence, opportunistic pathogens in particular, is of a great concern. Colonization of medical devices and biofilm formation on their surface, may lead to severe infections mainly in humans with impaired immune system. Although, current research consider various methods for prevention of microbial biofilms formation, still, once a biofilm is formed, its elimination is almost impossible. This study focuses on the overview of novel methods applied for eradication of mature opportunistic pathogens' biofilms. Among various techniques the following: cold plasma, electric field, ultrasounds, ozonated water treatment, phagotherapy, matrix targeting enzymes, bacteriocins, synthetic chemicals and natural origin compounds used for biofilm matrix disruption were briefly described.
Collapse
|