1
|
Sobiech M. Computer-Assisted Strategies as a Tool for Designing Green Monomer-Based Molecularly Imprinted Materials. Int J Mol Sci 2024; 25:12912. [PMID: 39684622 DOI: 10.3390/ijms252312912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are defined as artificial receptors due to their selectivity and specificity. Their advantageous properties compared to biological alternatives have sparked interest among scientists, as detailed in numerous review papers. Currently, there is significant attention on adhering to the principles of green chemistry and environmental protection. In this context, MIP research groups have focused on developing eco-friendly procedures. The application of "greener" monomers and reagents, along with the utilization of computational methodologies for design and property analysis, are two activities that align with the green chemistry principles for molecularly imprinted technology. This review discusses the application of computational methodologies in the preparation of MIPs based on eco-friendly non-acrylic/vinylic monomers and precursors, such as alkoxysilanes, ionic liquids, deep eutectic solvents, bio-based molecules-specifically saccharides, and biomolecules like proteins. It provides a brief introduction to MIP materials, the green aspects of MIP production, and the application of computational simulations. Following this, brief descriptions of the studied monomers, molecular simulation studies of green monomer-based MIPs, and computational strategies are presented. Finally, conclusions and an outlook on the future directions of computational analysis in the production of green imprinted materials are pointed out. To the best of my knowledge, this work is the first to combine these two aspects of MIP green chemistry principles.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
Wang Z, Dong Z, Shen X, Wu B. Molecularly Imprinted Polymers Using Yeast as a Supporting Substrate. Molecules 2023; 28:7103. [PMID: 37894582 PMCID: PMC10608888 DOI: 10.3390/molecules28207103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) have gained significant attention as artificial receptors due to their low cost, mild operating conditions, and excellent selectivity. To optimize the synthesis process and enhance the recognition performance, various support materials for molecular imprinting have been explored as a crucial research direction. Yeast, a biological material, offers advantages such as being green and environmentally friendly, low cost, and easy availability, making it a promising supporting substrate in the molecular imprinting process. We focus on the preparation of different types of MIPs involving yeast and elaborate on the specific roles it plays in each case. Additionally, we discuss the advantages and limitations of yeast in the preparation of MIPs and conclude with the challenges and future development trends of yeast in molecular imprinting research.
Collapse
Affiliation(s)
- Zhigang Wang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Zhuangzhuang Dong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Bin Wu
- Anheuser-Busch Management (Shanghai) Co., Ltd. Wuhan Branch, Wuhan 430051, China;
| |
Collapse
|
4
|
Afsharara H, Asadian E, Mostafiz B, Banan K, Bigdeli SA, Hatamabadi D, Keshavarz A, Hussain CM, Keçili R, Ghorbani-Bidkorpeh F. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Pardeshi S, Dhodapkar R. Advances in fabrication of molecularly imprinted electrochemical sensors for detection of contaminants and toxicants. ENVIRONMENTAL RESEARCH 2022; 212:113359. [PMID: 35525288 DOI: 10.1016/j.envres.2022.113359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Worldwide growing concerns about water contamination and pollution have increased significant interest in trace level sensing of variety of contaminants. Thus, there is demand for fabrication of low cost, miniaturized sensing device for in-situ detection of contaminants from the complex environmental matrices capable of providing selective and sensitive detection. Molecularly imprinted polymers (MIPs) has portrayed a substantial potential for selective recognition of various toxicants from a variety of environmental matrices, thus widely used as artificial recognition element in the electrochemical sensors (ECS) owing to their chemical stability, easy and low cost synthesis. The combination of nanomaterials modifiers with MIPs has endowed MIP-ECS with significantly improved sensing performance in the recent years, as the nanomaterial provide properties such as increased surface area, increased conductivity and electrocatalytic activity with enhanced electron transport phenomena, whereas MIPs provide selective recognition effect. In the present review, we have summarized the advances of MIP-ECS electrochemical sensors reported in last six years (2017-2022) for sensing of variety of contaminates including drugs, metal ions, hormones and emerging contaminates. Scope of computational modelling in design of sensitive and selective MIP-ECS is reviewed. We have focused particularly on the synthetic protocols for MIPs preparation including bulk, precipitation, electropolymerization, sol-gel and magnetic MIPs. Moreover, use of various nanomaterial as modifiers and sensitizers and their effects on the sensing performance of resulting MIP-ECS is described. Finally, the potential challenges and future prospects in the research area of MIP-ECS have been discussed.
Collapse
Affiliation(s)
- Sushma Pardeshi
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Rita Dhodapkar
- Environmental Biotechnology and Genomics Division, CSIR- National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| |
Collapse
|
6
|
Yu T, Glennon L, Fenelon O, Breslin CB. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Talanta 2022; 251:123758. [DOI: 10.1016/j.talanta.2022.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
|
7
|
Singhal A, Sadique MA, Kumar N, Yadav S, Ranjan P, Parihar A, Khan R, Kaushik AK. Multifunctional carbon nanomaterials decorated molecularly imprinted hybrid polymers for efficient electrochemical antibiotics sensing. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107703. [DOI: 10.1016/j.jece.2022.107703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Ilager D, Shetti NP, Reddy KR, Tuwar SM, Aminabhavi TM. Nanostructured graphitic carbon nitride (g-C 3N 4)-CTAB modified electrode for the highly sensitive detection of amino-triazole and linuron herbicides. ENVIRONMENTAL RESEARCH 2022; 204:111856. [PMID: 34389349 DOI: 10.1016/j.envres.2021.111856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In agro-areas, linuron (LNR) and amino-triazole (ATZ) are the widely used herbicides to protect crops, but their widespread use pollutes the environment, especially when these are mixed with water or soil. In efforts to address these environmental issues and to detect trace quantities of the herbicides, a graphitic carbon nitride (g-C3N4) with cetyltrimethylammonium bromide (CTAB) modified carbon paste electrode (g-C3N4-CTAB/CPE) was developed and used for the detection of LNR and ATZ. Materials were characterized by XRD, TEM and AFM techniques. The effect of pH on electro-oxidation (under optimized conditions) showed the maximum peak current at pH of 4.2 for AMT and pH 6.0 for LNR. The electro-kinetic and thermodynamic parameters of LNR and ATZ were determined. Additional experiments were performed for the trace level detection of ATZ and LNR using the square wave voltammetric technique. Concentrations were varied linearly in the range of 3.0 × 10-7 M to 4.5 × 10-5 M for ATZ with a detection limit of 6.41 × 10-8 M, and 1.2 × 10-7 M to 3.0 × 10-4 M for LNR with a detection limit of 2.47 × 10-8 M. The developed novel sensor was effective for trace level detection of LNR and ATZ in water and soil samples.
Collapse
Affiliation(s)
- Davalasab Ilager
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580 027, Karnataka, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India.
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Suresh M Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad, 580 001, Karnataka, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580 031, Karnataka, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| |
Collapse
|
9
|
Amare M, Worku A, Kassa A, Hilluf W. Green synthesized silver nanoparticle modified carbon paste electrode for SWAS voltammetric simultaneous determination of Cd(II) and Pb(II) in Bahir Dar Textile discharged effluent. Heliyon 2020; 6:e04401. [PMID: 32695910 PMCID: PMC7365986 DOI: 10.1016/j.heliyon.2020.e04401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022] Open
Abstract
The principal objective of this research was to demonstrate the sensitivity and selectivity of carbon paste electrode modified with Ocimum Sanctum leaf extract synthesized silver nanoparticles for simultaneous determination of Cd(II) and Pb(II) in discharged textile effluent. While UV-Vis, XRD and FT-IR were used to fully characterize the green synthesized silver nanoparticles, cyclic voltammetry was used to evaluate the electrochemical behavior of the two metals at the modified electrode relative to the unmodified electrode. Square wave anodic stripping (SWAS) voltammetric current showed linear dependence on the concentration in the range 5–160 ppm with determination coefficients (R2) of 0.9976 and 0.9996 for Cd(II) and Pb(II), respectively. The method also showed extremely low detection limit (0.0891ppm for Cd(II) and 0.048 ppm for Pb(II)) making the method superior over the previously reported methods. Recovery results of 94.3 for Cd(II) and 101.0% for Pb(II) validated the applicability of the method for simultaneous determination of the two metals in a complex matrix textile effluent sample. While levels of Pb(II) and Cd(II) in the untreated sample were 117.0 and 128.3 ppm, their levels in the treated sample were 17.7 and 101.4 ppm, respectively confirming the low efficiency of the treatment plant the factory claims to have. The level of the studied metals in the discharged effluent is much higher than the permissible limit indicating extent of pollution of the water system to which the effluent is discharged.
Collapse
Affiliation(s)
- Meareg Amare
- Department of Chemistry, College of Science, Bahir Dar, Ethiopia
| | - Awoke Worku
- Department of Chemistry, College of Science, Bahir Dar, Ethiopia
| | - Adane Kassa
- Department of Chemistry, College of Science, Bahir Dar, Ethiopia
| | | |
Collapse
|
10
|
A highly sensitive and selective sensor for trace uranyl (VI) ion based on a graphene-coated carbon paste electrode modified with ion imprinted polymer. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Su C, Li Z, Zhang D, Wang Z, Zhou X, Liao L, Xiao X. A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen. Biosens Bioelectron 2019; 148:111819. [PMID: 31678825 DOI: 10.1016/j.bios.2019.111819] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
In this paper, a sensor based on a magnetic surface molecularly imprinted membrane (MMIP) was prepared for the highly sensitive and selective determination of acetaminophen (AP). Before the experiment, the appropriate functional monomers and solvents required for the polymer were screened, and the molecular electrostatic potentials (MEPs) were calculated by the DFT/B3LYP/6-31 + G method. MMIP with high recognition of AP was synthesized based on Fe3O4@SiO2nanoparticles (NPs) with excellent core-shell structure. Next, a carbon paste electrode (CPE) was filled with a piece of neodymium-iron-boron magnet to make magnetic electrode (MCPE), and MMIP/MCPE sensor was obtained by attaching a printed polymer to the surface of the electrode under the strong magnetic. Due to the stable molecular structure of the electrode surface, the sensor is highly effective and accurate for detection of AP using DPV. The DPV response of the sensor exhibited a linear dependence on the concentration of AP from 6 × 10-8 to 5 × 10-5 mol L-1 and 5 × 10-5 to 2 × 10-4 mol L-1, with a detection limit based on the lower linear range of 1.73 × 10-8 mol L-1(S/N = 3). When used for determination of AP in actual samples, the recovery of the sensor to the sample was 95.80-103.76%, and the RSD was 0.78%-3.05%.
Collapse
Affiliation(s)
- Changlin Su
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhiyang Li
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Di Zhang
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhimei Wang
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xin Zhou
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang City, Hunan Province, 421001, PR China; School of Resource & Environment and Safety Engineering, University of South China, Hengyang City, Hunan Province, 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
12
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Essousi H, Barhoumi H, Jaffrezic‐Renault N. Molecularly Imprinted Electrochemical Sensor Based on Modified Reduced Graphene Oxide‐gold Nanoparticles‐polyaniline Nanocomposites Matrix for Dapsone Determination. ELECTROANAL 2019. [DOI: 10.1002/elan.201800818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Houda Essousi
- University of MonastirFaculty of Sciences of MonastirLaboratory of Advanced Materials and Interfaces Monastir Tunisia
| | - Houcine Barhoumi
- University of MonastirFaculty of Sciences of MonastirLaboratory of Advanced Materials and Interfaces Monastir Tunisia
| | | |
Collapse
|