1
|
Kirsanov RS, Khailova LS, Krasnov VS, Firsov AM, Lyamzaev KG, Panteleeva AA, Popova LB, Nazarov PA, Tashlitsky VN, Korshunova GA, Kotova EA, Antonenko YN. Spontaneous reversal of small molecule-induced mitochondrial uncoupling: the case of anilinothiophenes. FEBS J 2024; 291:5523-5539. [PMID: 39570682 DOI: 10.1111/febs.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024]
Abstract
Tissue specificity can render mitochondrial uncouplers more promising as leading compounds for creating drugs against serious diseases. In search of tissue-specific uncouplers, we address anilinothiophenes as possible glutathione-S-transferase substrates (GST). Earlier, 'cyclic' uncoupling activity was reported for 5-bromo-N-(4-chlorophenyl)-3,4-dinitro-2-thiophenamine (BDCT) in isolated rat liver mitochondria (RLM). The mechanism by which BDCT induced two-phase changes in mitochondrial respiration (stimulation followed by deceleration) was unknown. To clarify this issue, we synthesized BDCT and its two analogues. Among these, 5-bromo-3,4-dinitro-N-(4-nitrophenyl)-2-thiophenamine (BDNT) appeared to be the most effective as a mitochondrial uncoupler, decreasing membrane potential and stimulating respiration at submicromolar concentrations. Importantly, BDNT exerted two-phase changes in both mitochondrial membrane potential and respiration rate of RLM, which were enhanced by the addition of glutathione (GSH) but inhibited by the compounds capable of GSH depleting, such as 1-chloro-2,4-dinitrobenzene (CDNB). By contrast, the phase of recoupling was not observed in rat heart mitochondria (RHM). Remarkably, BDNT elicited mitochondrial depolarization in primary human fibroblasts but not in cultured human liver (HepG2) cells. By detecting proton-selective electrical current through planar bilayer lipid membranes, we demonstrated the ability of BDCT and BDNT to transfer protons across membranes. BDNT proved to be an anionic protonophore with a pKa of 7.38. By using LC-MS and capillary electrophoresis, we directly showed the formation of BDNT conjugates with GSH upon incubation with RLM but not RHM. Therefore, we hypothesize that GST is involved in the disappearance of the anilinothiophene uncoupling activity in RLM, ensuring the tissue-specific behavior of the uncoupler.
Collapse
Affiliation(s)
- Roman S Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Vladimir S Krasnov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- Department of Chemistry, Lomonosov Moscow State University, Russia
| | - Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
- The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alisa A Panteleeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Lyudmila B Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Pavel A Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
2
|
Liu Z, Mo J, Li Y, Liu S, Zeng Q, Zhang J. Effect of the mitochondrial uncoupling agent BAM15 against the Toxoplasma gondii RH strain and Prugniaud strain. Parasit Vectors 2024; 17:96. [PMID: 38424591 PMCID: PMC10905885 DOI: 10.1186/s13071-024-06187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Toxoplasmosis is a zoonotic disease caused by the infection of the protozoa Toxoplasma gondii (T. gondii), and safe and effective therapeutic drugs are lacking. Mitochondria, is an important organelle that maintains T. gondii survival, however, drugs targeting mitochondria are lacking. METHODS The cytotoxicity of BAM15 was detected by CCK-8 and the in vitro effects of BAM15 was detected by qPCR, plaque assay and flow cytometry. Furthermore, the ultrastructural changes of T. gondii after BAM15 treatment were observed by transmission electron microscopy, and further the mitochondrial membrane potential (ΔΨm), ATP level and reactive oxygen species (ROS) of T. gondii after BAM15 treatment were detected. The pharmacokinetic experiments and in vivo infection assays were performed in mice to determine the in vivo effect of BAM15. RESULTS BAM15 had excellent anti-T. gondii activity in vitro and in vivo with an EC50 value of 1.25 μM, while the IC50 of BAM15 in Vero cells was 27.07 μM. Notably, BAM15 significantly inhibited proliferation activity of T. gondii RH strain and Prugniaud strain (PRU), caused T. gondii death. Furthermore, BAM15 treatment induced T. gondii mitochondrial vacuolation and autolysis by TEM. Moreover, the decrease in ΔΨm and ATP level, as well as the increase in ROS production further confirmed the changes CONCLUSIONS: Our study identifies a useful T. gondii mitochondrial inhibitor, which may also serve as a leading molecule to develop therapeutic mitochondrial inhibitors in toxoplasmosis.'
Collapse
Affiliation(s)
- Zhendi Liu
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Jiao Mo
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Yetian Li
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Siyang Liu
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Qingyuan Zeng
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Jili Zhang
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China.
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou, Gansu Province, 730050, People's Republic of China.
| |
Collapse
|
3
|
Xiong G, Zhang K, Ma Y, Song Y, Zhang W, Qi T, Qiu H, Shi J, Kan C, Zhang J, Sun X. BAM15 as a mitochondrial uncoupler: a promising therapeutic agent for diverse diseases. Front Endocrinol (Lausanne) 2023; 14:1252141. [PMID: 37900126 PMCID: PMC10600450 DOI: 10.3389/fendo.2023.1252141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Subcellular organelles dysfunction is implicated in various diseases, including metabolic diseases, neurodegenerative diseases, cancer, and cardiovascular diseases. BAM15, a selective mitochondrial uncoupler, has emerged as a promising therapeutic agent due to its ability to enhance mitochondrial respiration and metabolic flexibility. By disrupting the coupling between electron transport and ATP synthesis, BAM15 dissipates the proton gradient, leading to increased mitochondrial respiration and energy expenditure. This review provides a comprehensive overview of BAM15, including its mechanism of action and potential therapeutic applications in diverse disease contexts. BAM15 has shown promise in obesity by increasing energy expenditure and reducing fat accumulation. In diabetes, it improves glycemic control and reverses insulin resistance. Additionally, BAM15 has potential in non-alcoholic fatty liver disease, sepsis, and cardiovascular diseases by mitigating oxidative stress, modulating inflammatory responses, and promoting cardioprotection. The safety profile of BAM15 is encouraging, with minimal adverse effects and remarkable tolerability. However, challenges such as its high lipophilicity and the need for alternative delivery methods need to be addressed. Further research is necessary to fully understand the therapeutic potential of BAM15 and optimize its application in clinical settings.
Collapse
Affiliation(s)
- Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Skinner WM, Petersen NT, Unger B, Tang S, Tabarsi E, Lamm J, Jalalian L, Smith J, Bertholet AM, Xu K, Kirichok Y, Lishko PV. Mitochondrial uncouplers impair human sperm motility without altering ATP content†. Biol Reprod 2023; 109:192-203. [PMID: 37294625 PMCID: PMC10427809 DOI: 10.1093/biolre/ioad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/22/2023] [Accepted: 06/01/2023] [Indexed: 06/11/2023] Open
Abstract
In human spermatozoa, the electrochemical potentials across the mitochondrial and plasma membranes are related to sperm functionality and fertility, but the exact role of each potential has yet to be clarified. Impairing sperm mitochondrial function has been considered as an approach to creating male or unisex contraceptives, but it has yet to be shown whether this approach would ultimately block the ability of sperm to reach or fertilize an egg. To investigate whether the mitochondrial and plasma membrane potentials are necessary for sperm fertility, human sperm were treated with two small-molecule mitochondrial uncouplers (niclosamide ethanolamine and BAM15) that depolarize membranes by inducing passive proton flow, and evaluated the effects on a variety of sperm physiological processes. BAM15 specifically uncoupled human sperm mitochondria while niclosamide ethanolamine induced proton current in the plasma membrane in addition to depolarizing the mitochondria. In addition, both compounds significantly decreased sperm progressive motility with niclosamide ethanolamine having a more robust effect. However, these uncouplers did not reduce sperm adenosine triphosphate (ATP) content or impair other physiological processes, suggesting that human sperm can rely on glycolysis for ATP production if mitochondria are impaired. Thus, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would likely need to be paired with sperm-specific glycolysis inhibitors. However, since niclosamide ethanolamine impairs sperm motility through an ATP-independent mechanism, and niclosamide is FDA approved and not absorbed through mucosal membranes, it could be a useful ingredient in on-demand, vaginally applied contraceptives.
Collapse
Affiliation(s)
- Will M Skinner
- Endocrinology Graduate Group, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Natalie T Petersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Bret Unger
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Sarafan ChEM-H, Stanford University, Stanford, California, USA
| | - Emiliano Tabarsi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Julianna Lamm
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Dewpoint Therapeutics, Boston, Massachusetts, USA
| | - Liza Jalalian
- Department of Obstetrics and Gynecology, University of California, San Francisco Center for Reproductive Health, San Francisco, California, USA
| | - James Smith
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Ambre M Bertholet
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Yuriy Kirichok
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Polina V Lishko
- Endocrinology Graduate Group, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Cell Biology & Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Firsov AM, Khailova LS, Rokitskaya TI, Kotova EA, Antonenko YN. Antibiotic Pyrrolomycin as an Efficient Mitochondrial Uncoupler. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:812-822. [PMID: 36171648 DOI: 10.1134/s0006297922080120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/16/2023]
Abstract
Pyrrolomycins C (Pyr_C) and D (Pyr_D) are antibiotics produced by Actinosporangium and Streptomyces. The mechanism of their antimicrobial activity consists in depolarization of bacterial membrane, leading to the suppression of bacterial bioenergetics through the uncoupling of oxidative phosphorylation, which is based on the protonophore action of these antibiotics [Valderrama et al., Antimicrob. Agents Chemother. (2019) 63, e01450]. Here, we studied the effect of pyrrolomycins on the isolated rat liver mitochondria. Pyr_C was found to be more active than Pyr_D and uncoupled mitochondria in the submicromolar concentration range, which was observed as the mitochondrial membrane depolarization and stimulation of mitochondrial respiration. In the case of mitoplasts (isolated mitochondria with impaired outer membrane integrity), the difference in the action of Pyr_C and Pyr_D was significantly less pronounced. By contrast, in inverted submitochondrial particles (SMPs), Pyr_D was more active as an uncoupler, which caused collapse of the membrane potential even at the nanomolar concentrations. The same ratio of the protonophoric activity of Pyr_D and Pyr_C was obtained by us on liposomes loaded with the pH indicator pyranine. The protonophore activity of Pyr_D in the planar bilayer lipid membranes (BLMs) was maximal at ~pH 9, i.e., at pH values close to pKa of this compound. Pyr_D functions as a typical anionic protonophore; its activity in the BLM could be reduced by the addition of the dipole modifier phloretin. The difference between the protonophore activity of Pyr_C and Pyr_D in the mitochondria and BLMs can be attributed to a higher ability of Pyr_C to penetrate the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Prescription Drugs and Mitochondrial Metabolism. Biosci Rep 2022; 42:231068. [PMID: 35315490 PMCID: PMC9016406 DOI: 10.1042/bsr20211813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central to the physiology and survival of nearly all eukaryotic cells and house diverse metabolic processes including oxidative phosphorylation, reactive oxygen species buffering, metabolite synthesis/exchange, and Ca2+ sequestration. Mitochondria are phenotypically heterogeneous and this variation is essential to the complexity of physiological function among cells, tissues, and organ systems. As a consequence of mitochondrial integration with so many physiological processes, small molecules that modulate mitochondrial metabolism induce complex systemic effects. In the case of many common prescribed drugs, these interactions may contribute to drug therapeutic mechanisms, induce adverse drug reactions, or both. The purpose of this article is to review historical and recent advances in the understanding of the effects of prescription drugs on mitochondrial metabolism. Specific 'modes' of xenobiotic-mitochondria interactions are discussed to provide a set of qualitative models that aid in conceptualizing how the mitochondrial energy transduction system may be affected. Findings of recent in vitro high-throughput screening studies are reviewed, and a few candidate drug classes are chosen for additional brief discussion (i.e. antihyperglycemics, antidepressants, antibiotics, and antihyperlipidemics). Finally, recent improvements in pharmacokinetic models that aid in quantifying systemic effects of drug-mitochondria interactions are briefly considered.
Collapse
|
7
|
Kotova EA, Antonenko YN. Fifty Years of Research on Protonophores: Mitochondrial Uncoupling As a Basis for Therapeutic Action. Acta Naturae 2022; 14:4-13. [PMID: 35441048 PMCID: PMC9013436 DOI: 10.32607/actanaturae.11610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
Protonophores are compounds capable of electrogenic transport of protons across
membranes. Protonophores have been intensively studied over the past 50 years
owing to their ability to uncouple oxidation and phosphorylation in
mitochondria and chloroplasts. The action mechanism of classical uncouplers,
such as DNP and CCCP, in mitochondria is believed to be related to their
protonophoric activity; i.e., their ability to transfer protons across the
lipid part of the mitochondrial membrane. Given the recently revealed
deviations in the correlation between the protonophoric activity of some
uncouplers and their ability to stimulate mitochondrial respiration, this
review addresses the involvement of some proteins of the inner mitochondrial
membrane, such as the ATP/ADP antiporter, dicarboxylate carrier, and ATPase, in
the uncoupling process. However, these deviations do not contradict the
Mitchell theory but point to a more complex nature of the interaction of DNP,
CCCP, and other uncouplers with mitochondrial membranes. Therefore, a detailed
investigation of the action mechanism of uncouplers is required for a more
successful pharmacological use, including their antibacterial, antiviral,
anticancer, as well as cardio-, neuro-, and nephroprotective effects.
Collapse
Affiliation(s)
- E. A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Y. N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
8
|
Xu Q, Fu Q, Li Z, Liu H, Wang Y, Lin X, He R, Zhang X, Ju Z, Campisi J, Kirkland JL, Sun Y. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab 2021; 3:1706-1726. [PMID: 34873338 PMCID: PMC8688144 DOI: 10.1038/s42255-021-00491-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Ageing-associated functional decline of organs and increased risk for age-related chronic pathologies is driven in part by the accumulation of senescent cells, which develop the senescence-associated secretory phenotype (SASP). Here we show that procyanidin C1 (PCC1), a polyphenolic component of grape seed extract (GSE), increases the healthspan and lifespan of mice through its action on senescent cells. By screening a library of natural products, we find that GSE, and PCC1 as one of its active components, have specific effects on senescent cells. At low concentrations, PCC1 appears to inhibit SASP formation, whereas it selectively kills senescent cells at higher concentrations, possibly by promoting production of reactive oxygen species and mitochondrial dysfunction. In rodent models, PCC1 depletes senescent cells in a treatment-damaged tumour microenvironment and enhances therapeutic efficacy when co-administered with chemotherapy. Intermittent administration of PCC1 to either irradiated, senescent cell-implanted or naturally aged old mice alleviates physical dysfunction and prolongs survival. We identify PCC1 as a natural senotherapeutic agent with in vivo activity and high potential for further development as a clinical intervention to delay, alleviate or prevent age-related pathologies.
Collapse
Affiliation(s)
- Qixia Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Fu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Zi Li
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hanxin Liu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ruikun He
- Science & Technology Centre, By-Health Corp. Ltd., Guangzhou, China
| | - Xuguang Zhang
- Science & Technology Centre, By-Health Corp. Ltd., Guangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Mitochondrial Uncoupling Proteins (UCP1-UCP3) and Adenine Nucleotide Translocase (ANT1) Enhance the Protonophoric Action of 2,4-Dinitrophenol in Mitochondria and Planar Bilayer Membranes. Biomolecules 2021; 11:biom11081178. [PMID: 34439844 PMCID: PMC8392417 DOI: 10.3390/biom11081178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in “diet pills”, despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP’s uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP’s protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.
Collapse
|
10
|
Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sci 2021; 11:brainsci11081050. [PMID: 34439669 PMCID: PMC8392724 DOI: 10.3390/brainsci11081050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
There has been an explosion of interest in the use of uncouplers of oxidative phosphorylation in mitochondria in the treatment of several pathologies, including neurological ones. In this review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects that should be taken into account when using uncouplers in experiments and clinical practice.
Collapse
|
11
|
Iaubasarova IR, Khailova LS, Firsov AM, Grivennikova VG, Kirsanov RS, Korshunova GA, Kotova EA, Antonenko YN. The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler. PLoS One 2020; 15:e0244499. [PMID: 33378414 PMCID: PMC7773232 DOI: 10.1371/journal.pone.0244499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
The synthesis of a mitochondria-targeted derivative of the classical mitochondrial uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP) by alkoxy substitution of CCCP with n-decyl(triphenyl)phosphonium cation yielded mitoCCCP, which was able to inhibit the uncoupling action of CCCP, tyrphostin A9 and niclosamide on rat liver mitochondria, but not that of 2,4-dinitrophenol, at a concentration of 1–2 μM. MitoCCCP did not uncouple mitochondria by itself at these concentrations, although it exhibited uncoupling action at tens of micromolar concentrations. Thus, mitoCCCP appeared to be a more effective mitochondrial recoupler than 6-ketocholestanol. Both mitoCCCP and 6-ketocholestanol did not inhibit the protonophoric activity of CCCP in artificial bilayer lipid membranes, which might compromise the simple proton-shuttling mechanism of the uncoupling activity on mitochondria.
Collapse
Affiliation(s)
- Iliuza R. Iaubasarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ljudmila S. Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M. Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Roman S. Kirsanov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina A. Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|