1
|
Guo F, Zhou W, Luo Z. Numerical simulation of neural excitation during brain tumor ablation by microsecond pulses. Bioelectrochemistry 2024; 160:108752. [PMID: 38852384 DOI: 10.1016/j.bioelechem.2024.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Replacing monopolar pulse with bipolar pulses of the same energized time can minimize unnecessary neurological side effects during irreversible electroporation (IRE). An improved neural excitation model that considers dynamic conductivity and thermal effects during brain tumor IRE ablation was proposed for the first time in this study. Nerve fiber excitation during IRE ablation by applying a monopolar pulse (100 μs) and a burst of bipolar pulses (energized time of 100 μs with both the sub-pulse length and interphase delay of 1 μs) was investigated. Our results suggest that both thermal effects and dynamic conductivity change the onset time of action potential (AP), and dynamic conductivity also changes the hyperpolarization amplitude. Considering both thermal effects and dynamic conductivity, the hyperpolarization amplitude in nerve fibers located 2 cm from the tumor center was reduced by approximately 23.8 mV and the onset time of AP was delayed by approximately 17.5 μs when a 500 V monopolar pulse was applied. Moreover, bipolar pulses decreased the excitable volume of brain tissue by approximately 68.8 % compared to monopolar pulse. Finally, bipolar pulses cause local excitation with lesser damage to surrounding healthy tissue in complete tumor ablation, demonstrating the potential benefits of bipolar pulses in brain tissue ablation.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Weina Zhou
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhijun Luo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
2
|
Zhang Y, Luo Z, Zhang Y, Guo F. Simulation study on electroporation of cancer cells in multicellular system. Bioelectrochemistry 2024; 160:108789. [PMID: 39128409 DOI: 10.1016/j.bioelechem.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Electroporation (EP) of the normal cell and cancer cell both in single-cell and multicellular models was investigated by the meshed transport network method (MTNM) in this paper. The simulation results suggest that the cancer cell undergoes faster and more significant local EP than that of the corresponding normal cell induced by nanosecond pulsed electric fields (nsPEFs) both in single-cell and multicellular models. Furthermore, the results of the multicellular model indicate that there is a unidirectional neighboring effect in the multicellular model, meaning that cells at the center are affected and their pore formation is significantly reduced, but this effect is very weak for cells at the edges of the system. This means that the electric field selectively kills cells in different distribution locations. This work can provide guidance for the selection of parameters for the cancer cell EP process.
Collapse
Affiliation(s)
- Yu Zhang
- Department of gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Zhijun Luo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yapeng Zhang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
3
|
Estevez-Laborí F, O'Brien B, González-Suárez A. Difference between endocardial and epicardial application of pulsed fields for targeting Epicardial Ganglia: An in-silico modelling study. Comput Biol Med 2024; 174:108490. [PMID: 38642490 DOI: 10.1016/j.compbiomed.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Pulsed Field Ablation (PFA) has recently been proposed as a non-thermal energy to treat atrial fibrillation by selective ablation of ganglionated plexi (GP) embedded in epicardial fat. While some of PFA-technologies use an endocardial approach, others use epicardial access with promising pre-clinical results. However, as each technology uses a different and sometimes proprietary pulse application protocol, the comparation between endocardial vs. epicardial approach is almost impossible in experimental terms. For this reason, our study, based on a computational model, allows a direct comparison of electric field distribution and thermal-side effects of both approaches under equal conditions in terms of electrode design, pulse protocol and anatomical characteristics of the tissues involved. METHODS 2D computational models with axial symmetry were built for endocardial and epicardial approaches. Atrial (1.5-2.5 mm) and fat (1-5 mm) thicknesses were varied to simulate a representative sample of what happens during PFA ablation for different applied voltage values (1000, 1500 and 2000 V) and number of pulses (30 and 50). RESULTS The epicardial approach was superior for capturing greater volumes of fat when the applied voltage was increased: 231 mm3/kV with the epicardial approach vs. 182 mm3/kV with the endocardial approach. In relation to collateral damage to the myocardium, the epicardial approach considerably spares the myocardium, unlike what happens with the endocardial approach. Although the epicardial approach caused much more thermal damage in the fat, there is not a significant difference between the approaches in terms of size of thermal damage in the myocardium. CONCLUSIONS Our results suggest that epicardial PFA ablation of GPs is more effective than an endocardial approach. The proximity and directionality of the electric field deposited using an epicardial approach are key to ensuring that higher electric field strengths and increased temperatures are obtained within the epicardial fat, thus contributing to selective ablation of the GPs with minimal myocardial damage.
Collapse
Affiliation(s)
| | | | - Ana González-Suárez
- Translational Medical Device Lab, School of Medicine, University of Galway, Ireland; IBIO, Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia, Valencia, Spain.
| |
Collapse
|
4
|
Guedert R, Andrade DLLS, Pintarelli GB, Suzuki DOH. Biological dispersion in the time domain using finite element method software. Sci Rep 2023; 13:22868. [PMID: 38129500 PMCID: PMC10739869 DOI: 10.1038/s41598-023-49828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Biological tissue exhibits a strong dielectric dispersion from DC to GHz. Implementing biological dispersion in the time domain with commercial finite element method software could help improve engineering analysis of electrical transient phenomena. This article describes the steps required to implement time-domain biological dispersion with commercial finite element method software. The study begins with the presentation of a genetic algorithm to fit the experimental dispersion curve of Solanum tuberosum (potato tuber) to multipoles of first-order Debye dispersion. The results show that it is possible to represent the biological dispersion of S. tuberosum from 40 Hz to 10 MHz in a 4-pole Debye dispersion. Then, a set of auxiliary differential equations is used to transform the multipole Debye dispersion from the frequency domain to the time domain. The equations are implemented in the commercial software COMSOL Multiphysics. A comparison between the frequency and time domain simulations was used to validate the method. An analysis of the electric current with square-wave pulsed voltage was performed. We found that the computer implementation proposed in this work can describe the biological dispersion and predict the electric current.
Collapse
Affiliation(s)
- Raul Guedert
- Department of Electrical and Electronic Engineering, Centre of Technology, Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianopolis, 88040-900, Brazil.
| | - Daniella L L S Andrade
- Department of Electrical and Electronic Engineering, Centre of Technology, Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianopolis, 88040-900, Brazil
| | - Guilherme B Pintarelli
- Department of Control, Automation and Computer Engineering, Federal University of Santa Catarina, Blumenau, 89036-256, Brazil
| | - Daniela O H Suzuki
- Department of Electrical and Electronic Engineering, Centre of Technology, Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianopolis, 88040-900, Brazil
| |
Collapse
|
5
|
Pérez JJ, González-Suárez A. How intramyocardial fat can alter the electric field distribution during Pulsed Field Ablation (PFA): Qualitative findings from computer modeling. PLoS One 2023; 18:e0287614. [PMID: 37917621 PMCID: PMC10621855 DOI: 10.1371/journal.pone.0287614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 11/04/2023] Open
Abstract
Even though the preliminary experimental data suggests that cardiac Pulsed Field Ablation (PFA) could be superior to radiofrequency ablation (RFA) in terms of being able to ablate the viable myocardium separated from the catheter by collagen and fat, as yet there is no formal physical-based analysis that describes the process by which fat can affect the electric field distribution. Our objective was thus to determine the electrical impact of intramyocardial fat during PFA by means of computer modeling. Computer models were built considering a PFA 3.5-mm blunt-tip catheter in contact with a 7-mm ventricular wall (with and without a scar) and a 2-mm epicardial fat layer. High voltage was set to obtain delivered currents of 19, 22 and 25 A. An electric field value of 1000 V/cm was considered as the lethal threshold. We found that the presence of fibrotic tissue in the scar seems to have a similar impact on the electric field distribution and lesion size to that of healthy myocardium only. However, intramyocardial fat considerably alters the electrical field distribution and the resulting lesion shape. The electric field tends to peak in zones with fat, even away from the ablation electrode, so that 'cold points' (i.e. low electric fields) appear around the fat at the current entry and exit points, while 'hot points' (high electric fields) occur in the lateral areas of the fat zones. The results show that intramyocardial fat can alter the electric field distribution and lesion size during PFA due to its much lower electrical conductivity than that of myocardium and fibrotic tissue.
Collapse
Affiliation(s)
- Juan J. Pérez
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Ana González-Suárez
- Translational Medical Device Lab, School of Engineering, University of Galway, Galway, Ireland
- Universidad Internacional de Valencia—VIU, Valencia, Spain
| |
Collapse
|
6
|
Guo F, Wang J, Zhou J, Qian K, Qu H, Liu P, Zhai S. All-atom molecular dynamics simulations of the combined effects of different phospholipids and cholesterol content on electroporation. RSC Adv 2022; 12:24491-24500. [PMID: 36128384 PMCID: PMC9425445 DOI: 10.1039/d2ra03895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
The electroporation mechanism could be related to the composition of the plasma membrane, and the combined effect of different phospholipid molecules and cholesterol content on electroporation has rarely been studied nor conclusions drawn. In this paper, we applied all-atom molecular dynamics (MD) simulations to study the effects of phospholipids and cholesterol content on bilayer membrane electroporation. The palmitoyloleoylphosphatidylcholine (POPC) model, palmitoyloleoylphosphatidylethanolamine (POPE) model, and a 1 : 1 mixed model of POPC and POPE called PEPC, were the three basic models used. An electric field of 0.45 V nm-1 was applied to nine models, which were the three basic models, each with three different cholesterol content values of 0%, 24%, and 40%. The interfacial water molecules moved under the electric field and, once the first water bridge formed, the rest of the water molecules would dramatically flood into the membrane. The simulation showed that a rapid rise in the Z-component of the average dipole moment of the interfacial water molecules (Z-DM) indicated the occurrence of electroporation, and the same increment of Z-DM represented a similar change in the size of the water bridge. With the same cholesterol content, the formation of the first water bridge was the most rapid in the POPC model, regarding the average electroporation time (t ep), and the average t ep of the PEPC model was close to that of the POPE model. We speculate that the differences in membrane thickness and initial number of hydrogen bonds of the interfacial water molecules affect the average t ep for different membrane compositions. Our results reveal the influence of membrane composition on the electroporation mechanism at the molecular level.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Ji Wang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Jiong Zhou
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Kun Qian
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Hongchun Qu
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Ping Liu
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Shidong Zhai
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications Chongqing 400065 China
| |
Collapse
|
7
|
Ji X, Zhang H, Zang L, Yan S, Wu X. The Effect of Discharge Mode on the Distribution of Myocardial Pulsed Electric Field—A Simulation Study for Pulsed Field Ablation of Atrial Fibrillation. J Cardiovasc Dev Dis 2022; 9:jcdd9040095. [PMID: 35448071 PMCID: PMC9031694 DOI: 10.3390/jcdd9040095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023] Open
Abstract
Background: At present, the effects of discharge modes of multielectrode catheters on the distribution of pulsed electric fields have not been completely clarified. Therefore, the control of the distribution of the pulsed electric field by selecting the discharge mode remains one of the key technical problems to be solved. Methods: We constructed a model including myocardium, blood, and a flower catheter. Subsequently, by setting different positive and ground electrodes, we simulated the electric field distribution in the myocardium of four discharge modes (A, B, C, and D) before and after the catheter rotation and analyzed their mechanisms. Results: Modes B, C, and D formed a continuous circumferential ablation lesion without the rotation of the catheter, with depths of 1.6 mm, 2.7 mm, and 0.7 mm, respectively. After the catheter rotation, the four modes could form a continuous circumferential ablation lesion with widths of 10.8 mm, 10.6 mm, 11.8 mm, and 11.5 mm, respectively, and depths of 5.2 mm, 2.7 mm, 4.7 mm, and 4.0 mm, respectively. Conclusions: The discharge mode directly affects the electric field distribution in the myocardium. Our results can help improve PFA procedures and provide enlightenment for the design of the discharge mode with multielectrode catheters.
Collapse
Affiliation(s)
- Xingkai Ji
- Centre for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (X.J.); (H.Z.); (L.Z.)
| | - Hao Zhang
- Centre for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (X.J.); (H.Z.); (L.Z.)
| | - Lianru Zang
- Centre for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (X.J.); (H.Z.); (L.Z.)
| | - Shengjie Yan
- Centre for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (X.J.); (H.Z.); (L.Z.)
- Correspondence: (S.Y.); (X.W.); Tel.: +86-21-6564-3709-801 or +86-0579-85507181 (X.W.)
| | - Xiaomei Wu
- Centre for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (X.J.); (H.Z.); (L.Z.)
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Centre of Assistive Devices, Shanghai 200433, China
- Yiwu Research Institute, Fudan University, Chengbei Road, Yiwu City 322000, China
- Correspondence: (S.Y.); (X.W.); Tel.: +86-21-6564-3709-801 or +86-0579-85507181 (X.W.)
| |
Collapse
|