1
|
Sharma A, Alfonta L. Engineering strategies in bio-photoelectrochemical cells for sustainable energy and environmental applications. Chem Commun (Camb) 2025. [PMID: 40434823 DOI: 10.1039/d5cc01300c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Emerging technologies in sustainable energy platforms are gaining significant attention globally. Recently, research has increasingly focused on advanced systems known as bio-photoelectrochemical cells (BPECs) which harness the benefits of both biological processes and photoelectrochemical methods for energy and environmental applications. Researchers are concentrating on improving the performance of BPECs through the use of both photocatalysts and biocatalysts. Photocatalysts are being studied for their application in both anodic and cathodic processes, employing heterojunctions and nanomaterials to optimize solar energy utilization. Additionally, there is a strong emphasis on developing visible light-responsive catalysts through spectral and band gap engineering to enhance solar energy capture. Both photosynthetic and non-photosynthetic microorganisms play essential roles in BPECs by capturing photoelectrons/photoholes and producing bioelectrons, respectively. This review outlines the fundamental principles of BPECs and examines the latest advancements in the field, while also addressing the challenges and future prospects for improving the performance of these systems.
Collapse
Affiliation(s)
- Arti Sharma
- Departments of Life Sciences and Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Po Box 653, Beer-Sheva 8410501, Israel.
| | - Lital Alfonta
- Departments of Life Sciences and Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Po Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
2
|
Yuan J, Bai Y, Lenz C, Reilly-Schott V, Schneider H, Lai B, Krömer JO. The Impact of Redox Mediators on the Electrogenic and Physiological Properties of Synechocystis sp. PCC 6803 in a Biophotovoltaic System. CHEMSUSCHEM 2025:e2402543. [PMID: 40222956 DOI: 10.1002/cssc.202402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/15/2025]
Abstract
Biophotovoltaics (BPV) is a novel biohybrid solution to utilize solar energy potentially at high energy efficiency, by exploiting the water splitting in oxygenic photoautotrophs and electrochemical electron harvest. Unlike model electrogens, known phototrophic microbes benefit from redox mediators for extracting the photosynthetic electrons and transferring them to the external electron sink for further utilization. In this work, three representative mediators, i.e., 1,4-benzoquinone (BQ), [Co(bpy)3]2+ (CoBP), and ferricyanide, are chosen and systematically evaluated for their impacts on the microbial physiology and electrogenic activity of Synechocystis sp. PCC6803. This work aimed to generate a knowledge base to guide future mediator selection and design. The results suggest ferricyanide remains the best option, as being the only mediator that promoted long-term current output. However, both BQ and CoBP produce higher current densities than ferricyanide, albeit only for a short time. Comprehensive analysis of the photosystem using fluorometric methods suggests that BQ strongly increases the PQ/PQH2 ratio, while CoBP inhibits the electron flow from plastoquinone to photosystem I at high concentrations. Both mediators interrupt the photosynthetic electron flow and consequently cell growth. Eliminating the contribution of storage carbon to the intracellular electron flux demonstrates that all three chemicals can extract electrons originating from water splitting.
Collapse
Affiliation(s)
- Jianqi Yuan
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Yu Bai
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Claudius Lenz
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Vincent Reilly-Schott
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans Schneider
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Bin Lai
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Jens Olaf Krömer
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
3
|
Schneider H, Lai B, Krömer JO. Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17225. [PMID: 39868486 PMCID: PMC11771661 DOI: 10.1111/tpj.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process. However, there are still uncertainties around demonstrating the direct coupling of electron fluxes between photosystems and the external electrode. The dynamic cellular electron transfer network linked to physiological and environmental parameters poses a particular challenge here. In this work, the active cellular electron transfer network was modulated by tuning the cultivating conditions of Synechocystis and the operating conditions in Biophotovoltaics. The current output during darkness was found to be determined by the intracellular glycogen levels. Minimizing the intracellular glycogen pools also eliminated the dark-current output. Moreover, our results provide strong evidence that water splitting in photosystem II is the electron source enabling photocurrent, bypassing the microbe's metabolism. Eliminating the storage carbon as possible source of electrons did not reduce the specific photocurrent output, indicating an efficient coupling of photosynthetic electron flux to the anode. Furthermore, inhibiting respiration on the one hand increased the photocurrent and on the other hand showed a negative effect on the dark-current output. This suggested a switchable role of the respiratory electron transfer chain in the extracellular electron transfer pathway. Overall, we conclude that Synechocystis dynamically switches electron sources and utilizes different extracellular transfer pathways for the current output toward the external electron sink, depending on the physiological and environmental conditions.
Collapse
Affiliation(s)
- Hans Schneider
- Systems Biotechnology Group, Department Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzig04318Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Department Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzig04318Germany
| | - Jens O. Krömer
- Systems Biotechnology Group, Department Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzig04318Germany
| |
Collapse
|
4
|
Qi X, Liu X, Gu Y, Liang P. Whole-cell biophotovoltaic systems for renewable energy generation: A systematic analysis of existing knowledge. Bioelectrochemistry 2024; 158:108695. [PMID: 38531227 DOI: 10.1016/j.bioelechem.2024.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The development of carbon-neutral fuel sources is an essential step in addressing the global fossil energy crisis. Whole-cell biophotovoltaic systems (BPVs) are a renewable, non-polluting energy-generating device that utilizes oxygenic photosynthetic microbes (OPMs) to split water molecules and generate bioelectricity under the driving of light energy. Since 2006, BPVs have been widely studied, with the order magnitudes of power density increasing from 10-4 mW/m2 to 103 mW/m2. This review examines the extracellular electron transfer (EET) mechanisms and regulation techniques of BPVs from biofilm to external environment. It is found that the EET of OPMs is mainly mediated by membrane proteins, with terminal oxidase limiting the power output. Synechocystis sp. PCC6803 and Chlorella vulgaris are two species that produce high power density in BPVs. The use of metal nanoparticles mixing, 3D pillar array electrodes, microfluidic technology, and transient-state operation models can significantly enhance power density. Challenges and potential research directions are discussed, including a deeper analysis of EET mechanisms and dynamics, the development of modular devices, integration of multiple regulatory components, and the exploration of novel BPV technologies.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinning Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Petrova NZ, Tóth TN, Shetty P, Maróti G, Tóth SZ. Enhancing biophotovoltaic efficiency: Study on a highly productive green algal strain Parachlorella kessleri MACC-38. BIORESOURCE TECHNOLOGY 2024; 394:130206. [PMID: 38122998 DOI: 10.1016/j.biortech.2023.130206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Biophotovoltaic (BPV) devices are a potential decentralized and environmentally friendly energy source that harness solar energy through photosynthesis. BPV devices are self-regenerating, promising long-term usability. A practical strategy for enhancing BPV performance is to systematically screen for highly exoelectrogenic algal strains capable of generating large electric current density. In this study, a previously uncharacterized green algal strain - Parachlorella kessleri MACC-38 was found to generate over 340 µA mg-1 Chl cm-2. This output is approximately ten-fold higher than those of Chlamydomonas reinhardtii and Chlorella species. The current production of MACC-38 primarily originates from photosynthesis, and the strain maintains its physiological integrity throughout the process. MACC-38 exhibits unique traits such as low extracellular O2 and Fe(III) reduction, substantial copper (II) reduction, and significant extracellular acidification during current generation, contributing to its high productivity. The exoelectrogenic and growth characteristics of MACC-38 suggest that it could markedly boost BPV efficiency.
Collapse
Affiliation(s)
- Nia Z Petrova
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Tünde N Tóth
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Prateek Shetty
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Gergely Maróti
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Szilvia Z Tóth
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| |
Collapse
|
6
|
Lee H, Hyun J. Biophotovoltaic living hydrogel of an ion-crosslinked carboxymethylated cellulose nanofiber/alginate. Carbohydr Polym 2023; 321:121299. [PMID: 37739532 DOI: 10.1016/j.carbpol.2023.121299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 09/24/2023]
Abstract
Due to the low electrical power generation in liquid cultures of photosynthetic microalgae, a solid medium culture is demanded for the efficient design of biophotovoltaic (BPV) cells. In particular, the conductivity of the culture medium and the contact of microalgae with an electrode are crucial in harvesting electrons in BPV cells. Here, an ion-crosslinked carboxymethylated cellulose nanofiber (CM-CNF)/alginate is proposed as a living hydrogel for the green power generation of Chlorella vulgaris embedded in the hydrogel. The hydrogel crosslinked with Ca2+ and Fe3+ ions showed more efficient BPV properties than the hydrogel crosslinked with only Ca2+ due to the increase of conductivity. The efficient transport of electrons generated by C. vulgaris improves the power generation of BPV cells. Moreover, the fluid channels imprinted in the living hydrogel maintain the viability of C. vulgaris even under the ambient environment by preventing the solid medium from being dried out.
Collapse
Affiliation(s)
- Hwarueon Lee
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Zhu H, Wang H, Zhang Y, Li Y. Biophotovoltaics: Recent advances and perspectives. Biotechnol Adv 2023; 64:108101. [PMID: 36681132 DOI: 10.1016/j.biotechadv.2023.108101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Biophotovoltaics (BPV) is a clean power generation technology that uses self-renewing photosynthetic microorganisms to capture solar energy and generate electrical current. Although the internal quantum efficiency of charge separation in photosynthetic microorganisms is very high, the inefficient electron transfer from photosystems to the extracellular electrodes hampered the electrical outputs of BPV systems. This review summarizes the approaches that have been taken to increase the electrical outputs of BPV systems in recent years. These mainly include redirecting intracellular electron transfer, broadening available photosynthetic microorganisms, reinforcing interfacial electron transfer and design high-performance devices with different configurations. Furthermore, three strategies developed to extract photosynthetic electrons were discussed. Among them, the strategy of using synthetic microbial consortia could circumvent the weak exoelectrogenic activity of photosynthetic microorganisms and the cytotoxicity of exogenous electron mediators, thus show great potential in enhancing the power output and prolonging the lifetime of BPV systems. Lastly, we prospected how to facilitate electron extraction and further improve the performance of BPV systems.
Collapse
Affiliation(s)
- Huawei Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haowei Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Shlosberg Y, Schuster G, Adir N. Harnessing photosynthesis to produce electricity using cyanobacteria, green algae, seaweeds and plants. FRONTIERS IN PLANT SCIENCE 2022; 13:955843. [PMID: 35968083 PMCID: PMC9363842 DOI: 10.3389/fpls.2022.955843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Life on earth depends on photosynthesis, the major mechanism for biological conversion of light energy into chemical energy. Indeed, billions of years of evolution and adaptation to extreme environmental habitats have resulted in highly efficient light-harvesting and photochemical systems in the photosynthetic organisms that can be found in almost every ecological habitat of our world. In harnessing photosynthesis to produce green energy, the native photosynthetic system is interfaced with electrodes and electron mediators to yield bio-photoelectrochemical cells (BPECs) that transform light energy into electrical power. BPECs utilizing plants, seaweeds, unicellular photosynthetic microorganisms, thylakoid membranes or purified complexes, have been studied in attempts to construct efficient and non-polluting BPECs to produce electricity or hydrogen for use as green energy. The high efficiency of photosynthetic light-harvesting and energy production in the mostly unpolluting processes that make use of water and CO2 and produce oxygen beckons us to develop this approach. On the other hand, the need to use physiological conditions, the sensitivity to photoinhibition as well as other abiotic stresses, and the requirement to extract electrons from the system are challenging. In this review, we describe the principles and methods of the different kinds of BPECs that use natural photosynthesis, with an emphasis on BPECs containing living oxygenic photosynthetic organisms. We start with a brief summary of BPECs that use purified photosynthetic complexes. This strategy has produced high-efficiency BPECs. However, the lifetimes of operation of these BPECs are limited, and the preparation is laborious and expensive. We then describe the use of thylakoid membranes in BPECs which requires less effort and usually produces high currents but still suffers from the lack of ability to self-repair damage caused by photoinhibition. This obstacle of the utilization of photosynthetic systems can be significantly reduced by using intact living organisms in the BPEC. We thus describe here progress in developing BPECs that make use of cyanobacteria, green algae, seaweeds and higher plants. Finally, we discuss the future challenges of producing high and longtime operating BPECs for practical use.
Collapse
Affiliation(s)
- Yaniv Shlosberg
- Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, Israel
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gadi Schuster
- Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, Israel
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Adir
- Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, Israel
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Ahiahonu EK, Anku WW, Roopnarain A, Green E, Serepa-Dlamini MH, Govender PP. Exploring indigenous freshwater chlorophytes in integrated biophotovoltaic system for simultaneous wastewater treatment, heavy metal biosorption, CO 2 biofixation and biodiesel generation. Bioelectrochemistry 2022; 147:108208. [PMID: 35872372 DOI: 10.1016/j.bioelechem.2022.108208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
Abstract
The study explored the combined photosynthetic activities of two green microalgal species, Tetradesmus obliquus and Tetradesmus reginae, on an integrated biophotovoltaic (BPV) platform for simultaneous wastewater treatment, toxic metal biosorption, carbon biofixation, bioelectricity generation and biodiesel production. The experimental setup comprised of a dual-chambered BPV with copper anode surrounded by T. obliquus in BG11 media, and copper cathode with T. reginae in municipal wastewater separated by Nafion 117 membrane. The study reported a maximum power density of 0.344 Wm-2 at a cell potential of 0.415 V with external resistance of 1000 Ω and 0.3268 V maximum open-circuit voltage. The wastewater electrical conductivity and pH increased from 583 ± 22 to 2035 ± 29.31 mS/cm and 7.403 ± 0.174 to 8.263 ± 0.055 respectively, signifying increased photosynthetic and electrochemical activities. Residual nitrogen, phosphorus, chemical oxygen demand, arsenic, cadmium, chromium and lead removal efficiencies by T. reginae were 100%, 80.68%, 71.91%, 47.6%, 88.82%, 71.24% and 92.96%, respectively. T. reginae accumulated maximum biomass of 0.605 ± 0.033 g/L with a CO2 biosequestration rate of 0.166 ± 0.010 gCO2/L/day and 42.40 ± 1.166% lipid content. Methyl palmitate, methyl undecanoate and 13-octadecenoic acid with relative abundances of 37.24%, 24.80% and 12.02%, respectively were confirmed.
Collapse
Affiliation(s)
- Elvis Kodzo Ahiahonu
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Environmental Protection Agency, P.O Box MB 326, Accra, Ghana
| | - William Wilson Anku
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; CSIR-Water Research Institute, P. O. Box M. 32, Accra, Ghana
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water- Agricultural Research Council, Private Bag X79, Pretoria 0001, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Penny Poomani Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|