1
|
Kamio H, Okabe K, Honda M, Kuroda K, Tsuchiya S. Knockdown of decorin in human bone marrow mesenchymal stem cells suppresses proteoglycan layer formation and establishes a pro-inflammatory environment on titanium oxide surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:5. [PMID: 39775189 PMCID: PMC11706895 DOI: 10.1007/s10856-024-06849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Osseointegration is essential for successful implant treatment. However, the underlying molecular mechanisms remain unclear. In this study, we focused on decorin (DCN), which was hypothesized to be present in the proteoglycan (PG) layer at the interface between bone and the titanium oxide (TiOx) surface. We utilized DCN RNA interference in human bone marrow mesenchymal stem cells (hBMSCs) to investigate its effects on PG layer formation, proliferation, initial adhesion, cell extension, osteogenic capacity, fibrotic markers, and immunotolerance to TiOx in vitro. After 14 days of cultivation, we observed no PG layer was detected, and the osteogenic capacity was suppressed in DCN-depleted hBMSCs. Furthermore, the conditioned medium upregulated the expression of M1 macrophage markers in human macrophages. These results suggest that endogenous DCN plays a crucial role in PG layer formation and that the PG layer alters inflammation around Ti materials.
Collapse
Affiliation(s)
- Hisanobu Kamio
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, Hiroshima city, Hiroshima, Japan
| | - Kazuto Okabe
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Kensuke Kuroda
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Shuhei Tsuchiya
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| |
Collapse
|
2
|
Salehi A, Sprejz S, Ruehl H, Olayioye M, Cattaneo G. An imprint-based approach to replicate nano- to microscale roughness on gelatin hydrogel scaffolds: surface characterization and effect on endothelialization. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1214-1235. [PMID: 38431849 DOI: 10.1080/09205063.2024.2322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Biologization of biomaterials with endothelial cells (ECs) is an important step in vascular tissue engineering, aiming at improving hemocompatibility and diminishing the thrombo-inflammatory response of implants. Since subcellular topography in the scale of nano to micrometers can influence cellular adhesion, proliferation, and differentiation, we here investigate the effect of surface roughness on the endothelialization of gelatin hydrogel scaffolds. Considering the micron and sub-micron features of the different native tissues underlying the endothelium in the body, we carried out a biomimetic approach to replicate the surface roughness of tissues and analyzed how this impacted the adhesion and proliferation of human umbilical endothelial cells (HUVECs). Using an imprinting technique, nano and micro-roughness ranging from Sa= 402 nm to Sa= 8 μm were replicated on the surface of gelatin hydrogels. Fluorescent imaging of HUVECs on consecutive days after seeding revealed that microscale topographies negatively affect cell spreading and proliferation. By contrast, nanoscale roughnesses of Sa= 402 and Sa= 538 nm promoted endothelialization as evidenced by the formation of confluent cell monolayers with prominent VE-cadherin surface expression. Collectively, we present an affordable and flexible imprinting method to replicate surface characteristics of tissues on hydrogels and demonstrate how nanoscale roughness positively supports their endothelialization.
Collapse
Affiliation(s)
- Ali Salehi
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Stefanie Sprejz
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Holger Ruehl
- Institute for Micro Integration, University of Stuttgart, Stuttgart, Germany
| | - Monilola Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Giorgio Cattaneo
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Xiao D, Lu Y, Zhu L, Liang T, Wang Z, Ren J, He R, Wang K. Anti-osteosarcoma property of decorin-modified titanium surface: A novel strategy to inhibit oncogenic potential of osteosarcoma cells. Biomed Pharmacother 2020; 125:110034. [PMID: 32187963 DOI: 10.1016/j.biopha.2020.110034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023] Open
Abstract
Osteosarcoma is the most common bone sarcoma in adolescents. Decorin (DCN) has been proposed to be a new anti-osteosarcoma therapeutic strategy. Our previous study has loaded decorin on titanium (Ti) surface by polydopamine (DOPA) as an anchor to enhance osseointegration. In this study, we investigated the effect of decorin-coated Ti substrates (TI-DOPA-DCN) on the oncogenic potential of osteosarcoma cells SAOS-2. The substrates were placed in 24-well plates for cell culture. Cell viability was determined by Cell Counting Kit-8 (CCK8) assay. Apoptosis was evaluated by DAPI staining and Annexin V-FITC/PI double staining analysis. Cell cycle was analyzed by flow cytometry. Cell migration and invasion were evaluated by Transwell assay. For co-culture, the pre-osteogenic cells MEC3T3-E1 and osteosarcoma cells SAOS-2 were stained with cell membrane fluorescent dyes, and then mixed (1:1) for co-culture. The cells were observed under a fluorescence microscope at four time points of 24, 48, 72, and 96 h. The results showed that TI-DOPA-DCN substrate can selectively inhibit cell proliferation of osteosarcoma cells but not pre-osteoblasts. However, the cell cycle of SAOS-2 was not affected by TI-DOPA-DCN substrates. Both DAPI staining and Annexin V-FITC/PI double staining analysis revealed that TI-DOPA-DCN substrates induced apoptosis of osteosarcoma cells. Transwell assay showed that TI-DOPA-DCN substrates inhibited invasion and migration of osteosarcoma cells. Moreover, TI-DOPA-DCN substrates inhibited the growth of osteosarcoma cells but promoted that of pre-osteoblasts in the coculture system. Taken together, these findings suggested that decorin coating on Ti surface simultaneously inhibited the oncogenic potential of osteosarcoma cells but enhanced cell growth of pre-osteoblasts, which could be applied to surface modification of Ti orthopedic implant.
Collapse
Affiliation(s)
- Dahai Xiao
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yunxiang Lu
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Zhu
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tangzhao Liang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhe Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhua Ren
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ronghan He
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Kun Wang
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Wojak-Ćwik IM, Rumian Ł, Krok-Borkowicz M, Hess R, Bernhardt R, Dobrzyński P, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Pamuła E. Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:12-22. [DOI: 10.1016/j.msec.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
|
5
|
Bierbaum S, Hintze V, Scharnweber D. 2.8 Artificial Extracellular Matrices to Functionalize Biomaterial Surfaces ☆. COMPREHENSIVE BIOMATERIALS II 2017:147-178. [DOI: 10.1016/b978-0-12-803581-8.10206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
de Rezende MLR, Coesta PTG, de Oliveira RC, Salmeron S, Sant'Ana ACP, Damante CA, Greghi SLA, Consolaro A. Bone demineralization with citric acid enhances adhesion and spreading of preosteoblasts. J Periodontol 2016; 86:146-54. [PMID: 25272980 DOI: 10.1902/jop.2014.130657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous studies have demonstrated that bone demineralization can improve consolidation in bone grafts. The biologic mechanisms underlying this phenomenon remain unclear. METHODS Twelve adult male guinea pigs were used in this experiment. Forty-five bone samples removed from the calvaria of nine animals were divided in groups (n = 9) according to the time of demineralization with citric acid (50%, pH 1): 15, 30, 90, and 180 seconds and non-demineralized samples (control). Preosteoblasts (MC3T3-E1) were cultured on the bone samples for 24, 48, and 72 hours (n = 3). Fifteen samples removed from the remaining three animals were analyzed by scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) after demineralization (n = 3). RESULTS The number of preosteoblasts increased significantly with time in all groups. The bone surface area covered by these cells increased with time, except in the control group. Intragroup differences occurred between 24 and 72 hours (P < 0.05). Samples demineralized for 30 seconds showed greater area covered by preosteoblast cells than for the other times of demineralization in all periods of cell culture (P < 0.05) without a statistically significant difference compared with 15 seconds. SEM/EDS showed diminished content of calcium (Ca) after 15 seconds of demineralization, but the Ca content increased after 180 seconds of demineralization (P < 0.05). The phosphorus (P) amount increased significantly only after 30 seconds of demineralization (P < 0.5). The sulfur (S) content was increased in demineralized samples in relation to non-demineralized ones, reaching the highest level after 90 seconds, when the difference became significant in relation to all the other times of demineralization (P < 0.05). Magnesium (Mg) content did not differ significantly between demineralized and non-demineralized samples. CONCLUSIONS Bone surfaces demineralized for 30 seconds increased the spreading of preosteoblasts as well as the surface area covered by these cells. Bone demineralization deserves to be studied in periodontal and maxillofacial regenerative procedures.
Collapse
Affiliation(s)
- Maria Lúcia R de Rezende
- Department of Prosthodontics, Division of Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bierbaum S, Hintze V, Scharnweber D. Functionalization of biomaterial surfaces using artificial extracellular matrices. BIOMATTER 2014; 2:132-41. [PMID: 23507864 PMCID: PMC3549866 DOI: 10.4161/biom.20921] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Construction of biomaterials with the ability to guide cell function is a topic of high interest in biomaterial development. One approach is using components native to the ECM of the target tissue to generate in vitro a microenvironment that can also elicit specific responses in cells and tissues—an artificial ECM (aECM). The focus is on collagen as the basic material, which can be modified using a number of different glycoproteins, proteoglycans and glycosaminoglycans. Preparation, immobilization and the biochemical characteristics of such aECM are discussed, as well as the in vitro and in vivo response of cells and tissues, illustrating the potential of such matrices to direct cell fate.
Collapse
Affiliation(s)
- Susanne Bierbaum
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
8
|
Kong Z, Yu M, Cheng K, Weng W, Wang H, Lin J, Du P, Han G. Incorporation of chitosan nanospheres into thin mineralized collagen coatings for improving the antibacterial effect. Colloids Surf B Biointerfaces 2013; 111:536-41. [PMID: 23893027 DOI: 10.1016/j.colsurfb.2013.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/26/2022]
Abstract
It is desired that the coatings on metallic implants have both excellent biological responses and good loading-release capacities of biological factors or drugs. So far, the challenge still remains, because the morphology and composition of the bioactive coatings are usually not favorable for accommodating drug molecules. In this study, we adopted an approach of incorporating chitosan nanospheres into a thin mineralized collagen coating; this approach is based on the good loading-release behavior of the nanospheres and the good cytocompatibility of the thin coating. The incorporation of chitosan nanospheres into the mineralized collagen coatings was realized by electrolytic co-deposition. The morphologies and microstructures of the resulting coatings were characterized by SEM, and the phase and chemical compositions of the coatings were measured by XRD and FTIR. The loading-release capacity for vancomycin hydrochloride (VH) was determined by ultraviolet spectrophotometry. MTS assay was used to evaluate cytocompatibility, and in vitro bacterial adhesion was tested for assessing the antibacterial effects of the VH-loaded coatings. The chitosan nanospheres adhered tightly to collagen fibrils. The incorporated coatings facilitated the sustained release of VH, and had a clear antibacterial effect. The incorporation of chitosan nanospheres into mineralized collagen coatings demonstrates an effective way to improve the drug loading-release capacity for the thin coatings. This formulation had a highly effective biological response.
Collapse
Affiliation(s)
- Ziqiang Kong
- Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Mengfei Yu
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China
| | - Kui Cheng
- Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Wenjian Weng
- Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Huiming Wang
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China.
| | - Jun Lin
- The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003, China
| | - Piyi Du
- Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Gaorong Han
- Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Wojak-Cwik IM, Hintze V, Schnabelrauch M, Moeller S, Dobrzynski P, Pamula E, Scharnweber D. Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: impact on proliferation and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2013; 101:3109-22. [PMID: 23526792 DOI: 10.1002/jbm.a.34620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/27/2022]
Abstract
In this study, we analyzed poly(L-lactide-co-glycolide) (PLGA) scaffolds modified with artificial extracellular matrices (aECM) consisting of collagen type I, chondroitin sulphate, and sulphated hyaluronan (sHya). We investigated the effect of these aECM coatings on proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC) in vitro. We found that scaffolds were homogeneously coated, and cross-linking of aECM did not significantly influence the amount of collagen immobilized. Cell proliferation was significantly increased on cross-linked surfaces in expansion medium (EM), but was retarded on cross-linked and non-cross-linked collagen/sHya coatings. The alkaline phosphatase activity was increased on sHya-containing coatings in EM even without the presence of differentiation supplements, but was six to ten times higher in differentiation medium (DM) and comparable for cross-linked and non-cross-linked collagen/sHya. The highest amount of calcium phosphate mineral was deposited on day 28 on cross-linked collagen/sHya. Therefore, coatings of PLGA scaffolds with collagen/sHya promoted the osteogenic differentiation of hMSCs in vitro and might be an interesting candidate for the modification of PLGA for bone reconstruction in vivo.
Collapse
Affiliation(s)
- I M Wojak-Cwik
- Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. A. Mickiewicza 30, Krakow, Poland; Institute of Material Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Straße 27, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Kliemt S, Lange C, Otto W, Hintze V, Möller S, von Bergen M, Hempel U, Kalkhof S. Sulfated Hyaluronan Containing Collagen Matrices Enhance Cell-Matrix-Interaction, Endocytosis, and Osteogenic Differentiation of Human Mesenchymal Stromal Cells. J Proteome Res 2012; 12:378-89. [DOI: 10.1021/pr300640h] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stefanie Kliemt
- Department
of Proteomics, Helmholtz-Centre for Environmental Research-UFZ, Permoserstrasse
15, 04318 Leipzig, Germany
| | - Claudia Lange
- Institute of Physiological Chemistry, TU Dresden, Fiedlerstrasse 42, Dresden 01307, Germany
| | - Wolfgang Otto
- Department
of Proteomics, Helmholtz-Centre for Environmental Research-UFZ, Permoserstrasse
15, 04318 Leipzig, Germany
| | - Vera Hintze
- Institute of Material Science,
Max-Bergmann-Centre of Biomaterials, TU Dresden, 01069 Dresden, Germany
| | | | - Martin von Bergen
- Department
of Proteomics, Helmholtz-Centre for Environmental Research-UFZ, Permoserstrasse
15, 04318 Leipzig, Germany
- Department of Metabolomics, Helmholtz-Centre for Environmental Research-UFZ, 04318
Leipzig, Germany
- Department of
Biotechnology, Chemistry
and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49,DK-9000 Aalborg, Denmark
| | - Ute Hempel
- Institute of Physiological Chemistry, TU Dresden, Fiedlerstrasse 42, Dresden 01307, Germany
| | - Stefan Kalkhof
- Department
of Proteomics, Helmholtz-Centre for Environmental Research-UFZ, Permoserstrasse
15, 04318 Leipzig, Germany
| |
Collapse
|
11
|
Hempel U, Hintze V, Möller S, Schnabelrauch M, Scharnweber D, Dieter P. Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomater 2012; 8:659-66. [PMID: 22061106 DOI: 10.1016/j.actbio.2011.10.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/14/2011] [Accepted: 10/18/2011] [Indexed: 11/28/2022]
Abstract
Sulfated glycosaminoglycans (GAG) are multifunctional components of the extracellular matrix and are involved in the regulation of adhesion, proliferation and differentiation of cells. The effects of GAG are mediated in general by their interactions with cations and water, and in particular by their binding to growth factors. The aim of this study was to generate artificial extracellular matrices (aECM) containing collagen I and hyaluronan sulfate (HyaS), which are capable of adsorbing and releasing transforming growth factor β1 (TGF-β1), and to promote collagen synthesis of cultured human mesenchymal stromal cells (hMSC). For the preparation of aECM, monosulfated Hya (HyaS1) or trisulfated Hya (HyaS3) were used; the natural chondroitin-4-sulfate was used as a control. As applied for the in vitro experiments, the resulting matrices were composed of 93-98% collagen I and 2-7% GAG derivative. Adsorption of TGF-β1 to the aECM and release from the aECM was dependent on the degree of sulfation of hyaluronan. Collagen synthesis of hMSC was promoted only by aECM with adsorbed TGF-β1; the bare aECM had a slightly inhibitory effect on collagen synthesis. The promoting effect did not correlate either to the amount of adsorbed TGF-β1 nor to the release of TGF-β1, indicating that the correct presentation of TGF-β1 to the cells might be critical. The results indicate that sulfated hyaluronan-containing aECM have the potential to control both the adsorption and release of TGF-β1, and thereby promote collagen synthesis of hMSC. Thus, these aECM might be a useful tool for different tissue-engineering applications to enhance bone formation when used for biomaterial coating.
Collapse
Affiliation(s)
- Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fiedlerstrasse 42, D-01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Regenerative potential of glycosaminoglycans for skin and bone. J Mol Med (Berl) 2011; 90:625-35. [DOI: 10.1007/s00109-011-0843-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
|
13
|
Osseointegration of titanium prostheses on the stapes footplate. J Assoc Res Otolaryngol 2010; 11:161-71. [PMID: 20066460 DOI: 10.1007/s10162-009-0202-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022] Open
Abstract
The success of middle ear reconstructive surgery depends on stable coupling between the prosthesis and residual ossicles. To establish a stable fixed point on the stapes footplate for subsequent prosthesis reconstruction, a titanium footplate anchor was coated with osteoinductive substances to induce a controlled osseointegration on the footplate. Various studies have shown that collagen-based matrices with and without bone growth and differentiation factors can induce and enhance bone formation and consequently increase implant stability. The ears of 23 one-year-old Merino sheep (n = 46) were divided into five groups and implanted with a specially designed footplate anchor. The surface of each implant was modified by applying a collagenous matrix (collagen I or II) either with immobilized bone morphogenic protein (BMP-4) or transforming growth factor-ss, respectively, to stimulate osteoblastic activation and differentiation on the stapes footplate with subsequent osseointegration. Polychrome labeling was used to assess new bone formation and remodeling during the study. After study termination on day 84, synchrotron radiation-based computed microtomography and histomorphometry were used to identify bone implant contact. Eight implants showed radiographical and/or histological evidence of integration by newly formed bone. An osseointegration could histologically be proven in two of these eight specimens, and additional ectopic bone formations were seen in another 21 specimens. In all animals, bone turnover on the footplate was proven by polychrome labeling. This study proves the general ability to induce a controlled osseointegration of titanium implants biologically activated with artificial extracellular matrices on their surfaces on the stapes footplate in a mammalian organism.
Collapse
|
14
|
Gao Y, Zhu S, Luo E, Li J, Feng G, Hu J. Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats. J Control Release 2009; 139:15-21. [PMID: 19482052 DOI: 10.1016/j.jconrel.2009.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/17/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Basic fibroblast growth factor (bFGF) has high potential for tissue regeneration; however, its in vivo effects are unpredictable due to the short-term survival. This study sought to evaluate the effects of bFGF suspended in Matrigel on the implant fixation in ovariectomized (OVX) rats. In vitro, the release kinetics of bFGF was tested using an immuno-ligand-assay. In vivo, eighty titanium implants were randomly divided into 4 groups and inserted in the tibiae of forty OVX rats: no treatment group, bFGF alone group, Matrigel alone group and bFGF+Matrigel group. At 3 months after implantation, tibiae were examined by histology, micro-CT and push-out test. We found that Matrigel could prolong the life span of bFGF in vitro with a sustained release during the 21 days. In vivo, bFGF or Matrigel alone had little effect on the fixation of implant in OVX rats, but bFGF suspended in Matrigel induced nearly 2-fold of peri-implant new bone formation and 4-fold of implant mechanical stability when compared to other 3 groups. The results of this study suggest that Matrigel could be used as a carrier of bFGF and prolonged its release around implant, which may improve implant fixation, especially in site of post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Ying Gao
- The State Key Laboratory of Oral Diseases, Sichuan University West China College of Stomatology, Chendgu, 610041, China
| | | | | | | | | | | |
Collapse
|
15
|
de Assis AF, Beloti MM, Crippa GE, de Oliveira PT, Morra M, Rosa AL. Development of the osteoblastic phenotype in human alveolar bone-derived cells grown on a collagen type I-coated titanium surface. Clin Oral Implants Res 2009; 20:240-6. [DOI: 10.1111/j.1600-0501.2008.01641.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Santos MI, Pashkuleva I, Alves CM, Gomes ME, Fuchs S, Unger RE, Reis RL, Kirkpatrick CJ. Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b819089e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|