1
|
Mizuno M, Suda D, Matsumura C, Sekiya I. Changeover method for biosafety cabinets using ozone gas. PLoS One 2025; 20:e0318006. [PMID: 39874382 PMCID: PMC11774351 DOI: 10.1371/journal.pone.0318006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process. The utility of this device against bacteria, including endotoxins, endospores, and fungi endemic to human tissues, could facilitate safe and reproducible production changeovers through a simplified, one-button operation. This study focused on bacteria resistant to conventional cleaning protocols, specifically targeting endospore-forming bacteria with robust resistance to disinfectants, spore-forming fungi, and included analyses of endotoxins. The effects of ozone exposure on Pseudomonas aeruginosa (an endotoxin-producing bacterium), Bacillus subtilis (an endospore-forming bacterium), and Aspergillus brasiliensis (a spore-forming fungus) were assessed. In the dedicated biosafety cabinet equipped with an ozone generator, the treatment group exposed to ozone showed a significant reduction in both colony-forming units and endotoxin levels in Pseudomonas aeruginosa at 1.0 × 104 colony-forming units (CFUs) compared to the control group. Moreover, the ozone treatment markedly decreased the colony formation of Bacillus subtilis endospores and Aspergillus brasiliensis spores. Given its effectiveness against endospores and endotoxins-among the most challenging bacterial derivatives to eliminate-the device demonstrates potential for enhanced bacterial control in Grade A biosafety cabinets within cell product manufacturing facilities. The system may substantially reduce operator stress by ensuring product safety through straightforward operational procedures and high reproducibility, although further validation is required.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Suda
- Biozone Medical Co., Ltd., Fujisawa-shi, Kanagawa, Japan
| | | | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Powell DJ, Li D, Smith B, Chen WN. Cultivated meat microbiological safety considerations and practices. Compr Rev Food Sci Food Saf 2025; 24:e70077. [PMID: 39731713 DOI: 10.1111/1541-4337.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/30/2024]
Abstract
Cultivated meat, produced using cell culture technology, is an alternative to conventional meat production that avoids the risks from enteric pathogens associated with animal slaughter and processing. Cultivated meat therefore has significant theoretical microbiological safety advantages, though limited information is available to validate this. This review discusses sources and vectors of microbial contamination throughout cultivated meat production, introduces industry survey data to evaluate current industry practices for monitoring and mitigating these hazards, and highlights future research needs. Industry survey respondents reported an average microbiological contamination batch failure rate of 11.2%. The most common vectors were related to personnel, equipment, and the production environment, while the most commonly reported type of microbiological contaminant was bacteria. These will likely remain prominent vectors and source organisms in commercial-scale production but can be addressed by a modified combination of existing commercial food and biopharmaceutical production safety systems such as Hazard Analysis and Critical Control Points (HACCP), Good Manufacturing Practices (GMP), and Good Cell Culture Practice (GCCP). As the sector matures and embeds these and other safety management systems, microbiological contamination issues should be surmountable. Data are also included to investigate whether the limited microbiome of cultivated products poses a novel food safety risk. However, further studies are needed to assess the growth potential of microorganisms in different cultivated meat products, taking into account factors such as their composition, pH, water activity, and background microflora.
Collapse
Affiliation(s)
- Dean Joel Powell
- The Good Food Institute Asia Pacific (GFI APAC), Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
- Bezos Center for Sustainable Protein, National University of Singapore, Singapore, Singapore
| | - Ben Smith
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Wei Ning Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Future Ready Food Safety Hub (FRESH), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Prišlin Šimac M, Naletilić Š, Kostanić V, Kunić V, Zorec TM, Poljak M, Vlaj D, Kogoj R, Turk N, Brnić D. Canid alphaherpesvirus 1 infection alters the gene expression and secretome profile of canine adipose-derived mesenchymal stem cells in vitro. Virol J 2024; 21:336. [PMID: 39731173 PMCID: PMC11673362 DOI: 10.1186/s12985-024-02603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition. METHODS To this end, abdominal adipose tissue from 12 healthy dogs was harvested to isolate cAD-MSCs. These samples were tested for CHV contamination before introducing a wild-type CHV strain via serial passages. Following CHV infection, real-time reverse transcription-polymerase chain reaction array and liquid chromatography with tandem mass spectrometry assessments enabled analyses of gene expression and secretome's proteomic profile, respectively. RESULTS This study showed that the initial cAD-MSC populations were devoid of CHV. cAD-MSCs showed susceptibility to infection with wild-type CHV, leading to notable modifications in gene expression and secretome profile. The observed genomic variations in gene expression indicate potential impacts on the stemness, migration, and other functional properties of cAD-MSCs, highlighting the need for further studies to evaluate their functional capacity post-infection. Moreover, gene expression and secretome analyses suggest a shift in stem cell differentiation toward an adipogenic phenotype. CONCLUSION To the best of our knowledge, this is the first study of the effects of virus infection on gene expression and secretome composition in cAD-MSCs. The outcomes of our study underscore the imperative of routine viral screening prior to the therapeutic use of cAD-MSCs. Moreover, these findings provide novel insights into the pathogenic mechanisms of CHV and pave the way for future canine stem cell and virus research.
Collapse
Affiliation(s)
| | - Šimun Naletilić
- Department for Pathological Morphology, Croatian Veterinary Institute, Zagreb, Croatia
| | | | - Valentina Kunić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Doroteja Vlaj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nenad Turk
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia.
| |
Collapse
|
4
|
Morandi F, Della Lastra M, Bandettini R, Tripodi G, Zara F, Airoldi I. Microbes identified from monitoring cell manipulations in 5-year life of the Cell Factory G. Gaslini. Regen Ther 2024; 27:234-243. [PMID: 38586872 PMCID: PMC10997804 DOI: 10.1016/j.reth.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Quality and safety of a cell product, essential to guarantee the health of patients, depends on many factors including an appropriate environmental monitoring of the manufacturing rooms. Nonetheless, the maintenance of a controlled environment is requested to minimize the risk of contamination. Thus, a timely detection of changes in microbiological trends is important to adopt promptly effective measures against resistant strains that, in turn, may invalidate not only the sanitization procedures but also the safety of the cell product. Methods We analyzed microbes found in our cell processing clean room over the last 5 years. We used 10.147 plates for air sampler, passive air monitoring and for checking instruments and operators of the production unit. Results From these plates, 747 colonies were subjected to identification by the MALDI-TOF Vitek® MS system and the large majority of them was gram positive (97.8%) as witnessed by the finding that the most represented genera harvested from the classified areas were Staphylococcus (65%), Micrococcus (13%), Kocuria (8%) and Bacillus (5%). We never detected fungi. Most microbes found in the operators (both from class A and B) were collected from forearms and resulted of the Staphylococcus genus. Conclusions The observed microbial contamination is to be attributed to the personnel and no substantial microbial pitfalls in our Cell Factory has been detected.
Collapse
Affiliation(s)
- Fabio Morandi
- UOSD Cell Factory, Dipartimento dei Servizi, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Martina Della Lastra
- UOSD Cell Factory, Dipartimento dei Servizi, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Roberto Bandettini
- UOC Laboratorio Centrale di Analisi, Dipartimento dei Servizi, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Gino Tripodi
- UOC Immunoematologia e Medicina Trasfusionale, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Federico Zara
- UOSD Cell Factory, Dipartimento dei Servizi, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Irma Airoldi
- UOSD Cell Factory, Dipartimento dei Servizi, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
5
|
Sogore T, Guo M, Sun N, Jiang D, Shen M, Ding T. Microbiological and chemical hazards in cultured meat and methods for their detection. Compr Rev Food Sci Food Saf 2024; 23:e13392. [PMID: 38865212 DOI: 10.1111/1541-4337.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Cultured meat, which involves growing meat in a laboratory rather than breeding animals, offers potential benefits in terms of sustainability, health, and animal welfare compared to conventional meat production. However, the cultured meat production process involves several stages, each with potential hazards requiring careful monitoring and control. Microbial contamination risks exist in the initial cell collection from source animals and the surrounding environment. During cell proliferation, hazards may include chemical residues from media components such as antibiotics and growth factors, as well as microbial issues from improper bioreactor sterilization. In the differentiation stage where cells become muscle tissue, potential hazards include residues from scaffolding materials, microcarriers, and media components. Final maturation and harvesting stages risk environmental contamination from nonsterile conditions, equipment, or worker handling if proper aseptic conditions are not maintained. This review examines the key microbiological and chemical hazards that must be monitored and controlled during the manufacturing process for cultured meats. It describes some conventional and emerging novel techniques that could be applied for the detection of microbial and chemical hazards in cultured meat. The review also outlines the current evolving regulatory landscape around cultured meat and explains how thorough detection and characterization of microbiological and chemical hazards through advanced analytical techniques can provide crucial data to help develop robust, evidence-based food safety regulations specifically tailored for the cultured meat industry. Implementing new digital food safety methods is recommended for further research on the sensitive and effective detection of microbiological and chemical hazards in cultured meat.
Collapse
Affiliation(s)
- Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Meimei Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Na Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donglei Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| |
Collapse
|
6
|
Yang J, Liu Y, Wang M, Chen S, Miao Q, Liu Z, Zhang B, Deng G. Repair Effect of Umbilical Cord Mesenchymal Stem Cells Embedded in Hydrogel on Mouse Insulinoma 6 Cells Injured by Streptozotocin. Polymers (Basel) 2024; 16:1845. [PMID: 39000700 PMCID: PMC11244345 DOI: 10.3390/polym16131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) possess the capabilities of differentiation and immune modulation, which endow them with therapeutic potential in the treatment of type 2 diabetes mellitus (T2DM). In this study, to investigate the repair mechanism of UC-MSCs in hydrogel on pancreatic β-cells in diabetes, mouse insulinoma 6 (MIN-6) cells damaged by streptozotocin (STZ) in vitro were used in co-culture with UC-MSCs in hydrogel (UC-MSCs + hydrogel). It was found that UC-MSCs + hydrogel had a significant repair effect on injured MIN-6 cells, which was better than the use of UC-MSCs alone (without hydrogel). After repair, the expression of superoxide dismutase (SOD) and catalase (CAT) as well as the total antioxidant capacity (T-AOC) of the repaired MIN-6 cells were increased, effectively reducing the oxidative stress caused by STZ. In addition, UC-MSCs + hydrogel were able to curb the inflammatory response by promoting the expression of anti-inflammatory factor IL-10 and reducing inflammatory factor IL-1β. In addition, the expression of both nuclear antigen Ki67 for cell proliferation and insulin-related genes such as Pdx1 and MafA was increased in the repaired MIN-6 cells by UC-MSCs + hydrogel, suggesting that the repair effect promotes the proliferation of the injured MIN-6 cells. Compared with the use of UC-MSCs alone, UC-MSCs + hydrogel exhibit superior antioxidant stress resistance against injured MIN-6 cells, better proliferation effects and a longer survival time of UC-MSCs because the porous structure and hydrophilic properties of the hydrogel could affect the growth of cells and slow down their metabolic activities, resulting in a better repair effect on the injured MIN-6 cells.
Collapse
Affiliation(s)
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, China; (J.Y.); (M.W.); (S.C.); (Q.M.); (Z.L.); (B.Z.); (G.D.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Kumar SP, Uthra KT, Chitra V, Damodharan N, Pazhani GP. Challenges and mitigation strategies associated with Burkholderia cepacia complex contamination in pharmaceutical manufacturing. Arch Microbiol 2024; 206:159. [PMID: 38483625 DOI: 10.1007/s00203-024-03921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Burkholderia cepacia complex (BCC) is a Gram-negative, non-spore-forming bacterium with more than 20 opportunistic pathogenic species, most commonly found in soil and water. Due to their rapid mutation rates, these organisms are adaptable and possess high genomic plasticity. BCC can cause life-threatening infections in immunocompromised individuals, such as those with cystic fibrosis, chronic granulomatous disease, and neonates. BCC contamination is a significant concern in pharmaceutical manufacturing, frequently causing non-sterile product recalls. BCC has been found in purified water, cosmetics, household items, and even ultrasound gel used in veterinary practices. Pharmaceuticals, personal care products, and cleaning solutions have been implicated in numerous outbreaks worldwide, highlighting the risks associated with intrinsic manufacturing site contamination. Regulatory compliance, product safety, and human health protection depend on testing for BCC in pharmaceutical manufacturing. Identification challenges exist, with BCC often misidentified as other bacteria like non-lactose fermenting Escherichia coli or Pseudomonas spp., particularly in developing countries where reporting BCC in pharmaceuticals remains limited. This review comprehensively aims to address the organisms causing BCC contamination, genetic diversity, identification challenges, regulatory requirements, and mitigation strategies. Recommendations are proposed to aid pharmaceutical chemists in managing BCC-associated risks and implementing prevention strategies within manufacturing processes.
Collapse
Affiliation(s)
- Sethuraman Prem Kumar
- Department of Pharmaceutical Quality Assurance, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Karupanagounder Thangaraj Uthra
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Narayanasamy Damodharan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Gururaja Perumal Pazhani
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
8
|
Mizuno M, Abe K, Kakimoto T, Hasebe H, Kagi N, Sekiya I. Operator-derived particles and falling bacteria in biosafety cabinets. Regen Ther 2024; 25:264-272. [PMID: 38304617 PMCID: PMC10831277 DOI: 10.1016/j.reth.2024.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction To ensure the sterility of cell products that cannot undergo conventional sterilization processes, it is imperative to establish and maintain a clean room environment, regulated through environmental monitoring, including particle counts. Nevertheless, the impact of particles generated by operators as potential contaminants remains uncertain. Thus, in this study, we conducted an accelerated test to assess the correlation between particles generated by operators and airborne bacteria, utilizing biosafety cabinets within a typical laboratory setting. These biosafety cabinets create a controlled environment with air conditioning and high-efficiency particulate air (HEPA) filters, offering fundamental data relevant to cell production. Materials and methods We conducted a simulation followed by real-time experiments involving human operations to explore the quantity of particles, particle sizes, and the percentage of bacteria within these particles. This investigation focused on conditions with heightened particle generation from operators within a biosafety cabinet. The experiment was conducted on operators wearing textile and non-woven dustless clothing within biosafety cabinets. It entailed tapping the upper arms for a duration of 2 min. Results Observations under biosafety cabinet-off conditions revealed the presence of various particles and falling bacteria in textile clothing. In contrast, no particles or falling bacteria were detected in operators wearing dustless clothing within biosafety cabinets. Notably, a correlation between 5 μm particles and colony-forming units in textile clothing was identified through this analysis. The ratio of falling bacteria to the total number of particles within the biosafety cabinet was 0.8 ± 0.5 % for textile clothing, while it was significantly lower at 0.04 ± 0.2 % for dustless clothing. Conclusion This study demonstrated that the number of particles and falling bacteria varied depending on the type of clothing and that quantitative data could be used to identify risks and provide basic data for operator education and evidence-based control methods in aseptic manufacturing areas. Although, this study aims to serve as an accelerated test operating under worst-case conditions, the results need to make sure the study range in general research.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo 113-8519, Japan
| | - Koki Abe
- Energy Saving Technology Group, Center for Carbon Neutral Engineering, Institute of Technology, SHIMIZU CORPORATION, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-8530, Japan
| | - Takashi Kakimoto
- Planning & Public Relations Group, R&D Planning Department, Institute of Technology, SHIMIZU CORPORATION, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-0044, Japan
| | - Hisashi Hasebe
- Energy Saving Technology Group, Center for Carbon Neutral Engineering, Institute of Technology, SHIMIZU CORPORATION, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-8530, Japan
| | - Naoki Kagi
- Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo 113-8519, Japan
| |
Collapse
|
9
|
Mizuno M, Abe K, Kakimoto T, Yano K, Ota Y, Tomita K, Kagi N, Sekiya I. Volatile organic compounds and ionic substances contamination in cell processing facilities during rest period; a preliminary assessment of exposure to cell processing operators. Regen Ther 2023; 24:211-218. [PMID: 37519908 PMCID: PMC10371781 DOI: 10.1016/j.reth.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Cell processing operators (CPOs) use a variety of disinfectants that vaporize in the workspace environment. These disinfectants can induce allergic reactions in CPOs, due to their long working hours at cell processing facilities (CPFs). Ionic substances such as CH3COO- generated from peracetic acid, nitrogen oxides (NOx) and sulfur oxides (SOx) from outdoor environment are also known to pollute air. Therefore, our objective was to assess the air quality in CPFs and detect volatile organic compounds (VOCs) from disinfectants and building materials, and airborne ionic substances from outdoor air. Methods Sampling was conducted at three CPFs: two located in medical institutions and one located at a different institution. Air samples were collected using a flow pump. Ion chromatographic analysis of the anionic and cationic compounds was performed. For VOC analysis, a thermal desorption analyzer coupled with capillary gas chromatograph and flame ionization detector was used. Results Analysis of the ionic substances showed that Cl-, NOx, and SOx, which were detected in large amounts in the outdoor air, were relatively less in the CPFs. Ethanol was detected as the main component in the VOC analysis. Toluene was detected at all sampling points. As compared to the other environments, air in the incubator contained larger amounts of VOCs, that included siloxane, tetradecane, and aromatics. Conclusions No VOCs or ionic substances of immediate concern to the health of the CPOs were detected during the non-operating period. However, new clinical trials of cell products are currently underway in Japan, and a variety of new cell products are expected to be approved. With an increase in cell processing, health risks to CPOs that have not been considered previously, may become apparent. We should continue to prepare for the future expansion of the industry using a scientific approach to collect various pieces of information and make it publicly available to build a database.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo 113-8519, Japan
| | - Koki Abe
- Medical Environment Engineering Group, Center for Environmental Engineering, Institute of Technology, Shimizu Corporation, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-0044, Japan
| | - Takashi Kakimoto
- Medical Environment Engineering Group, Center for Environmental Engineering, Institute of Technology, Shimizu Corporation, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-0044, Japan
| | - Keiichi Yano
- Medical Environment Engineering Group, Center for Environmental Engineering, Institute of Technology, Shimizu Corporation, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-0044, Japan
| | - Yukiko Ota
- Medical Environment Engineering Group, Center for Environmental Engineering, Institute of Technology, Shimizu Corporation, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-0044, Japan
| | - Kengo Tomita
- Medical Environment Engineering Group, Center for Environmental Engineering, Institute of Technology, Shimizu Corporation, 3-4-17, Koto-ku, Etchūjima, Tokyo, 135-0044, Japan
| | - Naoki Kagi
- Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo 113-8519, Japan
| |
Collapse
|
10
|
Abstract
Over the last two decades, rapid technological advances have led to the wide adoption of cell and gene therapy products for the treatment of a variety of disease states. In this study, we reviewed the literature between 2003 and 2021 to provide a summary of overarching trends associated with microbial contamination in hematopoietic stem cells (HSCs) derived from peripheral blood, bone marrow, and cord blood. We provide a brief background on the regulatory context for human cells, tissues, and cellular and tissue-based products (HCT/Ps) as regulated by the US Food and Drug Administration (FDA), sterility testing expectations for autologous (Section 361) and allogeneic (Section 351) HSC products, and discuss clinical risks associated with the infusion of a contaminated HSC product. Finally, we discuss the expectations for current good tissue practices (cGTP) and current good manufacturing practices (cGMP) for the manufacturing and testing of HSC based on Section 361 and Section 351 categorization, respectively. We provide commentary on what is practiced in the field and discuss the critical need for updates to professional standards that keep pace with advancing technologies with an aim to clarify expectations for manufacturing and testing facilities to improve standardization across institutions.
Collapse
Affiliation(s)
- Tony Cundell
- Microbiological Consulting, LLC, Rye, New York, USA
| | - J. Wade Atkins
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna F. Lau
- Sterility Testing Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Microbiological Aspects of Pharmaceutical Manufacturing of Adipose-Derived Stem Cell-Based Medicinal Products. Cells 2023; 12:cells12050680. [PMID: 36899816 PMCID: PMC10000438 DOI: 10.3390/cells12050680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Subcutaneous adipose tissue is an excellent source of mesenchymal stem cells (ADSCs), which can be used in cell therapies as an active substance in advanced therapy medicinal products (ATMPs). Because of the short shelf-life of ATMPs and the time needed to obtain the results of microbiological analysis, the final product is often administered to the patient before sterility is confirmed. Because the tissue used for cell isolation is not sterilized to maintain cell viability, controlling and ensuring microbiological purity at all stages of production is crucial. This study presents the results of monitoring the contamination incidence during ADSC-based ATMP manufacturing over two years. It was found that more than 40% of lipoaspirates were contaminated with thirteen different microorganisms, which were identified as being physiological flora from human skin. Such contamination was successfully eliminated from the final ATMPs through the implementation of additional microbiological monitoring and decontamination steps at various stages of production. Environmental monitoring revealed incidental bacterial or fungal growth, which did not result in any product contamination and was reduced thanks to an effective quality assurance system. To conclude, the tissue used for ADSC-based ATMP manufacturing should be considered contaminated; therefore, good manufacturing practices specific to this type of product must be elaborated and implemented by the manufacturer and the clinic in order to obtain a sterile product.
Collapse
|
12
|
Mizuno M, Matsuda J, Watanabe K, Shimizu N, Sekiya I. Effect of disinfectants and manual wiping for processing the cell product changeover in a biosafety cabinet. Regen Ther 2023; 22:169-175. [PMID: 36843961 PMCID: PMC9945742 DOI: 10.1016/j.reth.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The process of cell product changeover poses a high risk of cross-contamination. Hence, it is essential to minimize cross-contamination while processing cell products. Following its use, the surface of a biosafety cabinet is commonly disinfected by ethanol spray and manual wiping methods. However, the effectiveness of this protocol and the optimal disinfectant have not yet been evaluated. Here, we assessed the effect of various disinfectants and manual wiping methods on bacterial removal during cell processing. Methods The hard surface carrier test was performed to evaluate the disinfectant efficacy of benzalkonium chloride with a corrosion inhibitor (BKC + I), ethanol (ETH), peracetic acid (PAA), and wiping against Bacillus subtilis endospores. Distilled water (DW) was used as the control. A pressure sensor was employed to investigate the differences in loading under dry and wet conditions. The pre-spray for wiping was monitored by eight operators using a paper that turns black when wet. Chemical properties, including residual floating proteins, and mechanical properties, such as viscosity and coefficient of friction, were examined. Results In total, 2.02 ± 0.21-Log and 3.00 ± 0.46-Log reductions from 6-Log CFU of B. subtilis endospores were observed for BKC + I and PAA, respectively, following treatment for 5 min. Meanwhile, wiping resulted in a 0.70 ± 0.12-Log reduction under dry conditions. Under wet conditions, DW and BKC + I showed 3.20 ± 0.17-Log and 3.92 ± 0.46-Log reductions, whereas ETH caused a 1.59 ± 0.26-Log reduction. Analysis of the pressure sensor suggested that the force was not transmitted under dry conditions. Evaluation of the amount of spray by eight operators showed differences and bias in the spraying area. While ETH had the lowest ratio in the protein floating and collection assays, it exhibited the highest viscosity. BKC + I had the highest friction coefficient under 4.0-6.3 mm/s; however, that of BKC + I decreased and became similar to the friction coefficient of ETH under 39.8-63.1 mm/s. Conclusions DW and BKC + I are effective for inducing a 3-Log reduction in bacterial abundance. Moreover, the combination of optimal wet conditions and disinfectants is essential for effective wiping in specific environments containing high-protein human sera and tissues. Given that some raw materials processed in cell products contain high protein levels, our findings suggest that a complete changeover of biosafety cabinets is necessary in terms of both cleaning and disinfection.
Collapse
|
13
|
Proteomic Analysis and Molecular Characterization of Airborne Bioaerosols in Indoor and Outdoor Environment in Al-Qassim Region, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Ribič U, Klančnik A, Jeršek B. Characterization of Staphylococcus epidermidis strains isolated from industrial cleanrooms under regular routine disinfection. J Appl Microbiol 2017; 122:1186-1196. [PMID: 28231617 DOI: 10.1111/jam.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/30/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
AIMS The purpose of this study was the genotypic and phenotypic characterization of 57 strains of Staphylococcus epidermidis isolated from cleanroom environments, based on their biofilm formation and antimicrobial resistance profiles. METHODS AND RESULTS Biofilm formation was investigated using real-time PCR (icaA, aap, bhp genes), the Congo red agar method and the crystal violet assay. The majority of the strains (59·7%; 34/57) did not form biofilms according to the crystal violet assay, although the biofilm-associated genes were present in 94·7% (54/57) of the strains. Of the biofilm formers (40·4%; 23/57), 39·1% (9/23) have been identified as strong biofilm formers (>4× crystal violet absorbance cut-off). Resistance to a commercial disinfectant and its quaternary ammonium active component, didecyl-dimethyl-ammonium chloride (DDAC), was determined according to minimum inhibitory concentrations (MICs) and the presence of the qac (quaternary ammonium compound) genes. More than 95% (55/57) of the Staph. epidermidis strains had the qacA/B and qacC genes, but not the other qac genes. The MICs for the disinfectant and DDAC varied among the Staph. epidermidis strains, although none were resistant. CONCLUSIONS Although 59·6% of the Staph. epidermidis strains did not form biofilms and none were resistant to DDAC, more than 94% had the genetic basis for development of resistance to quaternary ammonium compounds, and among them at least 14·0% (8/57) might represent a high risk to cleanroom hygiene as strong biofim formers with qacA/B and qacC genes. SIGNIFICANCE AND IMPACT OF THE STUDY To assure controlled cleanroom environments, bacterial strains isolated from cleanroom environments need to be characterized regularly using several investigative methods.
Collapse
Affiliation(s)
- U Ribič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - A Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - B Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Galvez-Martin P, Sabata R, Verges J, Zugaza JL, Ruiz A, Clares B. Mesenchymal Stem Cells as Therapeutics Agents: Quality and Environmental Regulatory Aspects. Stem Cells Int 2016; 2016:9783408. [PMID: 27999600 PMCID: PMC5143779 DOI: 10.1155/2016/9783408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the main stem cells that have been used for advanced therapies and regenerative medicine. To carry out the translational clinical application of MSCs, their manufacturing and administration in human must be controlled; therefore they should be considered as medicine: stem cell-based medicinal products (SCMPs). The development of MSCs as SCMPs represents complicated therapeutics due to their extreme complex nature and rigorous regulatory oversights. The manufacturing process of MSCs needs to be addressed in clean environments in compliance with requirements of Good Manufacturing Practice (GMP). Facilities should maintain these GMP conditions according to international and national medicinal regulatory frameworks that introduce a number of specifications in order to produce MSCs as safe SCMPs. One of these important and complex requirements is the environmental monitoring. Although a number of environmental requirements are clearly defined, some others are provided as recommendations. In this review we aim to outline the current issues with regard to international guidelines which impact environmental monitoring in cleanrooms and clean areas for the manufacturing of MSCs.
Collapse
Affiliation(s)
- Patricia Galvez-Martin
- Advanced Therapies Area, Bioibérica S.A., 08029 Barcelona, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 180171 Granada, Spain
| | - Roger Sabata
- Advanced Therapies Area, Bioibérica S.A., 08029 Barcelona, Spain
| | - Josep Verges
- Advanced Therapies Area, Bioibérica S.A., 08029 Barcelona, Spain
| | - José L. Zugaza
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building No. 205, 48170 Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Adolfina Ruiz
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 180171 Granada, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, 180171 Granada, Spain
| |
Collapse
|
16
|
Gálvez P, Clares B, Bermejo M, Hmadcha A, Soria B. Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. Stem Cells Dev 2014; 23:1074-83. [PMID: 24417334 DOI: 10.1089/scd.2013.0625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The manufacturing of human mesenchymal stem cells (hMSCs) as cell-based products for clinical use should be performed with appropriate controls that ensure its safety and quality. The use of hMSCs in cell therapy has increased considerably in the past few years. In line with this, the assessment and management of contamination risks by microbial agents that could affect the quality of cells and the safety of patients have to be considered. It is necessary to implant a quality control program (QCP) covering the entire procedure of the ex vivo expansion, from the source of cells, starting materials, and reagents, such as intermediate products, to the final cellular medicine. We defined a QCP to detect microbiological contamination during manufacturing of autologous hMSCs for clinical application. The methods used include sterility test, Gram stain, detection of mycoplasma, endotoxin assay, and microbiological monitoring in process according to the European Pharmacopoeia (Ph. Eur.) and each analytical technique was validated in accordance with three different cell cultures. Results showed no microbiological contamination in any phases of the cultures, meeting all the acceptance criteria for sterility test, detection of mycoplasma and endotoxin, and environmental and staff monitoring. Each analytical technique was validated demonstrating the sensitivity, limit of detection, and robustness of the method. The quality and safety of MSCs must be controlled to ensure their final use in patients. The evaluation of the proposed QCP revealed satisfactory results in order to standardize this procedure for clinical use of cells.
Collapse
Affiliation(s)
- Patricia Gálvez
- 1 Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) , Seville, Spain
| | | | | | | | | |
Collapse
|
17
|
Kim H, Mizuno M, Furuhashi K, Katsuno T, Ozaki T, Yasuda K, Tsuboi N, Sato W, Suzuki Y, Matsuo S, Ito Y, Maruyama S. Rat adipose tissue-derived stem cells attenuate peritoneal injuries in rat zymosan-induced peritonitis accompanied by complement activation. Cytotherapy 2013; 16:357-68. [PMID: 24364907 DOI: 10.1016/j.jcyt.2013.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/02/2013] [Accepted: 10/22/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND AIMS In patients receiving peritoneal dialysis, fungal or yeast peritonitis has a poor prognosis. In rat peritoneum with mechanical scraping, severe peritonitis can be induced by zymosan, a component of yeast (Zy/scraping peritonitis). Administration of rat adipose tissue-derived stromal cells (ASCs) potentially can improve several tissue injuries. The present study investigated whether rat ASCs could improve peritoneal inflammation in Zy/scraping peritonitis. METHODS Rat ASCs were injected intraperitoneally on a daily basis in rats with Zy/scraping peritonitis. RESULTS Peritoneal inflammation accompanied by accumulation of inflammatory cells and complement deposition was suppressed by day 5 after injection of rat ASCs. The peritoneal mesothelial layer in Zy/scraping peritonitis with rat ASC treatment was restored compared with the peritoneal mesothelial layer without rat ASC treatment. Injected rat ASCs co-existed with mesothelial cells in the sub-peritoneal layer. In vitro assays showed increased cellular proliferation of rat mesothelial cells combined with rat ASCs by co-culture assays, confirming that fluid factors from rat ASCs might play some role in facilitating the recovery of rat mesothelial cells. Hepatocyte growth factor was released from rat ASCs, and administration of recombinant hepatocyte growth factor increased rat mesothelial cell proliferation. CONCLUSIONS Because the peritoneal mesothelium shows strong expression of membrane complement regulators such as Crry, CD55 and CD59, restoration of the mesothelial cell layer by rat ASCs might prevent deposition of complement activation products and ameliorate peritoneal injuries. This study suggests the therapeutic possibilities of intraperitoneal rat ASC injection to suppress peritoneal inflammation by restoring the mesothelial layer and decreasing complement activation in fungal or yeast peritonitis.
Collapse
Affiliation(s)
- Hangsoo Kim
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kazuhiro Furuhashi
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Katsuno
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takenori Ozaki
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaoru Yasuda
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naotake Tsuboi
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Waichi Sato
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Matsuo
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Division of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Gálvez P, Clares B, Hmadcha A, Ruiz A, Soria B. Development of a cell-based medicinal product: regulatory structures in the European Union. Br Med Bull 2013. [PMID: 23184855 DOI: 10.1093/bmb/lds036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION New therapies with genes, tissues and cells have taken the emerging field for the treatment of many diseases. Advances on stem cell therapy research have led to international regulatory agencies to harmonize and regulate the development of new medicines with stem cells. SOURCES OF DATA European Medicines Agency on September 15, 2012. AREAS OF AGREEMENT Cell therapy medicinal products should be subjected to the same regulatory principles than any other medicine. AREAS OF CONTROVERSY Their technical requirements for quality, safety and efficacy must be more specific and stringent than other biologic products and medicines. GROWING POINTS Cell therapy medicinal products are at the cutting edge of innovation and offer a major hope for various diseases for which there are limited or no therapeutic options. AREAS TIMELY FOR DEVELOPING RESEARCH The development of cell therapy medicinal products constitutes an alternative therapeutic strategy to conventional clinical therapy, for which no effective cure was previously available.
Collapse
|