1
|
Fu X, Gao S, Zhang H, Ma W, Chen Y, Luo J, Ye B. Multiple signal amplification strategy for ultrasensitive sensing of Mycobacterium bovis based on 8-17 DNAzyme and CRISPR-Cas13a. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1825-1833. [PMID: 39898503 DOI: 10.1039/d4ay02141j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bovine tuberculosis caused by Mycobacterium bovis is not only responsible for economic losses but can also seriously jeopardize human health. Therefore, for the ultra-sensitive detection of M. bovis, a novel triple-cycle amplification system was developed based on 8-17 deoxyribozyme (DNAzyme), clustered regularly interspaced short palindromic repeats-associated protein 13a (CRISPR-Cas13a)-mediated cleavage cycles and the catalytic hairpin assembly (CHA) reaction (termed as DzCCR). In the presence of the target, the A-sequence containing 8-17 DNAzyme fragments was released from A-B using a strand displacement reaction, which could specifically cleave the HX-gRNA probe, releasing the sequence of gRNA and H and realizing the first signal amplification. Then, the released gRNA could bind to the Cas13a-g complex and activate the trans-cutting ability of Cas13a to re-cut RNA bulge sequences in HX-gRNAs, achieving the second signal amplification. Moreover, the H-sequence generated by the upstream 8-17 DNAzyme and Cas13a cleavage reaction further triggered the CHA, allowing the G-quadruplex dimer to be exposed, realizing signal output by adding thioflavin T (THT), and thereby achieving the third signal amplification. Benefiting from the triple signal amplification, the DzCCR system could quantitatively detect the M. bovis target down to a concentration of 0.5 fM with a linear calibration range from 1 to 500 fM. Furthermore, we investigated the ability of this system to detect M. bovis in real samples by standard addition method, the recovery ranged from 92.6% to 107.5%, and the relative standard deviations (RSD) ranged from 1.9% to 4.1%. Owing to the constant temperature and high sensitivity, the proposed strategy could be used as a new approach for the detection of M. bovis.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Sainan Gao
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Yong Chen
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Jiamei Luo
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Bin Ye
- State Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
2
|
Gan T, Yu J, Deng Z, He J. ERA-CRISPR/Cas12a system: a rapid, highly sensitive and specific assay for Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1454076. [PMID: 39233906 PMCID: PMC11371737 DOI: 10.3389/fcimb.2024.1454076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Mycobacterium tuberculosis, the causative agent of human tuberculosis, poses a significant threat to global public health and imposes a considerable burden on the economy. However, existing laboratory diagnostic methods for M. tuberculosis are time-consuming and have limited sensitivity levels. Methods The CRISPR/Cas system, commonly known as the "gene scissors", demonstrates remarkable specificity and efficient signal amplification capabilities. Enzymatic recombinase amplification (ERA) was utilized to rapidly amplify trace DNA fragments at a consistent temperature without relying on thermal cyclers. By integrating of CRISPR/Cas12a with ERA, we successfully developed an ERA-CRISPR/Cas12a detection system that enables rapid identification of M. tuberculosis. Results The sensitivity of the ERA-CRISPR/Cas12a fluorescence and lateral flow systems was 9 copies/μL and 90 copies/μL, respectively. Simultaneously, the detection system exhibited no cross-reactivity with various of respiratory pathogens and non-tuberculosis mycobacteria, demonstrating a specificity of 100%. The positive concordance rate between the ERA-CRISPR/Cas12a fluorescence system and commercial qPCR was 100% in 60 clinical samples. Meanwhile, the lateral flow system showed a positive concordance rate of 93.8% when compared to commercial qPCR. Both methods demonstrated a negative concordance rate of 100%, and the test results can be obtained in 50 min at the earliest. Discussion The ERA-CRISPR/Cas12a system offers a rapid, sensitive, and specific method that presents a novel approach to laboratory diagnosis of M. tuberculosis.
Collapse
Affiliation(s)
- Tian Gan
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Yang X, Huang J, Chen Y, Ying X, Tan Q, Chen X, Zeng X, Lei S, Wang Y, Li S. Development of CRISPR/Cas12b-Based Multiple Cross Displacement Amplification Technique for the Detection of Mycobacterium tuberculosis Complex in Clinical Settings. Microbiol Spectr 2023; 11:e0347522. [PMID: 36975805 PMCID: PMC10100757 DOI: 10.1128/spectrum.03475-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease with high mortality caused by the Mycobacterium tuberculosis complex (MTC). Its clinical symptoms include a prolonged cough with mucus, pleuritic chest pain, hemoptysis, etc., and predominant complications such as tuberculous meningitis and pleural effusion. Thus, developing rapid, ultrasensitive, and highly specific detection techniques plays an important role in controlling TB. Here, we devised CRISPR/CRISPR-associated 12b nuclease (CRISPR/Cas12b)-based multiple cross displacement amplification technique (CRISPR-MCDA) targeting the IS6110 sequence and used it to detect MTC pathogens. A newly engineered protospacer adjacent motif (PAM) site (TTTC) was modified in the linker region of the CP1 primer. In the CRISPR-MCDA system, the exponentially amplified MCDA amplicons with the PAM sites can guide the Cas12b/gRNA complex to quickly and accurately recognize its target regions, which successfully activates the CRISPR/Cas12b effector and enables ultrafast trans-cleavage of single-stranded DNA reporter molecules. The limit of detection of the CRISPR-MCDA assay was 5 fg/μL of genomic DNA extracted from the MTB reference strain H37Rv. The CRISPR-MCDA assay successfully detected all examined MTC strains and there was no cross-reaction with non-MTC pathogens, confirming that its specificity is 100%. The entire detection process can be completed within 70 min using real-time fluorescence analysis. Moreover, visualization detection (under UV light) was also designed to verify the results, eliminating the use of specialized instruments. In conclusion, the CRISPR-MCDA assay established in this report can be used as a valuable detection technique for MTC infection. IMPORTANCE The Mycobacterium tuberculosis complex pathogen is a crucial infectious agent of tuberculosis. Hence, improving the capability of MTC detection is one of the most urgently required strategies for preventing and controlling TB. In this report, we successfully developed and implemented CRISPR/Cas12b-based multiple cross displacement amplification targeting the IS6110 sequence to detect MTC pathogens. These results demonstrated that the CRISPR-MCDA assay developed in this study was a rapid, ultrasensitive, highly specific, and readily available method which can be used as a valuable diagnostic tool for MTC infection in clinical settings.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yijiang Chen
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Xu Chen
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoyan Zeng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Shiguang Lei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
4
|
Huang J, Xiao Z, Yang X, Chen X, Wang X, Chen Y, Zheng W, Chen W, Chen H, Li S. Two target genes based multiple cross displacement amplification combined with a lateral flow biosensor for the detection of Mycobacterium tuberculosis complex. BMC Microbiol 2021; 21:267. [PMID: 34607556 PMCID: PMC8491432 DOI: 10.1186/s12866-021-02328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculosis (TB) is a serious chronic infectious disease caused by Mycobacterium tuberculosis complex (MTBC). Hence, the development of a novel, simple, rapid and sensitive method to detect MTBC is of great significance for the prevention and treatment of TB. Results In this study, multiple cross displacement amplification (MCDA) combined with a nanoparticle-based lateral flow biosensor (LFB) was developed to simultaneously detect two target genes (IS6110 and mpb64) of MTBC (MCDA-LFB). One suite of specific MCDA primers designed for the IS6110 and mpb64 genes was validated using genomic DNA extracted from the reference strain H37Rv. The MCDA amplicons were analyzed using a real-time turbidimeter, colorimetric indicator (malachite green, MG) and LFBs. The optimal amplification temperature and time were confirmed, and the MCDA-LFB method established in the current report was evaluated by detecting various pathogens (i.e., reference strains, isolates and clinical sputum samples). The results showed that the two sets of MCDA primers targeting the IS6110 and mpb64 genes could effectively detect MTBC strains. The optimal reaction conditions for the MCDA assay were determined to be 67 °C for 35 min. The MCDA assay limit of detection (LoD) was 100 fg per reaction for pure genomic DNA. The specificity of the MCDA-LFB assay was 100%, and there were no cross-reactions for non-MTBC strains. For sputum samples and MTBC strain detection, the positive rate of MCDA-LFB for the detection of MTBC strains was consistent with seminested automatic real-time PCR (Xpert MTB/RIF) and higher than acid-fast staining (AFS) and culture assays when used for sputum samples. The MCDA-LFB assay was a rapid tool, and the whole procedure for MCDA-LFB, including DNA template preparation, MCDA reaction and amplification product analysis, was completed within 70 min. Conclusion The MCDA-LFB assay targeting the IS6110 and mpb64 genes is a simple, rapid, sensitive and reliable detection method, and it has potential significance for the prevention and treatment of TB.
Collapse
Affiliation(s)
- Junfei Huang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ziyu Xiao
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xinggui Yang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550003, People's Republic of China
| | - Xiaojuan Wang
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Yijiang Chen
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wenlin Zheng
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wei Chen
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Huijuan Chen
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shijun Li
- Laboratory of Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, 73 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China. .,Public Health School, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|