1
|
Pu X, Peng X, Shi S, Feng S, Wei X, Gao X, Yu X. A New Type of Bioprosthetic Heart Valve: Synergistic Modification with Anticoagulant Polysaccharides and Anti-inflammatory Drugs. ACS Biomater Sci Eng 2025; 11:634-648. [PMID: 39748762 DOI: 10.1021/acsbiomaterials.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs. In this study, λ-carrageenan with anticoagulant function was modified by carboxymethylation into carboxymethyl λ-carrageenan (CM-λC); subsequently, CM-λC was used as a cross-linking agent to stabilize decellularized bovine pericardial tissue through amide bonds formed by a 1-(3-(Dimethylamino)propyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS)-catalyzed reaction between the amino functional groups within pericardium and the carboxyl group located on CM-λC. Lastly, the inclusion complex (CD/Rutin) (formed by encapsulating the rutin molecule through the hydrophobic cavity of the mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin) was immobilized onto above BHVs materials (λCar-BP) through the amidation reaction. The treated sample exhibited mechanical properties and collagen stability similar to those of GA-BP, except for improved flexibility. Because of the presence of sulfonic acid groups and absence of aldehyde group as well as the Rutin release from CD/Rutin immobilized onto BHVs, the hemocompatibility, anti-inflammatory, HUVEC-cytocompatibility, and anticalcification properties, of the CM-λC-fixed BP modified with CD/Rutin was significantly better than that of GA-BP. In summary, this nonaldehyde-based natural polysaccharide cross-linking strategy utilizing the combination of CM-λC and CD/Rutin provides a novel solution to obtain BHVs with durable and stable anticoagulant, anticalcification, and anti-inflammatory properties, and has a wide range of potential applications in improving the various properties of BHVs.
Collapse
Affiliation(s)
- Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610041, P.R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xi Gao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
2
|
Polysaccharide-based layer-by-layer nanoarchitectonics with sulfated chitosan for tuning anti-thrombogenic properties. Colloids Surf B Biointerfaces 2022; 213:112359. [PMID: 35144082 DOI: 10.1016/j.colsurfb.2022.112359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
The development of blood-interacting surfaces is critical to fabricate biomaterials for medical use, such as prostheses, implants, biosensors, and membranes. For instance, thrombosis is one of the leading clinical problems when polymer-based materials interact with blood. To overcome this limitation is necessary to develop strategies that limit platelets adhesion and activation. In this work, hyaluronan (HA)/chitosan (Chi) based-films, recently reported in the literature as platforms for tumor cell capture, were developed and, subsequently, functionalized with sulfated chitosan (ChiS) using a layer-by-layer technique. ChiS, when compared to native Chi, presents the unique abilities to confer anti-thrombogenic properties, to reduce protein adsorption, and also to limit calcification. Film physicochemical characterization was carried out using FTIR and XPS for chemical composition assessment, AFM for the surface morphology, and contact angle for hydrophilicity evaluation. The deposition of ChiS monolayer promoted a decrease in both roughness and hydrophilicity of the HA/Chi films. In addition, the appearance of sulfur in the chemical composition of ChiS-functionalized films confirmed the film modification. Biological assay indicated that the incorporation of sulfated groups limited platelet adhesion, mainly because a significant reduction of platelets adhesion to ChiS-functionalized films was observed compared to HA/Chi films. On balance, this work provides a new insight for the development of novel antithrombogenic biomaterials, opening up new possibilities for devising blood-interaction surfaces.
Collapse
|
3
|
Campelo CS, Chevallier P, Vaz JM, Vieira RS, Mantovani D. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:682-691. [PMID: 28024638 DOI: 10.1016/j.msec.2016.11.133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material.
Collapse
Affiliation(s)
- Clayton S Campelo
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada; Federal University of Ceará, Department of Chemical Engineering, Campus do Pici - Bloco 709, Fortaleza, Ceará 60455-760, Brazil
| | - Pascale Chevallier
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada
| | - Juliana M Vaz
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada
| | - Rodrigo S Vieira
- Federal University of Ceará, Department of Chemical Engineering, Campus do Pici - Bloco 709, Fortaleza, Ceará 60455-760, Brazil.
| | - Diego Mantovani
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada.
| |
Collapse
|
4
|
In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:241-248. [DOI: 10.1016/j.msec.2015.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/12/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022]
|
5
|
van den Heever JJ, Neethling WML, Smit FE, Litthauer D, Joubert G. The effect of different treatment modalities on the calcification potential and cross-linking stability of bovine pericardium. Cell Tissue Bank 2012; 14:53-63. [PMID: 22382933 DOI: 10.1007/s10561-012-9299-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/15/2012] [Indexed: 11/28/2022]
Abstract
Porcine heart valves and bovine pericardium exhibit suitable properties for use as substitutes in cardiothoracic surgery, but must meet several requirements to be safe and efficient. Treatment with glutaraldehyde (GA) render some of these requirements, but calcification and degradation post-implant remain a problem. This study aimed to identify additional biochemical treatments that will minimize calcification potential without compromising the physical properties of pericardium. Pericardium treated with GA calcified severely after 8 weeks in the subcutaneous rat model, compared to tissue treated with higher concentrations of glycosaminoglycans (GAG) and commercial Glycar patches. GA, lower concentrations GAG and Glycar pericardium had high denaturation temperatures due to enhanced cross-linking. Tensile strength of GA tissue was significantly lower than GAG-treated or Glycar tissues, due to lower water content with resultant lower flexibility and suppleness. Pericardium treated with 0.01 M GAG gave acceptable denaturation temperatures, tensile strength and reduced calcification potential. All tissue treatments evoked comparable host immune responses, and no significant difference in resistance to enzymatic degradation. Ineffective stabilization and fixation of cross-links following GAG treatment, as well as limited penetration into the pericardium, resulted in GAG leaching out into the surrounding host tissue or storage medium, and prohibits safe clinical use of such tissue.
Collapse
Affiliation(s)
- J J van den Heever
- Department of Cardiothoracic Surgery, School of Medicine, University of the Free State, Bloemfontein, 9301, South Africa.
| | | | | | | | | |
Collapse
|
6
|
Mendoza-Novelo B, Avila EE, Cauich-Rodríguez JV, Jorge-Herrero E, Rojo FJ, Guinea GV, Mata-Mata JL. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater 2011; 7:1241-8. [PMID: 21094703 DOI: 10.1016/j.actbio.2010.11.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Bovine pericardium is a collagenous tissue commonly used as a natural biomaterial in the fabrication of cardiovascular devices. For tissue engineering purposes, this xenogeneic biomaterial must be decellularized to remove cellular antigens. With this in mind, three decellularization protocols were compared in terms of their effectiveness to extract cellular materials, their effect on glycosaminoglycan (GAG) content and, finally, their effect on tensile biomechanical behavior. The tissue decellularization was achieved by treatment with t-octyl phenoxy polyethoxy ethanol (Triton X-100), tridecyl polyethoxy ethanol (ATE) and alkaline treatment and subsequent treatment with nucleases (DNase/RNase). The quantified residual DNA content (3.0±0.4%, 4.4±0.6% and 5.6±0.7% for Triton X-100, ATE and alkaline treatment, respectively) and the absence of nuclear structures (hematoxylin and eosin staining) were indicators of effective cell removal. In the same way, it was found that the native tissue GAG content decreased to 61.6±0.6%, 62.7±1.1% and 88.6±0.2% for Triton X-100, ATE and alkaline treatment, respectively. In addition, an alteration in the tissue stress relaxation characteristics was observed after alkaline treatment. We can conclude that the three decellularization agents preserved the collagen structural network, anisotropy and the tensile modulus, tensile strength and maximum strain at failure of native tissue.
Collapse
|
7
|
Jorge-Herrero E, Fonseca C, Barge AP, Turnay J, Olmo N, Fernández P, Lizarbe MA, García Páez JM. Biocompatibility and Calcification of Bovine Pericardium Employed for the Construction of Cardiac Bioprostheses Treated With Different Chemical Crosslink Methods. Artif Organs 2010; 34:E168-76. [PMID: 20633147 DOI: 10.1111/j.1525-1594.2009.00978.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Eduardo Jorge-Herrero
- Divisão de Biomateriais, INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Raghavan D, Shah SR, Vyavahare NR. Neomycin fixation followed by ethanol pretreatment leads to reduced buckling and inhibition of calcification in bioprosthetic valves. J Biomed Mater Res B Appl Biomater 2010; 92:168-77. [PMID: 19810110 DOI: 10.1002/jbm.b.31503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glutaraldehyde crosslinked bioprosthetic heart valves (BHVs) have two modalities of failure: degeneration (cuspal tear due to matrix failure) and calcification. They can occur independently as well as one can lead to the other causing co-existence. Calcific failure has been extensively studied before and several anti-calcification treatments have been developed; however, little research is directed to understand mechanisms of valvular degeneration. One of the shortcomings of glutaraldehyde fixation is its inability to stabilize all extracellular matrix components in the tissue. Previous studies from our lab have demonstrated that neomycin could be used as a fixative to stabilize glycosaminoglycans (GAGs) present in the valve to improve matrix properties. But neomycin fixation did not prevent cuspal calcification. In the present study, we wanted to enhance the anti-calcification potential of neomycin fixed valves by pre-treating with ethanol or removing the free aldehydes by sodium borohydride treatment. Ethanol treatment has been previously used and found to have excellent anti-calcification properties for valve cusps. Results demonstrated in this study suggest that neomycin followed by ethanol treatment effectively preserves GAGs both in vitro as well as in vivo after subdermal implantation in rats. In vivo calcification was inhibited in neomycin fixed cusps pretreated with ethanol compared to glutaraldehyde (GLUT) control. Sodium borohydride treatment by itself did not inhibit calcification nor stabilized GAGs against enzymatic degradation. Neomycin fixation followed by ethanol treatment of BHVs could prevent both modalities of failure, thereby increasing the effective durability and lifetime of these bioprostheses several fold.
Collapse
Affiliation(s)
- Devanathan Raghavan
- Department of Bioengineering, Cardiovascular Implant Research Laboratory (CIRL), Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
9
|
Sánchez DM, Gaitán DM, León AF, Mugnier J, Briceño JC. Fixation of vascular grafts with increased glutaraldehyde concentration enhances mechanical properties without increasing calcification. ASAIO J 2007; 53:257-62. [PMID: 17515713 DOI: 10.1097/mat.0b013e318033a68f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our objective was to study the effect of glutaraldehyde (GLU) concentration, heat, and photooxidation on mechanical properties and calcification of bovine pericardium grafts in an in vivo model. Fresh pericardia were treated as follows: 0.625% GLU for 7 days (standard); 0.625%, 1%, and 3% GLU at 4 degrees C for 20 days and 50 degrees C for additional 20 days; irradiation in cross-linking medium with metilene blue at 0 degrees C for 8 hours. Tissues were subjected to tensile mechanical tests (n = 76). Fixed patches were subcutaneously implanted in mice for 50 days (n = 16 per treatment). Calcification was assessed by atomic absorption spectrophotometry (n = 55) and von Kossa staining (n = 28). Analysis of variance and Tukey's test were used for statistical analysis. The 3% GLU and 3% GLU + heat treatments showed an enhancement of the mechanical properties above standard treatment. No significant difference was found in calcification between treatments. The 3% GLU treatment enhances the mechanical properties of the tissue above standard treatment without increasing calcification and without applying heat; therefore it is recommended for high-strength applications. Supplementary treatments to decrease calcification could be combined with this methodology to obtain a high-strength-low-calcification biomaterial for manufacturing of long-term cardiovascular grafts.
Collapse
Affiliation(s)
- Diana M Sánchez
- Group of Biomedical Engineering, University of Los Andes, Bogota DC, Colombia
| | | | | | | | | |
Collapse
|
10
|
Mercuri JJ, Lovekamp JJ, Simionescu DT, Vyavahare NR. Glycosaminoglycan-targeted fixation for improved bioprosthetic heart valve stabilization. Biomaterials 2007; 28:496-503. [PMID: 17030363 DOI: 10.1016/j.biomaterials.2006.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
Numerous crosslinking chemistries and methodologies have been investigated as alternative fixatives to glutaraldehyde (GLUT) for the stabilization of bioprosthetic heart valves (BHVs). Particular attention has been paid to valve leaflet collagen and elastin stability following fixation. However, the stability of glycosaminoglycans (GAGs), the primary component of the spongiosa layer of the BHV, has been largely overlooked despite recent evidence provided by our group illustrating their structural and functional importance. In the present study we investigate the ability of two different crosslinking chemistries: sodium metaperiodate (NaIO(4)) followed by GLUT (PG) and 1-Ethyl-3-(3 dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) followed by GLUT (ENG) to stabilize GAGs within BHV leaflets and compare resulting leaflet characteristics with that of GLUT-treated tissue. Incubation of fixed leaflets in GAG-degrading enzymes illustrated in vitro resistance of GAGs towards degradation in PG and ENG treated tissue while GLUT fixation alone was not effective in preventing GAG loss from BHV leaflets. Following subdermal implantation, significant amounts of GAGs were retained in leaflets in the ENG group in comparison to GLUT-treated tissue, although GAG loss was evident in all groups. Utilizing GAG-targeted fixation did not alter calcification potential of the leaflets while collagen stability was maintained at levels similar to that observed in conventional GLUT-treated tissue.
Collapse
Affiliation(s)
- Jeremy J Mercuri
- Department of Bioengineering, Cardiovascular Implant Research Laboratory, Clemson University, 401 Rhodes Engineering Research Center, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|