1
|
Furko M. Bioglasses Versus Bioactive Calcium Phosphate Derivatives as Advanced Ceramics in Tissue Engineering: Comparative and Comprehensive Study, Current Trends, and Innovative Solutions. J Funct Biomater 2025; 16:161. [PMID: 40422826 DOI: 10.3390/jfb16050161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025] Open
Abstract
Tissue engineering represents a revolutionary approach to regenerating damaged bones and tissues. The most promising materials for this purpose are calcium phosphate-based bioactive ceramics (CaPs) and bioglasses, due to their excellent biocompatibility, osteoconductivity, and bioactivity. This review aims to provide a comprehensive and comparative analysis of different bioactive calcium phosphate derivatives and bioglasses, highlighting their roles and potential in both bone and soft tissue engineering as well as in drug delivery systems. We explore their applications as composites with natural and synthetic biopolymers, which can enhance their mechanical and bioactive properties. This review critically examines the advantages and limitations of each material, their preparation methods, biological efficacy, biodegradability, and practical applications. By summarizing recent research from scientific literature, this paper offers a detailed analysis of the current state of the art. The novelty of this work lies in its systematic comparison of bioactive ceramics and bioglasses, providing insights into their suitability for specific tissue engineering applications. The expected primary outcomes include a deeper understanding of how each material interacts with biological systems, their suitability for specific applications, and the implications for future research directions.
Collapse
Affiliation(s)
- Monika Furko
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Str. 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
2
|
Jia Z, Zhou X, Liu J, De X, Li Y, Yang Z, Duan H, Wang F, Ge J. Immune enhancement of rhamnolipid/manganese calcium phosphate mineralized nanoparticle: A promising subunit antigen delivery system. Int J Biol Macromol 2024; 282:137239. [PMID: 39491710 DOI: 10.1016/j.ijbiomac.2024.137239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The use of biomimetic mineralization strategy is promising to solve the problem of poor stability and immune effect of subunit antigens. However, non-specifically inducing protein mineralization is still a challenge. we hypothesized that rhamnolipids with both protein and metal binding capacity could be used to develop more functional and biocompatible calcium mineralized nanoparticle (RMCP). The results show that rhamnolipids synergistically enhanced the mineralization of protein with manganese ions and improved 21 % the loading antigens of RMCP compared to manganese calcium phosphate nanoparticles. Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS) showed particle size of RMCP is 260 ± 12.1 nm with spherical morphology. In vitro experiments have shown that RMCP effectively activate immune cells through the cGAS-STING and NLRP3 pathways and demonstrated a higher level of cytokines in RAW264.7 Macrophages. In vivo, RMCP triggered an increased IgG titer with 16.5-fold IgG2a/IgG1 ratio compared to the aluminum adjuvant which improved the recovery status after challenge in mice. We used biological surfactants for the first time to enhance the biomimetic mineralization process of subunit antigen, which provides a new approach for constructing calcium-based biocompatible antigen delivery vectors, helping to develop a new generation of stable, efficient, and safe subunit vaccines.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Jingjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China.
| |
Collapse
|
3
|
Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol 2024; 42:1396-1409. [PMID: 38955569 DOI: 10.1016/j.tibtech.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.
Collapse
Affiliation(s)
- Vishal S Chaudhari
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Priya Kushram
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
4
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
5
|
Gotnayer Lilian L, Nahmias Y, Yazbek Grobman G, Friedlander L, Aranovich D, Yoel U, Vidavsky N. The interplay between crystallinity and the levels of Zn and carbonate in synthetic microcalcifications directs thyroid cell malignancy. J Mater Chem B 2024; 12:4509-4520. [PMID: 38647022 DOI: 10.1039/d3tb02256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.
Collapse
Affiliation(s)
- Lotem Gotnayer Lilian
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Yarden Nahmias
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Gabriel Yazbek Grobman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Lonia Friedlander
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dina Aranovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Uri Yoel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Endocrinology, Soroka University Medical Center, Beer Sheva, Israel
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Ait Said H, Elbaza H, Lahcini M, Barroug A, Noukrati H, Ben Youcef H. Development of calcium phosphate-chitosan composites with improved removal capacity toward tetracycline antibiotic: Adsorption and electrokinetic properties. Int J Biol Macromol 2024; 257:128610. [PMID: 38061531 DOI: 10.1016/j.ijbiomac.2023.128610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Two eco-friendly and highly efficient adsorbents, namely brushite-chitosan (DCPD-CS), and monetite-chitosan (DCPA-CS) composites were synthesized via a simple and low-cost method and used for tetracycline (TTC) removal. The removal behavior of TTC onto the composite particles was studied considering various parameters, including contact time, pollutant concentration, and pH. The maximum TTC adsorption capacity was 138.56 and 112.48 mg/g for the DCPD-CS and DCPA-CS, respectively. Increasing the pH to 11 significantly enhanced the adsorption capacity to 223.84 mg/g for DCPD-CS and 205.92 mg/g for DCPA-CS. The antibiotic adsorption process was well-fitted by the pseudo-second-order kinetic and Langmuir isotherm models. Electrostatic attractions, complexation, and hydrogen bonding are the main mechanisms governing the TTC removal process. Desorption tests demonstrated that the (NH4)2HPO4 solution was the most effective desorbing agent. The developed composites were more efficient than DCPD and DCPA reference samples and could be used as valuable adsorbents of TTC from contaminated wastewater.
Collapse
Affiliation(s)
- Hamid Ait Said
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Hamza Elbaza
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Mohammed Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Allal Barroug
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Cadi Ayyad University, Faculty of Sciences Semlalia, SCIMATOP-PIB, 40000 Marrakech, Morocco
| | - Hassan Noukrati
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Hicham Ben Youcef
- High Throughput Multidisciplinary Research Laboratory (HTMR), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
7
|
Bose S, Sarkar N, Jo Y. Natural medicine delivery from 3D printed bone substitutes. J Control Release 2024; 365:848-875. [PMID: 37734674 PMCID: PMC11147672 DOI: 10.1016/j.jconrel.2023.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Unmet medical needs in treating critical-size bone defects have led to the development of numerous innovative bone tissue engineering implants. Although additive manufacturing allows flexible patient-specific treatments by modifying topological properties with various materials, the development of ideal bone implants that aid new tissue regeneration and reduce post-implantation bone disorders has been limited. Natural biomolecules are gaining the attention of the health industry due to their excellent safety profiles, providing equivalent or superior performances when compared to more expensive growth factors and synthetic drugs. Supplementing additive manufacturing with natural biomolecules enables the design of novel multifunctional bone implants that provide controlled biochemical delivery for bone tissue engineering applications. Controlled release of naturally derived biomolecules from a three-dimensional (3D) printed implant may improve implant-host tissue integration, new bone formation, bone healing, and blood vessel growth. The present review introduces us to the current progress and limitations of 3D printed bone implants with drug delivery capabilities, followed by an in-depth discussion on cutting-edge technologies for incorporating natural medicinal compounds embedded within the 3D printed scaffolds or on implant surfaces, highlighting their applications in several pre- and post-implantation bone-related disorders.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
8
|
Lai YL, Lin CR, Yen CC, Yen SK. Heparin-Loaded Composite Coatings on Porous Stent from Pure Magnesium for Biomedical Applications. J Funct Biomater 2023; 14:519. [PMID: 37888184 PMCID: PMC10607286 DOI: 10.3390/jfb14100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Challenges associated with drug-releasing stents used in percutaneous transluminal coronary angioplasty (PTCA) encompass allergic reactions, prolonged endothelial dysfunction, and delayed stent clotting. Although absorbable stents made from magnesium alloys seem promising, fast in vivo degradation and poor biocompatibility remain major challenges. In this study, zirconia (ZrO2) layers were used as the foundational coat, while calcium phosphate (CaP) served as the surface layer on unalloyed magnesium specimens. Consequently, the corrosion current density was decreased to 3.86, from 13.3 μA/cm2. Moreover, a heparin-controlled release mechanism was created by co-depositing CaP, gelatin (Gel), and heparin (Hep) on the specimens coated with CaP/ZrO2, thereby boosting magnesium's blood compatibility and prolonging the heparin-releasing time. Techniques like X-ray diffractometry (XRD), focused ion beam (FIB) system, toluidine blue testing, UV-visible spectrometry, field emission scanning electron microscopy (FESEM), and surrogate tests for endothelial cell viability were employed to examine the heparin-infused coatings. The drug content rose to 484.19 ± 19.26 μg/cm2 in multi-layered coatings (CaP-Gel-Hep/CaP-Hep/CaP/ZrO2) from 243.56 ± 55.18 μg/cm2 in a single layer (CaP-Hep), with the controlled release spanning beyond 28 days. Also, cellular viability assessments indicated enhanced biocompatibility of the coated samples relative to those without coatings. This suggests the potential of magnesium samples after coating ZrO2 and CaP with Gel as candidates for porous biodegradable stents or even scaffolds in biomedical applications.
Collapse
Affiliation(s)
- Yu-Liang Lai
- Department of Physical Medicine and Rehabilitation, China Medical University Hsinchu Hospital, No. 199, Section 1, Xinglong Road, Hsinchu County 302056, Taiwan
- Department of Physical Therapy and School of Medicine, China Medical University, No. 100, Section 1, Jingmao Road, Beitun District, Taichung City 406040, Taiwan
| | - Cheng-Rui Lin
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung City 40227, Taiwan
| | - Chao-Chun Yen
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung City 40227, Taiwan
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung City 40227, Taiwan
| |
Collapse
|
9
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
10
|
Lukina Y, Safronova T, Smolentsev D, Toshev O. Calcium Phosphate Cements as Carriers of Functional Substances for the Treatment of Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4017. [PMID: 37297151 PMCID: PMC10254876 DOI: 10.3390/ma16114017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Interest in calcium phosphate cements as materials for the restoration and treatment of bone tissue defects is still high. Despite commercialization and use in the clinic, the calcium phosphate cements have great potential for development. Existing approaches to the production of calcium phosphate cements as drugs are analyzed. A description of the pathogenesis of the main diseases of bone tissue (trauma, osteomyelitis, osteoporosis and tumor) and effective common treatment strategies are presented in the review. An analysis of the modern understanding of the complex action of the cement matrix and the additives and drugs distributed in it in relation to the successful treatment of bone defects is given. The mechanisms of biological action of functional substances determine the effectiveness of use in certain clinical cases. An important direction of using calcium phosphate cements as a carrier of functional substances is the volumetric incorporation of anti-inflammatory, antitumor, antiresorptive and osteogenic functional substances. The main functionalization requirement for carrier materials is prolonged elution. Various release factors related to the matrix, functional substances and elution conditions are considered in the work. It is shown that cements are a complex system. Changing one of the many initial parameters in a wide range changes the final characteristics of the matrix and, accordingly, the kinetics. The main approaches to the effective functionalization of calcium phosphate cements are considered in the review.
Collapse
Affiliation(s)
- Yulia Lukina
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Tatiana Safronova
- Department of Chemistry, Lomonosov Moscow State University, Building 3, Leninskie Gory 1, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Dmitriiy Smolentsev
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
| | - Otabek Toshev
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Ou L, Zhang Q, Chang Y, Xia N. Co-Delivery of Methotrexate and Nanohydroxyapatite with Polyethylene Glycol Polymers for Chemotherapy of Osteosarcoma. MICROMACHINES 2023; 14:757. [PMCID: PMC10146394 DOI: 10.3390/mi14040757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/29/2023]
Abstract
Neoadjuvant chemotherapy is an alternative treatment modality for tumors. Methotrexate (MTX) has been often used as a neoadjuvant chemotherapy reagent for osteosarcoma surgery. However, the large dosage, high toxicity, strong drug resistance, and poor improvement of bone erosion restricted the utilization of methotrexate. Here, we developed a targeted drug delivery system using nanosized hydroxyapatite particles (nHA) as the cores. MTX was conjugated to polyethylene glycol (PEG) through the pH-sensitive ester linkage and acted as both the folate receptor-targeting ligand and the anti-cancer drug due to the similarity to the structure of folic acid. Meanwhile, nHA could increase the concentration of calcium ions after being uptake by cells, thus inducing mitochondrial apoptosis and improving the efficacy of medical treatment. In vitro drug release studies of MTX-PEG-nHA in phosphate buffered saline at different pH values (5, 6.4 and 7.4) indicated that the system showed a pH-dependent release feature because of the dissolution of ester bonds and nHA under acidic conditions. Furthermore, the treatment on osteosarcoma cells (143B, MG63, and HOS) by using MTX-PEG-nHA was demonstrated to exhibit higher therapeutic efficacy. Therefore, the developed platform possesses the great potential for osteosarcoma therapy.
Collapse
Affiliation(s)
- Lingbin Ou
- School of Medical Technology, Yongzhou Vocational Technical College, Yongzhou 425100, China
| | - Qiongyu Zhang
- School of Medical Technology, Yongzhou Vocational Technical College, Yongzhou 425100, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
12
|
Idaszek J, Jaroszewicz J, Choińska E, Górecka Ż, Hyc A, Osiecka-Iwan A, Wielunska-Kuś B, Święszkowski W, Moskalewski S. Toward osteomimetic formation of calcium phosphate coatings with carbonated hydroxyapatite. BIOMATERIALS ADVANCES 2023; 149:213403. [PMID: 37075660 DOI: 10.1016/j.bioadv.2023.213403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
Biomimetic production of coatings on various types of scaffolds is based mainly on simulated body fluid precipitation (SBF) of apatites, or, if the HCO3- is present, carbonated apatites. Recently, we proposed formation of calcium phosphates (CaP) precipitates by alkaline phosphatase (ALP) hydrolysing glycerophosphate in presence of calcium ions as an alternative to SBF. Since apatites synthesized in bone by the ALP activity contain carbonate anions, it was tempting to investigate whether the phosphatase method could be advanced into osteomimetic one. Therefore, taking example from the SBF studies, phosphatase incubation medium was enriched with carbonate ions at 4.2 and 27 mM concentration. X-ray diffraction of the precipitates disclosed peaks typical for hydroxyapatite (HAP). FTIR analysis showed that at both concentration of carbonate ions, apatites underwent both B and A substitution, more extensive at higher concentration. Thus, osteomimetic approach produced carbonated hydroxyapatites of the type encountered in bone tissue even at HCO3- concentration as low as 4.2 mM. Composite plates made of poly(ε-caprolactone) and mixture of β-tricalcium phosphate and hydroxyapatite at mass ratio of 1:0.5:0.5, respectively, were covered by CaP coatings, i.e., CaP-0, CaP-4.2, CaP-27, by incubation in phosphatase medium containing 0, 4.2 or 27 mM of NaHCO3, respectively. Pristine or coated PCL50 plates were used to study release of calcium and adsorption/desorption of proteins, or seeded with human bone marrow mesenchymal stem cells (hMSC) for study of cell adhesion, spreading and osteogenic differentiation. Introduction of carbonate into the CaP coatings significantly increased release of Ca2+ in a carbonate concentration-dependent manner; the release was up to 4 times higher, when compared to CaP-0 coating, and reached 0.41 ± 0.01 mM for CaP-27 after first 24 h. Coating CaP-4.2 yielded significantly higher adsorption of bovine serum albumin and cytochrome C than CaP-0. All of the CaP coatings improved significantly hMSC adhesion, however, only CaP-4.2 provided 2 times higher cell number than PCL50 after 2 weeks of culture. Interestingly, ALP activity calculated per cell number was the highest on pristine plates, presumably because hMSC differentiate preferentially into osteoblasts at lower seeding densities. It appears, therefore, that the osteomimetic approach may be useful for production of carbonated hydroxyapatite coatings, but requires further studies and replacing intestinal phosphatase used in this work with one originating from bone.
Collapse
Affiliation(s)
- Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland.
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Emilia Choińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Żaneta Górecka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Barbara Wielunska-Kuś
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw 02-507, Poland
| | - Stanisław Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
13
|
Calcium phosphate bone cements as local drug delivery systems for bone cancer treatment. BIOMATERIALS ADVANCES 2023; 148:213367. [PMID: 36921461 DOI: 10.1016/j.bioadv.2023.213367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Bone cancer is usually a metastatic disease, affecting people of all ages. Its effective therapy requires a targeted drug administration locally at the cancer site so that the surrounding healthy organs and tissues stay unharmed. Upon a thorough literature search, a tremendous number of published articles are reporting on development of calcium phosphate cements (CPCs) for the treatment of a variety of diseases, such as osteoporosis, osteoarthritis, osteomyelitis, and other musculoskeletal disorders. However, just a limited number of research employs CPCs specifically for bone cancer treatment. In this review article, we study the factors influencing the local drug release from CPCs and particularly focus on bone cancer therapy. Finally, we locate the deficiencies in the literature regarding this specific topic and propose which other perspectives should be considered and discussed in future articles.
Collapse
|
14
|
Patra S, Kancharlapalli S, Chakraborty A, Singh K, Kumar C, Guleria A, Rakshit S, Damle A, Chakravarty R, Chakraborty S. Chelator-Free Radiolabeling with Theoretical Insights and Preclinical Evaluation of Citrate-Functionalized Hydroxyapatite Nanospheres for Potential Use as Radionanomedicine. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Sourav Patra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Khajan Singh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Apurav Guleria
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Archana Damle
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai 400012, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
15
|
Kadoya K, Hara ES, Okada M, Jiao YY, Nakano T, Sasaki A, Matsumoto T. Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments. Regen Biomater 2022; 10:rbac088. [PMID: 36683756 PMCID: PMC9845518 DOI: 10.1093/rb/rbac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/19/2023] Open
Abstract
The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites.
Collapse
Affiliation(s)
- Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan,Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yu Yang Jiao
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Osaka University, Osaka 565-0871, Japan
| | - Akira Sasaki
- Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
16
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
17
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
18
|
Shirosaki Y, Tsukatani Y, Okamoto K, Hayakawa S, Osaka A. Preparation and Drug Release Profile of Chitosan-Siloxane Hybrid Capsules Coated with Hydroxyapatite. Pharmaceutics 2022; 14:pharmaceutics14051111. [PMID: 35631697 PMCID: PMC9144734 DOI: 10.3390/pharmaceutics14051111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Chitosan is a cationic polymer that forms polymerized membranes upon reaction with anionic polymers. Chitosan−carboxymethyl cellulose (CMC) capsules are drug delivery carrier candidates whose mechanical strength and permeability must be controlled to achieve sustained release. In this study, the capsules were prepared from chitosan−γ-glycidoxypropyltrimethoxysilane (GPTMS)−CMC. The mechanical stability of the capsules was improved by crosslinking the chitosan with GPTMS. The capsules were then coated with hydroxyapatite (HAp) by alternately soaking them in calcium chloride solution and disodium hydrogen phosphate solution to prevent rapid initial drug release. Cytochrome C (CC), as a model drug, was introduced into the capsules via two routes, impregnation and injection, and then the CC released from the capsules was examined. HAp was found to be deposited on the internal and external surfaces of the capsules. The amount of CC introduced, and the release rate were reduced by the HAp coating. The injection method was found to result in the greatest CC loading.
Collapse
Affiliation(s)
- Yuki Shirosaki
- Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata-ku, Kitakyushu 804-8550, Japan
- Correspondence: ; Tel.: +81-93-884-3302
| | - Yasuyo Tsukatani
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.T.); (K.O.); (A.O.)
| | - Kohei Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.T.); (K.O.); (A.O.)
| | - Satoshi Hayakawa
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
| | - Akiyoshi Osaka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan; (Y.T.); (K.O.); (A.O.)
| |
Collapse
|
19
|
Das A, Dobbidi P, Bhardwaj A, Saxena V, Pandey LM. Microstructural, electrical and biological activity in [Formula: see text] ceramic composites designed for tissue engineering applications. Sci Rep 2021; 11:22304. [PMID: 34785708 PMCID: PMC8595382 DOI: 10.1038/s41598-021-01748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
The article investigates electrically active ceramic composite of [Formula: see text] (HAP) and [Formula: see text] (BST) for biomedical applications. The study is a systematic blend of the materials science aspect of composites with a special focus on the dielectric and biological properties and their relationships. The article emphasized primarily extracting the dielectric constant ([Formula: see text] of the specimens (that lay in the range of 3-65) and related them to microstructural properties like the grain size and at.% of BST. A broad outlook on the importance of [Formula: see text] in determining the suitability of bioceramics for clinical applications is presented. Bioactivity analysis of the specimens led to probing the surface charges (that were negative), and it was found crucial to the growth of dense apatite layers. Furthermore, the cytocompatibility of the specimens displayed cell viability above 100% for Day 1, which increased substantially for Day 3. To reveal other biological properties of the composites, protein adsorption studies using bovine serum albumin (BSA) and fetal bovine serum (FBS) was carried out. Electrostatic interactions govern the adsorption, and the mathematical dependence on surface charges is linear. The protein adsorption is also linearly correlated with the [Formula: see text], intrinsic to the biomaterials. We delve deeper into protein-biomaterials interactions by considering the evolution of the secondary structure of BSA adsorbed into the specimens. Based on the investigations, 20 at.% HAP-80 at.% BST (20H-80B) was established as a suitable composite comprising the desired features of HAP and BST. Such explorations of electrical and biological properties are interesting for modulating the behavior of bioceramic composites. The results project the suitability of 20H-80B for designing electrically active smart scaffolds for the proposed biomedical applications and are expected to incite further clinical trials.
Collapse
Affiliation(s)
- Apurba Das
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Physics, D K College, Mirza, Assam 781125 India
| | - Pamu Dobbidi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Aman Bhardwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Varun Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Lalit M. Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|
20
|
García Domínguez G, Diaz De La Torre S, Chávez Güitrón L, Vergara Hernández E, Reyes Miranda J, Quezada Cruz M, Garrido Hernández A. Effect of the Structural and Morphological Properties of Surfactant-Assisted Hydroxyapatite on Dermal Irritation and Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6522. [PMID: 34772043 PMCID: PMC8585225 DOI: 10.3390/ma14216522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Hydroxyapatite (HAp) nanoparticles with a homogeneous rod morphology were successfully synthesized using the hydrothermal method. The powders were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The antibacterial and dermal irritation analyses of the samples were performed and discussed. The use of cationic and anionic surfactants, namely, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), respectively, at a low concentration (2.5 mol%) modified the length/diameter (L/D) ratio of the HAp rods. Structural characterizations of hydroxyapatite synthesized without surfactant (HA), with 2.5 and 5 mol% of SDS (SDS- and SDS+, respectively), and with 2.5 and 5 mol% of CTAB (CTAB- and CTAB+, respectively) revealed well-crystallized samples in the hexagonal phase. The CTAB- sample presented antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Streptococcus anginosus, Staphylococcus aureus, Micrococcus luteus, and Klebsiella pneumoniae, suggesting that antimicrobial susceptibility was promoted by the bacterial nature and the use of the surfactant. Dermal irritation showed no clinical signs of disease in rabbits during the study, where there was neither erythema nor necrosis at the inoculation sites.
Collapse
Affiliation(s)
- Giovanni García Domínguez
- Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N, Col. Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico; (G.G.D.); (S.D.D.L.T.)
| | - Sebastián Diaz De La Torre
- Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N, Col. Santa Catarina, Azcapotzalco, Ciudad de México 02250, Mexico; (G.G.D.); (S.D.D.L.T.)
| | - Lorena Chávez Güitrón
- Universidad Tecnológica de México—UNITEC MÉXICO–Campus Ecatepec, Ecatepec de Morelos 55107, Estado de México, Mexico;
- Universidad Tecnológica de Tecámac, UTTEC, Carretera Federal México–Pachuca Km 37.5, Col. Sierra Hermosa, Tecámac 55740, Estado de México, Mexico;
| | - Erasto Vergara Hernández
- Instituto Politécnico Nacional, UPIIH, Carretera Pachuca—Actopan Kilómetro 1+500 Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42162, Hidalgo, Mexico;
| | - Joan Reyes Miranda
- Universidad Autónoma Metropolitana, UAM, Av. San Pablo Xalpa 180, Col. Reynosa-Tamaulipas, Azcapotzalco, Ciudad de México 02200, Mexico;
| | - Maribel Quezada Cruz
- Universidad Tecnológica de Tecámac, UTTEC, Carretera Federal México–Pachuca Km 37.5, Col. Sierra Hermosa, Tecámac 55740, Estado de México, Mexico;
| | - Aristeo Garrido Hernández
- Universidad Tecnológica de Tecámac, UTTEC, Carretera Federal México–Pachuca Km 37.5, Col. Sierra Hermosa, Tecámac 55740, Estado de México, Mexico;
| |
Collapse
|
21
|
Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021; 13:pharmaceutics13101642. [PMID: 34683935 PMCID: PMC8537309 DOI: 10.3390/pharmaceutics13101642] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of the ability to determine its physicochemical properties, a conclusion for the correlation with the biological response it is yet to be found. Hence, a special focus on the most desirable properties for an appropriate biological response needs to be addressed. This review provides an overview of the fundamental properties of hydroxyapatite nanoparticles and the characterization of physicochemical properties involved in their biological response and role as a drug delivery system. A summary of the main chemical properties and applications of hydroxyapatite, the advantages of using nanoparticles, and the influence of shape, size, functional group, morphology, and crystalline phase in the biological response is presented. A special emphasis was placed on the analysis of chemical and physical interactions of the nanoparticles and the cargo, which was explained through the use of spectroscopic and physical techniques such as FTIR, Raman, XRD, SEM, DLS, and BET. We discuss the properties tailored for hydroxyapatite nanoparticles for a specific biomolecule based on the compilation of studies performed on proteins, peptides, drugs, and genetic material.
Collapse
|
22
|
Min Y, Xu W, Xiao Y, Xiao J, Shu Z, Li S, Zhang J, Liu Y, Yin Y, Zhang X, Meng J. Biomineralization improves the stability of a Streptococcus pneumoniae protein vaccine at high temperatures. Nanomedicine (Lond) 2021; 16:1747-1761. [PMID: 34264093 DOI: 10.2217/nnm-2021-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Protein vaccines have been the focus of research for vaccine development due to their safety record and facile production. Improving the stability of proteins is of great significance to the application of protein vaccines. Materials & methods: Based on the proteins pneumolysin and DnaJ of Streptococcus pneumoniae, biomineralization was carried out to prepare protein nanoparticles, and their thermal stability was tested both in vivo and in vitro. Results: Mineralized nanoparticles were formed successfully and these calcium phosphate-encapsulated proteins were resistant to proteinase K degradation and were thermally stable at high temperatures. The mineralized proteins retained the immunoreactivity of the original proteins. Conclusion: Mineralization technology is an effective means to stabilize protein vaccines, presenting a safe and economical method for vaccine administration.
Collapse
Affiliation(s)
- Yajun Min
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China.,Department of Obstetrics & Gynecology, Assisted Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yunju Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Sijie Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jinghui Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yusi Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiangping Meng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
23
|
Sheehy EJ, Miller GJ, Amado I, Raftery RM, Chen G, Cortright K, Vazquez AG, O'Brien FJ. Mechanobiology-informed regenerative medicine: Dose-controlled release of placental growth factor from a functionalized collagen-based scaffold promotes angiogenesis and accelerates bone defect healing. J Control Release 2021; 334:96-105. [PMID: 33811984 DOI: 10.1016/j.jconrel.2021.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Leveraging the differential response of genes to mechanical loading may allow for the identification of novel therapeutics and we have recently established placental growth factor (PGF) as a mechanically augmented gene which promotes angiogenesis at higher doses and osteogenesis at lower doses. Herein, we sought to execute a mechanobiology-informed approach to regenerative medicine by designing a functionalized scaffold for the dose-controlled delivery of PGF which we hypothesized would be capable of promoting regeneration of critically-sized bone defects. Alginate microparticles and collagen/hydroxyapatite scaffolds were shown to be effective PGF-delivery platforms, as demonstrated by their capacity to promote angiogenesis in vitro. A PGF release profile consisting of an initial burst release to promote angiogenesis followed by a lower sustained release to promote osteogenesis was achieved by incorporating PGF-loaded microparticles into a collagen/hydroxyapatite scaffold already containing directly incorporated PGF. Although this PGF-functionalized scaffold demonstrated only a modest increase in osteogenic capacity in vitro, robust bone regeneration was observed after implantation into rat calvarial defects, indicating that the dose-dependent effect of PGF can be harnessed as an alternative to multi-drug systems for the delivery of both pro-angiogenic and pro-osteogenic cues. This mechanobiology-informed approach provides a framework for strategies aimed at identifying and evaluating novel scaffold-based systems for regenerative applications.
Collapse
Affiliation(s)
- Eamon J Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gregory J Miller
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Isabel Amado
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kai Cortright
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arlyng Gonzalez Vazquez
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Hara ES, Okada M, Nagaoka N, Nakano T, Matsumoto T. Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:246-255. [PMID: 33573463 PMCID: PMC8892978 DOI: 10.1089/ten.teb.2020.0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bone regeneration was one of the earliest fields to develop in the context of tissue regeneration, and currently, repair of small-sized bone defects has reached a high success rate. Future researches are expected to incorporate more advanced techniques toward achieving rapid bone repair and modulation of the regenerated bone quality. For these purposes, it is important to have a more integrative understanding of the mechanisms of bone formation and maturation from multiple perspectives and to incorporate these new concepts into the development and designing of novel materials and techniques for bone regeneration. This review focuses on the analysis of the earliest stages of bone tissue development from the biology, material science, and engineering perspectives for a more integrative understanding of bone formation and maturation, and for the development of novel biology-based engineering approaches for tissue synthesis in vitro. More specifically, the authors describe the systematic methodology that allowed the understanding of the different nucleation sites in intramembranous and endochondral ossification, the space-making process for mineral formation and growth, as well as the process of apatite crystal cluster growth in vivo in the presence of suppressing biomolecules.
Collapse
Affiliation(s)
- Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
25
|
Dorcemus DL, Kim HS, Nukavarapu SP. Gradient scaffold with spatial growth factor profile for osteochondral interface engineering. Biomed Mater 2020; 16. [PMID: 33291092 DOI: 10.1088/1748-605x/abd1ba] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Osteochondral (OC) matrix design poses a significant engineering challenge due to the complexity involved with bone-cartilage interfaces. To better facilitate the regeneration of OC tissue, we developed and evaluated a biodegradable matrix with uniquely arranged bone and cartilage supporting phases: a poly(lactic-co-glycolic) acid (PLGA) template structure with a porosity gradient along its longitudinal axis uniquely integrated with hyaluronic acid hydrogel. Micro-CT scanning and imaging confirmed the formation of an inverse gradient matrix. Hydroxyapatite was added to the PLGA template which was then plasma-treated to increase hydrophilicity and growth factor affinity. An osteogenic growth factor (bone morphogenetic protein 2; BMP-2) was loaded onto the template scaffold via adsorption, while a chondrogenic growth factor (transforming growth factor beta 1; TGF-β1) was incorporated into the hydrogel phase. Confocal microscopy of the growth factor loaded matrix confirmed the spatial distribution of the two growth factors, with chondrogenic factor confined to the cartilaginous portion and osteogenic factor present throughout the scaffold. We observed spatial differentiation of human mesenchymal stem cells (hMSCs) into cartilage and bone cells in the scaffolds in vitro: cartilaginous regions were marked by increased glycosaminoglycan production, and osteogenesis was seen throughout the graft by alizarin red staining. In a dose-dependent study of BMP-2, hMSC pellet cultures with TGF-β1 and BMP-2 showed synergistic effects on chondrogenesis. These results indicate that development of an inverse gradient matrix can spatially distribute two different growth factors to facilitate chondrogenesis and osteogenesis along different portions of a scaffold, which are key steps needed for formation of an osteochondral interface.
Collapse
Affiliation(s)
- Deborah Leonie Dorcemus
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Hyun Sung Kim
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| | - Syam Prasad Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut, 06269, UNITED STATES
| |
Collapse
|
26
|
Wang N, Yu X, Kong Q, Li Z, Li P, Ren X, Peng B, Deng Z. Nisin-loaded polydopamine/hydroxyapatite composites: Biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Sawamoto K, Álvarez JV, Herreño AM, Otero-Espinar FJ, Couce ML, Alméciga-Díaz CJ, Tomatsu S. Bone-Specific Drug Delivery for Osteoporosis and Rare Skeletal Disorders. Curr Osteoporos Rep 2020; 18:515-525. [PMID: 32845464 PMCID: PMC7541793 DOI: 10.1007/s11914-020-00620-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The skeletal system provides an important role to support body structure and protect organs. The complexity of its architecture and components makes it challenging to deliver the right amount of the drug into bone regions, particularly avascular cartilage lesions. In this review, we describe the recent advance of bone-targeting methods using bisphosphonates, polymeric oligopeptides, and nanoparticles on osteoporosis and rare skeletal diseases. RECENT FINDINGS Hydroxyapatite (HA), a calcium phosphate with the formula Ca10(PO4)6(OH)2, is a primary matrix of bone mineral that includes a high concentration of positively charged calcium ion and is found only in the bone. This unique feature makes HA a general targeting moiety to the entire skeletal system. We have applied bone-targeting strategy using acidic amino acid oligopeptides into lysosomal enzymes, demonstrating the effects of bone-targeting enzyme replacement therapy and gene therapy on bone and cartilage lesions in inherited skeletal disorders. Virus or no-virus gene therapy using techniques of engineered capsid or nanomedicine has been studied preclinically for skeletal diseases. Efficient drug delivery into bone lesions remains an unmet challenge in clinical practice. Bone-targeting therapies based on gene transfer can be potential as new candidates for skeletal diseases.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - J Víctor Álvarez
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria L Couce
- Department of CC Foren. An. Pat, Gin. and Obst. and Paed. Neonatology Service, Metabolic Unit, University Clinic Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE, 19899-0269, USA.
| |
Collapse
|
28
|
Samadian H, Mobasheri H, Azami M, Faridi-Majidi R. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies. Sci Rep 2020; 10:14853. [PMID: 32908157 PMCID: PMC7481198 DOI: 10.1038/s41598-020-71455-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, we aimed to fabricate osteoconductive electrospun carbon nanofibers (CNFs) decorated with hydroxyapatite (HA) crystal to be used as the bone tissue engineering scaffold in the animal model. CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers via heat treatment and the carbonized nanofibers were mineralized by a biomimetic approach. The growth of HA crystals was confirmed using XRD, FTIR, and EDAX analysis techniques. The mineralization process turned the hydrophobic CNFs (WCA: 133.5° ± 0.6°) to hydrophilic CNFs/HA nanocomposite (WCA 15.3° ± 1°). The in vitro assessments revealed that the fabricated 24M-CNFs nanocomposite was biocompatible. The osteoconductive characteristics of CNFs/HA nanocomposite promoted in vivo bone formation in the rat’s femur defect site, significantly, observed by computed tomography (CT) scan images and histological evaluation. Moreover, the histomorphometric analysis showed the highest new bone formation (61.3 ± 4.2%) in the M-CNFs treated group, which was significantly higher than the negative control group (the defect without treatment) (< 0.05). To sum up, the results implied that the fabricated CNFs/HA nanocomposite could be considered as the promising bone healing material.
Collapse
|
29
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
30
|
Matrali SSH, Ghag AK. Feedback-Controlled Release of Alendronate from Composite Microparticles. J Funct Biomater 2020; 11:jfb11030046. [PMID: 32630317 PMCID: PMC7564771 DOI: 10.3390/jfb11030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Extended bone fractures or fractures coexisting with bone disorders can lead to non-unions where surgical intervention is required. Composite drug delivery systems are being used increasingly more in order to treat such defects locally. Alendronate (ALD), a bisphosphonate extensively used in clinical practice to treat conditions, such as osteoporosis, has been shown to assist bone fracture healing through its antiresorptive capacity. This study reports the development of a polymeric composite system for the in situ delivery of ALD, which possesses enhanced encapsulation efficiency (EE%) and demonstrates controlled release over a 70-day period. ALD and calcium phosphate (CaP) were incorporated within poly (lactic-co-glycolic acid) (PLGA) microspheres, giving rise to a 70% increase in EE% compared to a control system. Finally, a preliminary toxicological evaluation demonstrated a positive effect of the system on pre-osteoblastic cells over 72 h.
Collapse
|
31
|
Banerjee S, Bagchi B, Pal K, Bhandary S, Kool A, Hoque NA, Biswas P, Thakur P, Das K, Karmakar P, Das S. Essential oil impregnated luminescent hydroxyapatite: Antibacterial and cytotoxicity studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111190. [PMID: 32806309 DOI: 10.1016/j.msec.2020.111190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
In this study, porous fluorescent nanocrystalline erbium doped hydroxyapatite (eHAp) was synthesized via hydrothermal assisted co-precipitation method. Eucalyptus oil (EU), frankincense oil (FO), Tea tree oil (TTO), wintergreen oil (WO) were successfully absorbed into eHAp pellet by vacuum filtration technique using Buckner funnel. Phase crystallization, fluorescence property and microstructure of eHAp were confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Photoluminiscence spectroscopy (PL) and Field emission scanning electron microscopy (FESEM). Strong antimicrobial activity was observed for EU, TTO and WO on both E. coli and S. aureus mediated by cell membrane damage and leakage of cytoplasmic components. The oil absorbed eHAp nanocomposites were found to be moderately biocompatible with normal WI-38 cells up to MIC concentration various time scale. The nanocomposites showed significant cytotoxic activity on breast cancer cell line MDA-MB 468 and the fluorescent property of the eHAp was utilized to visualize internalization of particles in the cells. The release profile of the oils from the eHAp matrix showed pH dependent release indicated that the porous matrix can be used as a suitable carrier for modulated and sustained release of bioactive components. Thus, given the multifunctional attributes these natural essential oil-based nanocomposites show great promise as an alternative to conventional therapeutic treatments.
Collapse
Affiliation(s)
| | - Biswajoy Bagchi
- Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, United Kingdom.
| | - Kunal Pal
- Life Science &Biotechnology Department, Jadavpur University, Kolkata 700032, India
| | - Suman Bhandary
- Department of Biotechnology, Brainware University, Kolkata 700125, India
| | - Arpan Kool
- Physics Department, Jadavpur University, Kolkata 700032, India; Department of Physics, Vidyanagar College, West Bengal 743503, India
| | - Nur Amin Hoque
- Physics Department, Jadavpur University, Kolkata 700032, India
| | | | - Pradip Thakur
- Department of Physics, Netaji Nagar College for Women, Kolkata 700092, India
| | - Kaustuv Das
- Physics Department, Jadavpur University, Kolkata 700032, India
| | - Parimal Karmakar
- Life Science &Biotechnology Department, Jadavpur University, Kolkata 700032, India
| | - Sukhen Das
- Physics Department, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
32
|
Huang YM, Huang CC, Tsai PI, Yang KY, Huang SI, Shen HH, Lai HJ, Huang SW, Chen SY, Lin FH, Chen CY. Three-Dimensional Printed Porous Titanium Screw with Bioactive Surface Modification for Bone-Tendon Healing: A Rabbit Animal Model. Int J Mol Sci 2020; 21:ijms21103628. [PMID: 32455543 PMCID: PMC7279243 DOI: 10.3390/ijms21103628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
The interference screw fixation method is used to secure a graft in the tibial tunnel during anterior cruciate ligament reconstruction surgery. However, several complications have been reported, such as biodegradable screw breakage, inflammatory or foreign body reaction, tunnel enlargement, and delayed graft healing. Using additive manufacturing (AM) technology, we developed a titanium alloy (Ti6Al4V) interference screw with chemically calcium phosphate surface modification technology to improve bone integration in the tibial tunnel. After chemical and heat treatment, the titanium screw formed a dense apatite layer on the metal surface in simulated body fluid. Twenty-seven New Zealand white rabbits were randomly divided into control and additive manufactured (AMD) screw groups. The long digital extensor tendon was detached and translated into a tibial plateau tunnel (diameter: 2.0 mm) and transfixed with an interference screw while the paw was in dorsiflexion. Biomechanical analyses, histological analyses, and an imaging study were performed at 1, 3, and 6 months. The biomechanical test showed that the ultimate pull-out load failure was significantly higher in the AMD screw group in all tested periods. Micro-computed tomography analyses revealed early woven bone formation in the AMD screw group at 1 and 3 months. In conclusion, AMD screws with bioactive surface modification improved bone ingrowth and enhanced biomechanical performance in a rabbit model.
Collapse
Affiliation(s)
- Yu-Min Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-M.H.); (S.-W.H.); (F.-H.L.)
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei 100, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Chih-Chieh Huang
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan; (C.-C.H.); (S.-Y.C.)
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (P.-IT.); (K.-Y.Y.); (S.-IH.); (H.-H.S.)
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (P.-IT.); (K.-Y.Y.); (S.-IH.); (H.-H.S.)
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (P.-IT.); (K.-Y.Y.); (S.-IH.); (H.-H.S.)
| | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (P.-IT.); (K.-Y.Y.); (S.-IH.); (H.-H.S.)
| | - Hong-Jen Lai
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan;
| | - Shu-Wei Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-M.H.); (S.-W.H.); (F.-H.L.)
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan; (C.-C.H.); (S.-Y.C.)
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-M.H.); (S.-W.H.); (F.-H.L.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 360, Taiwan
| | - Chih-Yu Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei 100, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-970-747767
| |
Collapse
|
33
|
Qiu Y, Xu X, Guo W, Zhao Y, Su J, Chen J. Mesoporous Hydroxyapatite Nanoparticles Mediate the Release and Bioactivity of BMP-2 for Enhanced Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2323-2335. [PMID: 33455303 DOI: 10.1021/acsbiomaterials.9b01954] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient delivery of bone morphogenetic protein-2 (BMP-2) with desirable bioactivity is still a great challenge in the field of bone regeneration. In this study, a silk fibroin/chitosan scaffold incorporated with BMP-2-loaded mesoporous hydroxyapatite nanoparticles (mHANPs) was prepared (SCH-L). BMP-2 was preloaded onto mHANPs with a high surface area before mixing with a silk fibroin/chitosan composite. Bare (without BMP-2) silk fibroin/chitosan/mHANP (SCH) scaffolds and SCH scaffolds with directly absorbed BMP-2 (SCH-D) were investigated in parallel for comparison. In vitro release kinetics indicated that BMP-2 released from the SCH-L scaffold showed a significantly lower initial burst release, followed by a more sustained release over time than the SCH-D scaffold. In vitro cell viability, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and the in vivo osteogenic effect of scaffolds in a rat calvarial defect were evaluated. The results showed that compared with bare SCH and SCH-D scaffolds, the SCH-L scaffold significantly promoted the osteogenic differentiation of BMSCs in vitro and induced more pronounced bone formation in vivo. Further studies demonstrated that the mHANP-mediated satisfactory conformational change and sustained release benefited the protection of the released BMP-2 bioactivity, as confirmed by alkaline phosphatase (ALP) activity and a mineralization deposition assay. More importantly, the interaction of BMP-2/mHANPs enhanced the binding ability of BMP-2 to cellular receptors, thereby maintaining its biological activity in osteogenic differentiation and osteoinductivity well, which contributed to the markedly promoted in vitro and in vivo osteogenic efficacy of the SCH-L scaffold. Taken together, these results provide strong evidence that mHANPs represent an attractive carrier for binding BMP-2 to scaffolds. The SCH-L scaffold shows promising potential for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Xiaodong Xu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Weizhong Guo
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Yong Zhao
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.,Research Center of Dental and Craniofacial Implants, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350004, China
| | - Jiehua Su
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China
| |
Collapse
|
34
|
Zhou R, Li Y, Xiao D, Li T, Zhang T, Fu W, Lin Y. Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging. J Mater Chem B 2020; 8:2107-2114. [PMID: 32068216 DOI: 10.1039/c9tb02787d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronan-directed fabrication of Eu/Ba co-doped hydroxyapatite nanocrystals with recognition capability for dual-modal bioimaging.
Collapse
Affiliation(s)
- Ronghui Zhou
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yanjing Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Ting Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Tao Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Wei Fu
- Department of Neurosurgery
- West China Hospital of Sichuan University
- Chengdu 610000
- P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
35
|
Wang R, Liu W, Wang Q, Li G, Wan B, Sun Y, Niu X, Chen D, Tian W. Anti-osteosarcoma effect of hydroxyapatite nanoparticles both in vitro and in vivo by downregulating the FAK/PI3K/Akt signaling pathway. Biomater Sci 2020; 8:4426-4437. [DOI: 10.1039/d0bm00898b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schematic representing the anti-cancer effects of nano-HAPs both in vitro and in vivo by downregulating the FAK/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Renxian Wang
- Laboratory of Bone Tissue Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
| | - WeiFeng Liu
- Depatment of Orthopaedic Oncology Surgery
- Beijing JiShuiTan Hospital
- Peking Universit
- Beijing 100035
- China
| | - Qian Wang
- Laboratory of Bone Tissue Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
| | - Guangping Li
- Laboratory of Bone Tissue Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
| | - Ben Wan
- Laboratory of Bone Tissue Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
| | - Yuyang Sun
- Laboratory of Bone Tissue Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
| | - Xiaohui Niu
- Depatment of Orthopaedic Oncology Surgery
- Beijing JiShuiTan Hospital
- Peking Universit
- Beijing 100035
- China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing Research Institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
| | - Wei Tian
- Department of Spine Surgery
- Beijing JiShuiTan Hospital
- Peking University
- Beijing 100035
- China
| |
Collapse
|
36
|
Ren X, Yi Z, Sun Z, Ma X, Chen G, Chen Z, Li X. Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomater Sci 2020; 8:5390-5401. [DOI: 10.1039/d0bm01320j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nuclear-targeted, size-changeable polysaccharide hybrid hydroxyapatite nanoparticles were prepared for the delivery of doxorubicin for cancer therapy, showing low toxicity to healthy tissue cells but strong killing effect on tumor cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Department of Biomedical Engineering
| | - Zeng Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | | | - Xudong Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
37
|
Jaiswal S, Dubey A, Haldar S, Roy P, Lahiri D. Differentialin vitrodegradation and protein adhesion behaviour of spark plasma sintering fabricated magnesium-based temporary orthopaedic implant in serum and simulated body fluid. Biomed Mater 2019; 15:015006. [DOI: 10.1088/1748-605x/ab4f8b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Liu M, Shu M, Xu W, Liu X, Hou Z, Xing B, Lin J. BMP-2-Loaded HAp:Ln 3+ (Ln = Yb, Er, Gd) Nanorods with Dual-Mode Imaging for Efficient MC3t3-E1 Cell Differentiation Regulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15287-15294. [PMID: 31674789 DOI: 10.1021/acs.langmuir.9b02824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective bone tissue reconstitution improves the treatment success rate of dental implantation and preserves natural teeth during periodontal tissue repair. Hydroxyapatite (HAp) has received much attention in bone remodeling field because its mineralized structure is similar to that of the natural bone tissue. For this reason, it has been used as a carrier for growth factors. Although HAp possesses outstanding biomedical properties, its capacity of loading and releasing bone growth factors and promoting osteogenesis is not well understood. In this study, Ln3+ (Ln = Yb3+, Er3+, Gd3+)-doped HAp (HAp:Ln3+) nanorods were synthesized by one-step hydrothermal method. To improve its biocompatibility and surface properties, bone morphogenetic protein-2 (BMP-2) was loaded onto the surface of HAp:Ln3+ nanorods. The results showed that BMP-2 incorporation promoted bone formation and enhanced the expression of early bone-related gene and protein (RunX2, SP7, OPN). In addition, Yb3+- and Er3+-doped HAp nanorods were examined by upconversion luminescence with 980 nm near-infrared laser irradiation to monitor the delivery position of BMP-2 protein. Furthermore, due to the positive magnetism correlated with the concentration of Gd3+, HAp:Ln3+ with enhanced contrast brightening can be deemed as T1 MIR contrast agents. These findings indicate that HAp doped with rare-earth ions and loaded with BMP-2 has the potential to promote bone tissue repair and execute dual-mode imaging.
Collapse
Affiliation(s)
- Min Liu
- Department of Periodontology, Stomatological Hospital , Jilin University , Changchun 130021 , P. R. China
| | - Mengmeng Shu
- Department of Periodontology, Stomatological Hospital , Jilin University , Changchun 130021 , P. R. China
| | - Wenzhou Xu
- Department of Periodontology, Stomatological Hospital , Jilin University , Changchun 130021 , P. R. China
| | - Xuxu Liu
- Department of Periodontology, Stomatological Hospital , Jilin University , Changchun 130021 , P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Protein Modification and Degradation Key Lab of Guangzhou and Guangdong, School of Basic Medical Sciences , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Bengang Xing
- School of Physical and Mathematical Sciences Nanyang Technological University , Singapore 637371 , Singapore
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
39
|
Levingstone TJ, Herbaj S, Dunne NJ. Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1570. [PMID: 31698700 PMCID: PMC6915504 DOI: 10.3390/nano9111570] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients' quality of life and the costs on the health systems. This impended need has led the research community's efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors' loading and release, and their application in bone tissue engineering.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
40
|
IMURA K, HASHIMOTO Y, OKADA M, YOSHIKAWA K, YAMAMOTO K. Application of hydroxyapatite nanoparticle-assembled powder using basic fibroblast growth factor as a pulp-capping agent. Dent Mater J 2019; 38:713-720. [DOI: 10.4012/dmj.2018-198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kazuki IMURA
- Department of Operative Dentistry, Osaka Dental University
| | | | - Masahiro OKADA
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | | | | |
Collapse
|
41
|
Lai YL, Cheng YM, Yen SK. Doxorubicin - chitosan - hydroxyapatite composite coatings on titanium alloy for localized cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109953. [PMID: 31500063 DOI: 10.1016/j.msec.2019.109953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
Abstract
The doxorubicin-chitosan composite is deposited electrochemically on the Ti alloy post hydroxyapatite coated for reducing the side effects by sustaining release of drugs localized near the tumor to achieve the inhibition or apoptosis of cancer. The possibility of danger in case of exfoliation of medicine composite and HA agglomerates from the alloy surface due to the dynamic erosion of blood flow could be overcome with the additional surface modification by the electrochemical deposition way. The cathodic polarization tests coupled with electrochemical reactions were analyzed to speculate the deposition mechanism of doxorubicin, spectrophotometer (UV visible spectrometer) to measure doxorubicin loading and release, field emission scanning electron microscope (FESEM) to observe surface morphology, Fourier transform infrared (FTIR) spectroscopy for chemical bonding of composites, and X-ray diffractometry (XRD) for crystal structure. The cell culture was carried out to analyze the drug efficacy on cell viability. It is concluded that doxorubicin-chitosan composites can be successfully deposited on the uncoated and hydroxyapatite-coated titanium specimen alloy by electrochemical methods. Both have revealed the sustaining drug release for a month and the latter with high porosity can enhance the drug loading to 37.46 μg/cm2, revealing this electrochemical method is a practical way to load doxorubicin cancer drug releasing locally to significantly reduce the amount of medication needed for future clinical applications.
Collapse
Affiliation(s)
- Yu-Liang Lai
- Department of Physical Medicine and Rehabilitation, China Medical University Hsinchu Hospital, No. 199, Section 1, Xinglong Road, Zhubei City, Hsinchu County 302, Taiwan; Department of Physical Therapy and School of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City 404, Taiwan
| | - Yu-Mei Cheng
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan.
| |
Collapse
|
42
|
Hakobyan S, Roohpour N, Gautrot JE. Modes of adsorption of polyelectrolytes to model substrates of hydroxyapatite. J Colloid Interface Sci 2019; 543:237-246. [DOI: 10.1016/j.jcis.2019.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
|
43
|
Kojima S, Nagata F, Inagaki M, Kugimiya S, Kato K. Avidin-adsorbed peptide–calcium phosphate composites exhibiting high biotin-binding activity. NEW J CHEM 2019. [DOI: 10.1039/c8nj05024d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized peptide–HAp exhibits a high adsorption capacity for avidin and a good binding ability for biotin molecules.
Collapse
Affiliation(s)
- Suzuka Kojima
- Materials Chemistry Course
- Graduate School of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| | - Shinichi Kugimiya
- Materials Chemistry Course
- Graduate School of Engineering
- Aichi Institute of Technology
- Toyota
- Japan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology
- Nagoya
- Japan
| |
Collapse
|
44
|
Trofimov AD, Ivanova AA, Zyuzin MV, Timin AS. Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives. Pharmaceutics 2018; 10:E167. [PMID: 30257514 PMCID: PMC6321143 DOI: 10.3390/pharmaceutics10040167] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Porous inorganic nanostructured materials are widely used nowadays as drug delivery carriers due to their adventurous features: suitable architecture, large surface area and stability in the biological fluids. Among the different types of inorganic porous materials, silica, calcium carbonate, and calcium phosphate have received significant attention in the last decade. The use of porous inorganic materials as drug carriers for cancer therapy, gene delivery etc. has the potential to improve the life expectancy of the patients affected by the disease. The main goal of this review is to provide general information on the current state of the art of synthesis of the inorganic porous particles based on silica, calcium carbonate and calcium phosphate. Special focus is dedicated to the loading capacity, controllable release of drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic field, and ultrasound). Moreover, the diverse compounds to deliver with silica, calcium carbonate and calcium phosphate particles, ranging from the commercial drugs to genetic materials are also discussed.
Collapse
Affiliation(s)
- Alexey D Trofimov
- Department of Nanophotonics and Metamaterials, Saint Petersburg National Research University of Information Technologies, ITMO University, 197101 St. Petersburg, Russia.
| | - Anna A Ivanova
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
| | - Mikhail V Zyuzin
- Department of Nanophotonics and Metamaterials, Saint Petersburg National Research University of Information Technologies, ITMO University, 197101 St. Petersburg, Russia.
| | - Alexander S Timin
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia.
- Department of Micro- and Nano-Encapsulation, First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str. 6/8, 197022 Saint-Petersburg, Russia.
| |
Collapse
|
45
|
Synthesis and characterization of nanocrystalline composites containing calcium hydroxyapatite and glycine. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Hara ES, Okada M, Nagaoka N, Hattori T, Kuboki T, Nakano T, Matsumoto T. Bioinspired Mineralization Using Chondrocyte Membrane Nanofragments. ACS Biomater Sci Eng 2018; 4:617-625. [DOI: 10.1021/acsbiomaterials.7b00962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | | | - Takayoshi Nakano
- Division
of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
47
|
Gonzalez-Fernandez T, Tierney EG, Cunniffe GM, O'Brien FJ, Kelly DJ. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering. Tissue Eng Part A 2017; 22:776-87. [PMID: 27079852 DOI: 10.1089/ten.tea.2015.0576] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Incorporating therapeutic genes into three-dimensional biomaterials is a promising strategy for enhancing tissue regeneration. Alginate hydrogels have been extensively investigated for cartilage and bone tissue engineering, including as carriers of transfected cells to sites of injury, making them an ideal gene delivery platform for cartilage and osteochondral tissue engineering. The objective of this study was to develop gene-activated alginate hydrogels capable of supporting nanohydroxyapatite (nHA)-mediated nonviral gene transfer to control the phenotype of mesenchymal stem cells (MSCs) for either cartilage or endochondral bone tissue engineering. To produce these gene-activated constructs, MSCs and nHA complexed with plasmid DNA (pDNA) encoding for transforming growth factor-beta 3 (pTGF-β3), bone morphogenetic protein 2 (pBMP2), or a combination of both (pTGF-β3-pBMP2) were encapsulated into alginate hydrogels. Initial analysis using reporter genes showed effective gene delivery and sustained overexpression of the transgenes were achieved. Confocal microscopy demonstrated that complexing the plasmid with nHA before hydrogel encapsulation led to transport of the plasmid into the nucleus of MSCs, which did not happen with naked pDNA. Gene delivery of TGF-β3 and BMP2 and subsequent cell-mediated expression of these therapeutic genes resulted in a significant increase in sulfated glycosaminoglycan and collagen production, particularly in the pTGF-β3-pBMP2 codelivery group in comparison to the delivery of either pTGF-β3 or pBMP2 in isolation. In addition, stronger staining for collagen type II deposition was observed in the pTGF-β3-pBMP2 codelivery group. In contrast, greater levels of calcium deposition were observed in the pTGF-β3- and pBMP2-only groups compared to codelivery, with a strong staining for collagen type X deposition, suggesting these constructs were supporting MSC hypertrophy and progression along an endochondral pathway. Together, these results suggest that the developed gene-activated alginate hydrogels were able to support transfection of encapsulated MSCs and directed their phenotype toward either a chondrogenic or an osteogenic phenotype depending on whether TGF-β3 and BMP2 were delivered in combination or isolation.
Collapse
Affiliation(s)
- Tomas Gonzalez-Fernandez
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Erica G Tierney
- 4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Grainne M Cunniffe
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland
| | - Fergal J O'Brien
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| | - Daniel J Kelly
- 1 Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute , Trinity College Dublin, Dublin, Ireland .,2 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,4 Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
48
|
Yu J, Xia H, Teramoto A, Ni QQ. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds. J Biomed Mater Res A 2017; 106:244-254. [DOI: 10.1002/jbm.a.36214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Juhong Yu
- Interdisciplinary Graduate School of Science and Technology; Shinshu University; Ueda Nagano 386-8576 Japan
| | - Hong Xia
- Department of Mechanical Engineering & Robotics; Shinshu University; Ueda Nagano 386-8576 Japan
| | - Akira Teramoto
- Department of Functional Polymer Science, Faculty of Textile Science and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
| | - Qing-Qing Ni
- Department of Mechanical Engineering & Robotics; Shinshu University; Ueda Nagano 386-8576 Japan
- College of Textile and Garments; Anhui Polytechnic University; Wuhu Anhui 241000 China
| |
Collapse
|
49
|
Bootdee K, Grady BP, Nithitanakul M. Magnetite/poly(D,L-lactide-co-glycolide) and hydroxyapatite/poly(D,L-lactide-co-glycolide) prepared by w/o/w emulsion technique for drug carrier: physical characteristic of composite nanoparticles. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins. Colloids Surf B Biointerfaces 2017; 157:223-232. [DOI: 10.1016/j.colsurfb.2017.05.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 12/27/2022]
|