1
|
Laurent E, Maric M. Organic-Inorganic Hybrid Materials from Vegetable Oils. Macromol Rapid Commun 2024; 45:e2400408. [PMID: 39412784 PMCID: PMC11628362 DOI: 10.1002/marc.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Indexed: 12/11/2024]
Abstract
The production of materials based on fossil resources is yielding more sustainable and ecologically beneficial methods. Vegetable oils (VO) are one example of base materials whose derivatives rival the properties of their petro-based counterparts. Gaps exist however and one way to fill them is by employing sol-gel processes to synthesize organic-inorganic hybrid materials, often derived from silane/siloxane compounds. Creating Si─O─Si inorganic networks in the organic VO matrix permits the attainment of necessary strength, among other property enhancements. Consequently, many efforts have been directed to optimally achieve organic-inorganic hybrid materials with VOs. However, compatibilization is challenging, and desirable conditions for matching the inorganic filler in the organic matrix remain a key stumbling block toward wider application. Therefore, this review aims to detail recent progress on these new hybrids, focusing on the main strategies to polymerize and functionalize the raw VO, followed by routes highlighting the addition of the inorganic fillers to obtain desirable composites.
Collapse
Affiliation(s)
- Eline Laurent
- Department of Chemical EngineeringMcGill UniversityMontrealQuebecH3A 0C5Canada
| | - Milan Maric
- Department of Chemical EngineeringMcGill UniversityMontrealQuebecH3A 0C5Canada
| |
Collapse
|
2
|
Choobineh S, Borjian Fard M, Soori R, Mazaheri Z. Telocytes response to cardiac growth induced by resistance exercise training and endurance exercise training in adult male rats. J Physiol Sci 2023; 73:12. [PMID: 37301825 PMCID: PMC10716977 DOI: 10.1186/s12576-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Telocytes are interstitial cells found in different tissues, including cardiac stem cell niches. The purpose of this study was to investigate the response of the telocytes to the cardiac growth that occurs in response to resistance and endurance exercise trainings using rats distributed into control, endurance, and resistance training groups. Results revealed that the ratio of heart weight to body weight, cardiomycyte number, cardiomyocyte area, thickness of the left ventricular wall were significantly higher in the training groups compared to the control group. We observed increment in the cardiomyocytes surface area and thickness of the left ventricular wall in the resistance-training group than endurance-training group. We conclude that both resistance and endurance exercise trainings will lead to an increased number of cardiac telocytes, consequently, promote activity of the cardiac stem cells, and results in physiological cardiac growth, and this response does not seem to depend on the type of exercise.
Collapse
Affiliation(s)
- Siroos Choobineh
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Mahboobeh Borjian Fard
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
3
|
Motameni A, Çardaklı İS, Gürbüz R, Alshemary AZ, Razavi M, Farukoğlu ÖC. Bioglass-polymer composite scaffolds for bone tissue regeneration: a review of current trends. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2186864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ali Motameni
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
| | - İsmail Seçkin Çardaklı
- Department of Metallurgical and Materials Engineering, Atatürk University, Erzurum, Turkey
| | - Rıza Gürbüz
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
| | - Ammar Z. Alshemary
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Mehdi Razavi
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ömer Can Farukoğlu
- Department of Mechanical Engineering, Çankaya University, Ankara, Turkey
- Department of Manufacturing Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Rosellini E, Cascone MG. Biomimetic Strategies to Develop Bioactive Scaffolds for Myocardial Tissue Engineering. Open Biomed Eng J 2022. [DOI: 10.2174/18741207-v16-e2205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this paper is to provide an overview of the results of the research activity carried out in our laboratories, over the last 10 years, in relation to the development of strategies for the production of biomimetic and bioactive scaffolds for myocardial tissue engineering. Biomimetic and bioactive polymeric scaffolds for cardiac regeneration were designed and manufactured in our laboratories and their morphological, physicochemical, mechanical and biological properties were investigated by different techniques, such as scanning electron microscopy, infrared chemical imaging, swelling test, in vitro degradation assessment, dynamic mechanical analysis, in vitro and in vivo biological tests. Biomimetic scaffolds, able to favor tissue regeneration by mimicking nature, were engineered by different strategies, comprising: (i) the imitation of the composition and interactions among components of the natural extracellular matrix (ECM), by mixing of proteins and polysaccharides; (ii) the material surface modification, using both traditional and innovative techniques, such as molecular imprinting; (iii) the incorporation and release of specific active agents and (iv) the production of scaffolds with a microarchitecture similar to that of native ECM. All the developed strategies were found to be effective in creating materials able to influence cellular behavior and therefore to favor the process of new tissue formation. In particular, the approach based on the combination of different strategies aimed at creating a system capable of communicating with the cells and promoting specific cellular responses, as the ECM does, has appeared particularly promising, in view to favor the formation of a tissue equivalent to the cardiac one.
Collapse
|
5
|
Xie J, Yao Y, Wang S, Fan L, Ding J, Gao Y, Li S, Shen L, Zhu Y, Gao C. Alleviating Oxidative Injury of Myocardial Infarction by a Fibrous Polyurethane Patch with Condensed ROS-Scavenging Backbone Units. Adv Healthc Mater 2022; 11:e2101855. [PMID: 34811967 DOI: 10.1002/adhm.202101855] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Excessive reactive oxygen species (ROS) generated after myocardial infarction (MI) result in the oxidative injury in myocardium. Implantation of antioxidant biomaterials, without the use of any type of drugs, is very appealing for clinical translation, leading to the great demand of novel biomaterials with high efficiency of ROS elimination. In this study, a segmented polyurethane (PFTU) with a high density of ROS-scavenging backbone units is synthesized by the reaction of poly(thioketal) dithiol (PTK) and poly(propylene fumarate) diol (PPF) (soft segments), thioketal diamine (chain extender), and 1,6-hexamethylene diisocyanate (HDI). Its chemical structure is verified by gel permeation chromatography (GPC), 1 H nuclear magnetic resonance (1 H NMR) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The electrospun composite PFTU/gelatin (PFTU/Gt) fibrous patches show good antioxidation capacity and ROS-responsive degradation in vitro. Implantation of the PFTU/gelatin patches on the heart tissue surface in MI rats consistently decreases the ROS level, membrane peroxidation, and cell apoptosis at the earlier stage, which are not observed in the non-ROS-responsive polyurethane patch. Inflammation and fibrosis are also reduced in the PFTU/gelatin-treated hearts, resulting in the reduced left ventricular remodeling and better cardiac functions postimplantation for 28 d.
Collapse
Affiliation(s)
- Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Linge Fan
- College of Life Sciences Institute of Genetics and Regenerative Biology Zhejiang University Hangzhou Zhejiang 310058 China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yun Gao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310000 China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| |
Collapse
|
6
|
Ma Z, Sun J, Dong X, Gan D, Peng W, Li Y, Qian W, Liu P, Shen J. Zwitterionic/active ester block polymers as multifunctional coating for polyurethane-based substrates. J Mater Chem B 2022; 10:3687-3695. [DOI: 10.1039/d2tb00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial associated infection, blood coagulation, and tissue adhesion are severe issues associated with biomedical implants & devices in clinic applications. Here, we report a general strategy to simultaneously tackle these...
Collapse
|
7
|
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater 2021; 6:2412-2438. [PMID: 33553825 PMCID: PMC7847813 DOI: 10.1016/j.bioactmat.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and technologies point to new challenges and development. Current challenges involve the demand for multifunctional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem cells due to its high proliferative and differentiation potential. This review summarized a variety of recently reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for scaffolds improvement.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Marta J. Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel·lí Domingo s/n, Tarragona, 43007, Spain
| |
Collapse
|
8
|
Chen Y, Long X, Lin W, Du B, Yin H, Lan W, Zhao D, Li Z, Li J, Luo F, Tan H. Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J Mater Chem B 2021; 9:322-335. [DOI: 10.1039/d0tb02347g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface were prepared for nerve tissue engineering application.
Collapse
|
9
|
Navas-Gómez K, Valero MF. Why Polyurethanes Have Been Used in the Manufacture and Design of Cardiovascular Devices: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3250. [PMID: 32707852 PMCID: PMC7435973 DOI: 10.3390/ma13153250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022]
Abstract
We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to ascertain why polyurethanes (PUs) have been used in the manufacture and design of cardiovascular devices. A complete database search was performed with PubMed, Scopus, and Web of Science as the information sources. The search period ranged from 1 January 2005 to 31 December 2019. We recovered 1552 articles in the first stage. After the duplicate selection and extraction procedures, a total of 21 papers were included in the analysis. We concluded that polyurethanes are being applied in medical devices because they have the capability to tolerate contractile forces that originate during the cardiac cycle without undergoing plastic deformation or failure, and the capability to imitate the behaviors of different tissues. Studies have reported that polyurethanes cause severe problems when applied in blood-contacting devices that are implanted for long periods. However, the chemical compositions and surface characteristics of polyurethanes can be modified to improve their mechanical properties, blood compatibility, and endothelial cell adhesion, and to reduce their protein adhesion. These modifications enable the use of polyurethanes in the manufacture and design of cardiovascular devices.
Collapse
Affiliation(s)
| | - Manuel F. Valero
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
10
|
Wang H, Christiansen DE, Mehraeen S, Cheng G. Winning the fight against biofilms: the first six-month study showing no biofilm formation on zwitterionic polyurethanes. Chem Sci 2020; 11:4709-4721. [PMID: 34122926 PMCID: PMC8159170 DOI: 10.1039/c9sc06155j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biofilms have been a long-standing challenge for healthcare, water transport, and many other industries. They lead to bacterial growth and infections in animals, food products, and humans, cause premature removal of the implanted materials or devices from patients, and facilitate fouling and corrosion of metals. Despite some published and patented methods on minimizing the effects of biofilms for a short period (less than two weeks), there exists no successful means to mitigate or prevent the long-term formation of biofilms. It is even more challenging to integrate critical anti-fouling properties with other needed physical and chemical properties for a range of applications. In this study, we developed a novel approach for combining incompatible, highly polar anti-fouling groups with less polar, mechanically modifying groups into one material. A multifunctional carboxybetaine precursor was designed and introduced into polyurethane. The carboxybetaine precursors undergo rapid, self-catalyzed hydrolysis at the water/material interface and provide critical anti-fouling properties that lead to undetectable bacterial attachment and zero biofilm formation after six months of constant exposure to Pseudomonas aeruginosa and Staphylococcus epidermidis under the static condition in a nutrient-rich medium. This zwitterionic polyurethane is the first material to demonstrate both critical anti-biofilm properties and tunable mechanical properties and directly validates the unproven anti-fouling strategy and hypothesis for biofilm formation prevention. This approach of designing 'multitasking materials' will be useful for the development of next generation anti-fouling materials for a variety of applications.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| | - Daniel Edward Christiansen
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| | - Shafigh Mehraeen
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago Chicago IL 60607 USA https://gancheng.people.uic.edu
| |
Collapse
|
11
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
12
|
McMahan S, Taylor A, Copeland KM, Pan Z, Liao J, Hong Y. Current advances in biodegradable synthetic polymer based cardiac patches. J Biomed Mater Res A 2020; 108:972-983. [PMID: 31895482 DOI: 10.1002/jbm.a.36874] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
The number of people affected by heart disease such as coronary artery disease and myocardial infarction increases at an alarming rate each year. Currently, the methods to treat these diseases are restricted to lifestyle change, pharmaceuticals, and eventually heart transplant if the condition is severe enough. While these treatment options are the standard for caring for patients who suffer from heart disease, limited regenerative ability of the heart restricts the effectiveness of treatment and may lead to other heart-related health problems in the future. Because of the increasing need for more effective therapeutic technologies for treating diseased heart tissue, cardiac patches are now a large focus for researchers. The cardiac patches are designed to be integrated into the patients' natural tissue to introduce mechanical support and healing to the damaged areas. As a promising alternative, synthetic biodegradable polymer based biomaterials can be easily manipulated to customize material properties, as well as possess certain desired characteristics for cardiac patch use. This comprehensive review summarizes recent works on synthetic biodegradable cardiac patches implanted into infarcted animal models. In addition, this review describes the basic requirements that should be met for cardiac patch development, and discusses the inspirations to designing new biomaterials and technologies for cardiac patches.
Collapse
Affiliation(s)
- Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Katherine M Copeland
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
13
|
Ghorbani F, Zamanian A. Physicochemical and biological investigation of oxygen plasma modified electrospun polyurethane scaffolds for connective tissue engineering application. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, electrospinning was selected to fabricate randomly oriented polyurethane (PU) nanofibers for tissue engineering application, and the surface of scaffolds was exposed to oxygen plasma flow. The morphology structure of the PU scaffolds before and after oxygen plasma treatment was observed using scanning electron microscopy (SEM) micrographs, and the fiber diameter distribution was measured using Image J software. The results demonstrated that oxygen plasma modification reduces the fiber diameter without any other special effects on fiber microstructure. Water drop contact angle and swelling ratio of PU constructs were performed to estimate the water-scaffolds interactions. The results revealed improvement of hydrophilicity by oxygen plasma treatment. Atomic force microscopy test was done to analyze a topological characteristic of the scaffolds, and it was found out that oxygen plasma treatment decreases the roughness of the scaffolds. The biological behavior of the scaffolds was investigated by SEM observation and MTT assay after L-929 fibroblast cells culture. In vitro assays demonstrated biocompatibility, cellular attachments, and filopodia formation on plasma modified samples. These results suggest that oxygen plasma treatment improves the physicochemical and biological properties of PU scaffolds to create a more hydrophilic surface which facilitates cell attachments and proliferation.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials , Materials and Energy Research Center , Karaj , Iran
- Department of Biomaterials , Aprin Advanced Technologies Development Company , Tehran , Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials , Materials and Energy Research Center , Karaj , Iran
- Department of Biomaterials , Aprin Advanced Technologies Development Company , Tehran , Iran
| |
Collapse
|
14
|
Sharif F, Roman S, Asif A, Gigliobianco G, Ghafoor S, Tariq M, Siddiqui SA, Mahmood F, Muhammad N, Rehman IU, MacNeil S. Developing a synthetic composite membrane for cleft palate repair. J Tissue Eng Regen Med 2019; 13:1178-1189. [PMID: 30977264 DOI: 10.1002/term.2867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022]
Abstract
An oronasal fistula is a passage between the oral and nasal cavity. Currently, surgical procedures use mucosal flaps or collagen grafts to make a barrier between oral and nasal cavities. Our aim was to develop a cell-free synthetic repair material for closure of nasal fistulas. We surface functionalized electrospun polyurethane (PU) and poly-L-lactic acid (PLLA) and composite polymer (PU-PLLA) membranes with acrylic acid through plasma polymerization. Membranes were treated in a layer-by-layer approach to develop highly charged electrostatic layer that could bind heparin as a pro-angiogenic glycosaminoglycan. The properties were evaluated through physical, chemical, and mechanical characterization techniques. Cytotoxicity was tested with MC3T3 pre-osteoblast cell lines for 3, 7, and 14 days, and vasculogenesis was assessed by implantation into the chorio-allantoic membrane in chick embryos for 7 days. In vivo biocompatibility was assessed by subcutaneous implantation in rats for 1, 3, and 6 weeks. The membranes consisted of random fibers of PLLA-PU with fiber diameters of 0.47 and 0.12 μm, respectively. Significantly higher cell proliferation and migration of MC3T3 cells at 3, 7, and 14 days were shown on plasma-coated membranes compared with uncoated membranes. Further, it was found that plasma-coated membranes were more angiogenic than controls. In vivo implantation of membranes in rats did not reveal any gross toxicity to the materials, and wound healing was comparable with the native tissue repair (sham group). We therefore present a plasma-functionalized electrospun composite polymer membrane for use in the treatment of fistulas. These membranes are flexible, non-cytotoxic, and angiogenic, and we hope it should lead to permanent closure of oronasal fistula.
Collapse
Affiliation(s)
- Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Sabiniano Roman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Giulia Gigliobianco
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| | - Sarah Ghafoor
- Department of Oral Biology, University of Health Sciences Lahore, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Saadat Anwer Siddiqui
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Farrukh Mahmood
- Department of Pediatric Plastic Surgery, Children Hospital, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan.,Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| |
Collapse
|
15
|
Nazari H, Azadi S, Hatamie S, Zomorrod MS, Ashtari K, Soleimani M, Hosseinzadeh S. Fabrication of graphene‐silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4641] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hojjatollah Nazari
- Department of Nanotechnology and Tissue EngineeringStem Cell Technology Center Tehran Iran
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Shohreh Azadi
- Faculty of Biomedical EngineeringAmirKabir University of Technology Tehran Iran
- Faculty of biomedical EngineeringUniversity of Technology Sydney Sydney New South Wales Australia
| | - Shadie Hatamie
- Department of Nanotechnology and Tissue EngineeringStem Cell Technology Center Tehran Iran
| | - Mahsa Soufi Zomorrod
- Department of Nanotechnology and Tissue EngineeringStem Cell Technology Center Tehran Iran
| | - Khadijeh Ashtari
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2019; 42:107353. [PMID: 30794878 DOI: 10.1016/j.biotechadv.2019.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
During an average individual's lifespan, the human heart pumps nearly 200 million liters of blood delivered by approximately 3 billion heartbeats. Therefore, it is not surprising that native myocardium under this incredible demand is extraordinarily complex, both structurally and functionally. As a result, successful engineering of adult-mimetic functional cardiac tissues is likely to require utilization of highly specialized biomaterials representative of the native extracellular microenvironment. There is currently no single biomaterial that fully recapitulates the architecture or the biochemical and biomechanical properties of adult myocardium. However, significant effort has gone toward designing highly functional materials and tissue constructs that may one day provide a ready source of cardiac tissue grafts to address the overwhelming burden of cardiomyopathic disease. In the near term, biomaterial-based scaffolds are helping to generate in vitro systems for querying the mechanisms underlying human heart homeostasis and disease and discovering new, patient-specific therapeutics. When combined with advances in minimally-invasive cardiac delivery, ongoing efforts will likely lead to scalable cell and biomaterial technologies for use in clinical practice. In this review, we describe recent progress in the field of cardiac tissue engineering with particular emphasis on use of biomaterials for therapeutic tissue design and delivery.
Collapse
|
17
|
Wang H, Hu Y, Lynch D, Young M, Li S, Cong H, Xu FJ, Cheng G. Zwitterionic Polyurethanes with Tunable Surface and Bulk Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37609-37617. [PMID: 30335927 DOI: 10.1021/acsami.8b10450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To address the lack of blood compatibility and antifouling properties of polyurethanes (PUs), a novel zwitterionic poly(carboxybetaine urethane) (PCBHU) platform with excellent antifouling and tunable mechanical properties is presented. PCBHU was synthesized via the condensation polymerization of diisocyanate with carboxybetaine (CB)-based triols. Postpolymerization hydrolysis of triol segments at the interface generates zwitterionic CB functional groups that provide superior antifouling properties via the enhanced hydration capacities of CB groups. Thermogravimetric analysis and differential scanning calorimetry measurement show the high thermal stability of PCBHU with up to 305 °C degradation temperature. Tunable mechanical properties and water uptakes can be finely tuned by controlling the structure and ratio of CB-based triol cross-linkers. This study presents a new strategy to incorporate CB functional groups into PU without significantly changing the synthetic methods and conditions of PU. It also provides a deeper understanding on structure-property relationships of zwitterionic PUs. Because of its superior antifouling properties than existing PUs and similar cost, mechanical properties, stability, and processability, PCBHU has the great potential to replace current PUs and may open a new avenue to PUs for more challenging biomedical applications in which the existing PUs are limited by calcification and poor antifouling properties.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Yang Hu
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Dylan Lynch
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Megan Young
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Shengxi Li
- Department of Chemical and Biomolecular Engineering , University of Akron , Akron , Ohio 44325 , United States
| | - Hongbo Cong
- Department of Chemical and Biomolecular Engineering , University of Akron , Akron , Ohio 44325 , United States
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Gang Cheng
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|
18
|
Rodrigues ICP, Kaasi A, Maciel Filho R, Jardini AL, Gabriel LP. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. ACTA ACUST UNITED AC 2018; 16:eRB4538. [PMID: 30281764 PMCID: PMC6178861 DOI: 10.1590/s1679-45082018rb4538] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the major cause of death worldwide. The heart has limited capacity of regeneration, therefore, transplantation is the only solution in some cases despite presenting many disadvantages. Tissue engineering has been considered the ideal strategy for regenerative medicine in cardiology. It is an interdisciplinary field combining many techniques that aim to maintain, regenerate or replace a tissue or organ. The main approach of cardiac tissue engineering is to create cardiac grafts, either whole heart substitutes or tissues that can be efficiently implanted in the organism, regenerating the tissue and giving rise to a fully functional heart, without causing side effects, such as immunogenicity. In this review, we systematically present and compare the techniques that have drawn the most attention in this field and that generally have focused on four important issues: the scaffold material selection, the scaffold material production, cellular selection and in vitro cell culture. Many studies used several techniques that are herein presented, including biopolymers, decellularization and bioreactors, and made significant advances, either seeking a graft or an entire bioartificial heart. However, much work remains to better understand and improve existing techniques, to develop robust, efficient and efficacious methods.
Collapse
Affiliation(s)
| | | | - Rubens Maciel Filho
- Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brazil
| | - André Luiz Jardini
- Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brazil
| | | |
Collapse
|
19
|
Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int J Biol Macromol 2018; 111:485-492. [DOI: 10.1016/j.ijbiomac.2018.01.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 11/20/2022]
|
20
|
Sogorkova J, Zapotocky V, Cepa M, Stepankova V, Vagnerova H, Batova J, Pospisilova M, Betak J, Nesporova K, Hermannova M, Daro D, Duffy G, Velebny V. Optimization of cell growth on palmitoyl-hyaluronan knitted scaffolds developed for tissue engineering applications. J Biomed Mater Res A 2018; 106:1488-1499. [PMID: 29377555 DOI: 10.1002/jbm.a.36353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
Polysaccharides meet several criteria for a suitable biomaterial for tissue engineering, which include biocompatibility and ability to support the delivery and growth of cells. Nevertheless, most of these polysaccharides, for example dextran, alginate, and glycosaminoglycans, are highly soluble in aqueous solutions. Hyaluronic acid hydrophobized by palmitic acid and processed to the form of wet-spun fibers and the warp-knitted textile scaffold is water non-soluble, but biodegradable material, which could be used for the tissue engineering purpose. However, its surface quality does not allow cell attachment. To enhance the biocompatibility the surface of palmitoyl-hyaluronan was roughened by freeze drying and treated by different cell adhesive proteins (fibronectin, fibrinogen, laminin, methacrylated gelatin and collagen IV). Except for collagen IV, these proteins covered the fibers uniformly for an extended period of time and supported the adhesion and cultivation of dermal fibroblasts and mesenchymal stem cells. Interestingly, adipose stem cells cultivated on the fibronectin-modified scaffold secreted increasing amount of HGF, SDF-1, and VEGF, three key growth factors involved in cardiac regeneration. These results suggested that palmitoyl-hyaluronan scaffold may be a promising material for various applications in tissue regeneration, including cardiac tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1488-1499, 2018.
Collapse
Affiliation(s)
- Jana Sogorkova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Martin Cepa
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Hana Vagnerova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | - Jana Batova
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | - Jiri Betak
- Contipro a. s., Dolni Dobrouc 401, 561 02, Czech Republic
| | | | | | - Dorothée Daro
- Celyad, Rue Edouard Belin 2, Mont-Saint-Guibert, 1435, Belgium
| | - Garry Duffy
- Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | | |
Collapse
|
21
|
Mills RJ, Voges HK, Porrello ER, Hudson JE. Disease modeling and functional screening using engineered heart tissue. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Kishan AP, Wilems T, Mohiuddin S, Cosgriff-Hernandez EM. Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications. ACS Biomater Sci Eng 2017; 3:3493-3502. [DOI: 10.1021/acsbiomaterials.7b00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Alysha P. Kishan
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, Texas 77843-3120, United States
| | - Thomas Wilems
- Department
of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, 1 University Station, Austin, Texas 78712, United States
| | - Sahar Mohiuddin
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, Texas 77843-3120, United States
| | - Elizabeth M. Cosgriff-Hernandez
- Department
of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, 1 University Station, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, Shokrolahi F. Polyurethanes with separately tunable biodegradation behavior and mechanical properties for tissue engineering. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Mojgan Zandi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| |
Collapse
|
24
|
3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. J Mech Behav Biomed Mater 2017; 75:147-159. [PMID: 28734256 DOI: 10.1016/j.jmbbm.2017.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
The fabrication of biomaterials for interaction with muscle cells has attracted significant interest in the last decades. However, 3D porous scaffolds featured by a relatively low stiffness (almost matching the natural muscle one) and highly stable in response to cyclic loadings are not available at present, in this context. This work describes 3D polyurethane-based porous scaffolds featured by different mechanical properties. Biomaterial stiffness was finely tuned by varying the cross-linking degree of the starting foam. Compression tests revealed, for the softest material formulation, stiffness values close to the ones possessed by natural skeletal muscles. The materials were also characterized in terms of local nanoindenting, rheometric properties and long-term stability through cyclic compressions, in a strain range reflecting the contraction extent of natural muscles. Preliminary in vitro tests revealed a preferential adhesion of C2C12 skeletal muscle cells over the softer, rougher and more porous structures. All the material formulations showed low cytotoxicity.
Collapse
|
25
|
Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, Sun Y, Radisic M. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater 2017; 52:81-91. [PMID: 27940161 DOI: 10.1016/j.actbio.2016.12.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
Abstract
Polymer biomaterials are used to construct scaffolds in tissue engineering applications to assist in mechanical support, organization, and maturation of tissues. Given the flexibility, electrical conductance, and contractility of native cardiac tissues, it is desirable that polymeric scaffolds for cardiac tissue regeneration exhibit elasticity and high electrical conductivity. Herein, we developed a facile approach to introduce carbon nanotubes (CNTs) into poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer), and developed an elastomeric scaffold for cardiac tissue engineering that provides electrical conductivity and structural integrity to 124 polymer. 124 polymer-CNT materials were developed by first dispersing CNTs in poly(ethylene glycol) dimethyl ether porogen and mixing with 124 prepolymer for molding into shapes and crosslinking under ultraviolet light. 124 polymers with 0.5% and 0.1% CNT content (wt) exhibited improved conductivity against pristine 124 polymer. With increasing the CNT content, surface moduli of hybrid polymers were increased, while their bulk moduli were decreased. Furthermore, increased swelling of hybrid 124 polymer-CNT materials was observed, suggesting their improved structural support in an aqueous environment. Finally, functional characterization of engineered cardiac tissues using the 124 polymer-CNT scaffolds demonstrated improved excitation threshold in materials with 0.5% CNT content (3.6±0.8V/cm) compared to materials with 0% (5.1±0.8V/cm) and 0.1% (5.0±0.7V/cm), suggesting greater tissue maturity. 124 polymer-CNT materials build on the advantages of 124 polymer elastomer to give a versatile biomaterial for cardiac tissue engineering applications. STATEMENT OF SIGNIFICANCE Achieving a high elasticity and a high conductivity in a single cardiac tissue engineering material remains a challenge. We report the use of CNTs in making electrically conductive and mechanically strong polymeric scaffolds in cardiac tissue regeneration. CNTs were incorporated in elastomeric polymers in a facile and reproducible approach. Polymer-CNT materials were able to construct complicated scaffold structures by injecting the prepolymer into a mold and crosslinking the prepolymer under ultraviolet light. CNTs enhanced electrical conductivity and structural support of elastomeric polymers. Hybrid polymeric scaffolds containing 0.5wt% CNTs increased the maturation of cardiac tissues fabricated on them compared to pure polymeric scaffolds. The cardiac tissues on hybrid polymer-CNT scaffolds showed earlier beating than those on pure polymer scaffolds. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such neural and skeletal muscle tissues. In the future, fabricated polymer-CNT scaffolds could also be used to fabricate other electro-active tissues, such as neural and skeletal muscle tissues.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Locke Davenport Huyer
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mehdi Estili
- Ceramics Processing Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Bess Yee
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nathaniel Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zhensong Xu
- Advanced Micro and Nanosystems Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yu Sun
- Advanced Micro and Nanosystems Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Mawad D, Figtree G, Gentile C. Current Technologies Based on the Knowledge of the Stem Cells Microenvironments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:245-262. [DOI: 10.1007/978-3-319-69194-7_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Prévôt M, Hegmann E. From Biomaterial, Biomimetic, and Polymer to Biodegradable and Biocompatible Liquid Crystal Elastomer Cell Scaffolds. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M. Prévôt
- Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001, United States
| | - E. Hegmann
- Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242-0001, United States
| |
Collapse
|
28
|
Kucinska-Lipka J, Gdansk University of Technology, Faculty of Chemistry, Department of Polymer Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland, Janik H, Gubanska I, Gdansk University of Technology, Faculty of Chemistry, Department of Polymer Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland, Gdansk University of Technology, Faculty of Chemistry, Department of Polymer Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland. Ascorbic Acid in Polyurethane Systems for Tissue Engineering. CHEMISTRY & CHEMICAL TECHNOLOGY 2016. [DOI: 10.23939/chcht10.04si.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for TE was described. L-AA has been applied in this area due to its suitable biological characteristics and antioxidative properties. Moreover, L-AA influences tissue regeneration due to improving collagen synthesis, which is a primary component of the extracellular matrix (ECM). Modification of PUR with L-AA leads to the materials with higher biocompatibility and such system is promising for TE applications.
Collapse
|
29
|
Liu P, Huang T, Liu P, Shi S, Chen Q, Li L, Shen J. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface Sci 2016; 480:91-101. [DOI: 10.1016/j.jcis.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023]
|
30
|
Su WF, Ho CC, Shih TH, Wang CH, Yeh CH. Exceptional biocompatibility of 3D fibrous scaffold for cardiac tissue engineering fabricated from biodegradable polyurethane blended with cellulose. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1157802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Image Center, National Taiwan University, Taipei, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chun-Chih Ho
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Image Center, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsiang Shih
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hua Wang
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
- Molecular Image Center, National Taiwan University, Taipei, Taiwan
| | - Chun-Hao Yeh
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Elastomers in vascular tissue engineering. Curr Opin Biotechnol 2016; 40:149-154. [PMID: 27149017 DOI: 10.1016/j.copbio.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 11/23/2022]
Abstract
Elastomers are popular in vascular engineering applications, as they offer the ability to design implants that match the compliance of native tissue. By mimicking the natural tissue environment, elastic materials are able to integrate within the body to promote repair and avoid the adverse physiological responses seen in rigid alternatives that often disrupt tissue function. The design of elastomers has continued to evolve, moving from a focus on long term implants to temporary resorbable implants that support tissue regeneration. This has been achieved through designing chemistries and processing methodologies that control material behavior and bioactivity, while maintaining biocompatibility in vivo. Here we review the latest developments in synthetic and natural elastomers and their application in cardiovascular treatments.
Collapse
|
32
|
ÇELEBİ SALTIK B, ÖTEYAKA MÖ. Cardiac patch design: compatibility of nanofiber materials prepared byelectrospinning method with stem cells. Turk J Biol 2016. [DOI: 10.3906/biy-1506-82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
33
|
Baheiraei N, Gharibi R, Yeganeh H, Miragoli M, Salvarani N, Di Pasquale E, Condorelli G. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation. J Biomed Mater Res A 2015; 104:775-787. [DOI: 10.1002/jbm.a.35612] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Nafiseh Baheiraei
- Department of Anatomy; Faculty of Medical Sciences, Tarbiat Modares University; Tehran Iran
| | - Reza Gharibi
- Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115; Tehran Iran
| | - Hamid Yeganeh
- Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115; Tehran Iran
| | - Michele Miragoli
- Humanitas Clinical and Research Center; Rozzano, Milan Italy
- CERT; Center of Excellence for Toxicological Research, University of Parma; Italy
| | - Nicolò Salvarani
- Humanitas Clinical and Research Center; Rozzano, Milan Italy
- Institute of Genetic and Biomedical Research-UOS Milan, National Research Council; Milan Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center; Rozzano, Milan Italy
- Institute of Genetic and Biomedical Research-UOS Milan, National Research Council; Milan Italy
| | | |
Collapse
|
34
|
Sharif F, Ur Rehman I, Muhammad N, MacNeil S. Dental materials for cleft palate repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:1018-28. [PMID: 26838929 DOI: 10.1016/j.msec.2015.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
Numerous bone and soft tissue grafting techniques are followed to repair cleft of lip and palate (CLP) defects. In addition to the gold standard surgical interventions involving the use of autogenous grafts, various allogenic and xenogenic graft materials are available for bone regeneration. In an attempt to discover minimally invasive and cost effective treatments for cleft repair, an exceptional growth in synthetic biomedical graft materials have occurred. This study gives an overview of the use of dental materials to repair cleft of lip and palate (CLP). The eligibility criteria for this review were case studies, clinical trials and retrospective studies on the use of various types of dental materials in surgical repair of cleft palate defects. Any data available on the surgical interventions to repair alveolar or palatal cleft, with natural or synthetic graft materials was included in this review. Those datasets with long term clinical follow-up results were referred to as particularly relevant. The results provide encouraging evidence in favor of dental and other related biomedical materials to fill the gaps in clefts of lip and palate. The review presents the various bones and soft tissue replacement strategies currently used, tested or explored for the repair of cleft defects. There was little available data on the use of synthetic materials in cleft repair which was a limitation of this study. In conclusion although clinical trials on the use of synthetic materials are currently underway the uses of autologous implants are the preferred treatment methods to date.
Collapse
Affiliation(s)
- Faiza Sharif
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK; Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore, Pakistan.
| | - Ihtesham Ur Rehman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore, Pakistan.
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield, UK
| |
Collapse
|
35
|
Carvalho E, Verma P, Hourigan K, Banerjee R. Myocardial infarction: stem cell transplantation for cardiac regeneration. Regen Med 2015; 10:1025-43. [PMID: 26563414 DOI: 10.2217/rme.15.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is estimated that by 2030, almost 23.6 million people will perish from cardiovascular disease, according to the WHO. The review discusses advances in stem cell therapy for myocardial infarction, including cell sources, methods of differentiation, expansion selection and their route of delivery. Skeletal muscle cells, hematopoietic cells and mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs)-derived cardiomyocytes have advanced to the clinical stage, while induced pluripotent cells (iPSCs) are yet to be considered clinically. Delivery of cells to the sites of injury and their subsequent retention is a major issue. The development of supportive scaffold matrices to facilitate stem cell retention and differentiation are analyzed. The review outlines clinical translation of conjugate stem cell-based cellular therapeutics post-myocardial infarction.
Collapse
Affiliation(s)
- Edmund Carvalho
- IITB Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Paul Verma
- Turretfield Research Centre, South Australian Research & Development Institute (SARDI), SA, Australia.,Stem Cells & Reprogramming Group, Monash University, Australia
| | - Kerry Hourigan
- FLAIR/Laboratory for Biomedical Engineering & Department of Mechanical & Aerospace Engineering, Monash University, Australia
| | - Rinti Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, India
| |
Collapse
|
36
|
Ganji Y, Li Q, Quabius ES, Böttner M, Selhuber-Unkel C, Kasra M. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:10-18. [PMID: 26652343 DOI: 10.1016/j.msec.2015.09.074] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 11/15/2022]
Abstract
Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation.
Collapse
Affiliation(s)
- Yasaman Ganji
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran; Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Qian Li
- Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Elgar Susanne Quabius
- Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel, Germany; Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Martina Böttner
- Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany.
| | - Mehran Kasra
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
| |
Collapse
|
37
|
Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:175-88. [DOI: 10.1016/j.msec.2015.04.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023]
|
38
|
Trinca RB, Abraham GA, Felisberti MI. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:511-7. [PMID: 26249621 DOI: 10.1016/j.msec.2015.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 11/28/2022]
Abstract
Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications.
Collapse
Affiliation(s)
- Rafael Bergamo Trinca
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Zip Code 13083-970 Campinas, SP, Brazil.
| | - Gustavo A Abraham
- Research Institute for Materials Science and Technology INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina.
| | - Maria Isabel Felisberti
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Zip Code 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
39
|
Tallawi M, Rosellini E, Barbani N, Cascone MG, Rai R, Saint-Pierre G, Boccaccini AR. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 2015; 12:20150254. [PMID: 26109634 PMCID: PMC4528590 DOI: 10.1098/rsif.2015.0254] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.
Collapse
Affiliation(s)
- Marwa Tallawi
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy
| | - Ranjana Rai
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Guillaume Saint-Pierre
- Inspiralia, Materials Laboratory, C/Faraday 7, Lab 3.02, Campus de Cantoblanco, Madrid 28049, Spain
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
40
|
Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, Vahdat S, Baharvand H. Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res A 2015; 103:3179-87. [DOI: 10.1002/jbm.a.35447] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/21/2015] [Accepted: 03/10/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Nafiseh Baheiraei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies; Tehran University of Medical Sciences; Tehran 1417755469 Iran
- Department of Tissue Engineering, Reproductive Biotechnology Research Center; Avicenna Research Institute; ACECR Tehran Iran
| | - Hamid Yeganeh
- Department of Polyurethane; Iran Polymer and Petrochemical Institute; P.O. Box: 14965/115 Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies; Tehran University of Medical Sciences; Tehran 1417755469 Iran
| | - Reza Gharibi
- Department of Polyurethane; Iran Polymer and Petrochemical Institute; P.O. Box: 14965/115 Tehran Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies; Tehran University of Medical Sciences; Tehran 1417755469 Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies; Tehran University of Medical Sciences; Tehran 1417755469 Iran
| | - Sadaf Vahdat
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Biotechnology; College of Science, University of Tehran; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| |
Collapse
|
41
|
Chen PH, Liao HC, Hsu SH, Chen RS, Wu MC, Yang YF, Wu CC, Chen MH, Su WF. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv 2015. [DOI: 10.1039/c4ra12486c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A high mechanical strength and biomimetic scaffold is electrospun from a blend of polyurethane and ethyl cellulose, being promising in applications for therapeutic purposes as a cardiac graft for reconstructing or regeneration of damaged myocardium.
Collapse
Affiliation(s)
- Po-Hsuen Chen
- Institute of Oral Biology
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Hsueh-Chung Liao
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Sheng-Hao Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine
- National Taiwan University Hospital
- Taipei 10002
- Taiwan
| | - Chau-Chung Wu
- Department of Primary Care Medicine
- College of Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
42
|
Chen Y, Wang J, Shen B, Chan CWY, Wang C, Zhao Y, Chan HN, Tian Q, Chen Y, Yao C, Hsing IM, Li RA, Wu H. Engineering a Freestanding Biomimetic Cardiac Patch Using Biodegradable Poly(lactic-co-glycolic acid) (PLGA) and Human Embryonic Stem Cell-derived Ventricular Cardiomyocytes (hESC-VCMs). Macromol Biosci 2014; 15:426-36. [DOI: 10.1002/mabi.201400448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 11/15/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Yin Chen
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong China
| | - Junping Wang
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine; The University of Hong Kong; Hong Kong China
- Department of Physiology, LKS Faculty of Medicine; The University of Hong Kong; Hong Kong China
| | - Bo Shen
- Department of Chemistry; The Hong Kong University of Science and Technology; Hong Kong China
| | - Camie W. Y. Chan
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine; The University of Hong Kong; Hong Kong China
- Department of Anatomy, LKS Faculty of Medicine; The University of Hong Kong; Hong Kong China
| | - Chaoyi Wang
- Department of Civil and Environmental Engineering; The Hong Kong University of Science and Technology; Hong Kong China
| | - Yihua Zhao
- Department of Chemistry; The Hong Kong University of Science and Technology; Hong Kong China
| | - Ho N. Chan
- Department of Chemistry; The Hong Kong University of Science and Technology; Hong Kong China
| | - Qian Tian
- Department of Chemistry; The Hong Kong University of Science and Technology; Hong Kong China
| | - Yangfan Chen
- Department of Chemistry; The Hong Kong University of Science and Technology; Hong Kong China
| | - Chunlei Yao
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong China
| | - I-Ming Hsing
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong China
- Department of Chemical and Biomolecular Engineering; The Hong Kong University of Science and Technology; Hong Kong China
| | - Ronald A. Li
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine; The University of Hong Kong; Hong Kong China
- Department of Physiology, LKS Faculty of Medicine; The University of Hong Kong; Hong Kong China
| | - Hongkai Wu
- Division of Biomedical Engineering; The Hong Kong University of Science and Technology; Hong Kong China
- Department of Chemistry; The Hong Kong University of Science and Technology; Hong Kong China
| |
Collapse
|
43
|
Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:24-37. [DOI: 10.1016/j.msec.2014.07.061] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 02/01/2023]
|
44
|
Bioengineering Strategies for Polymeric Scaffold for Tissue Engineering an Aortic Heart Valve: An Update. Int J Artif Organs 2014; 37:651-67. [DOI: 10.5301/ijao.5000339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
Abstract
The occurrence of dysfunctional aortic valves is increasing every year, and current replacement heart valves, although having been shown to be clinically successful, are only short-term solutions and suffer from many agonizing long-term drawbacks. The tissue engineering of heart valves is recognized as one of the most promising answers for aortic valve disease therapy, but overcoming current shortcomings will require multidisciplinary efforts. The use of a polymeric scaffold to guide the growth of the tissue is the most common approach to generate a new tissue for an aortic heart valve. However, optimizing the design of the scaffold, in terms of biocompatibility, surface morphology for cell attachments and the correct rate of degradation is critical in creating a viable tissue-engineered aortic heart valve. This paper highlights the bioengineering strategies that need to be followed to construct a polymeric scaffold of sufficient mechanical integrity, with superior surface morphologies, that is capable of mimicking the valve dynamics in vivo. The current challenges and future directions of research for creating tissue-engineered aortic heart valves are also discussed.
Collapse
|
45
|
Engineering Angiogenesis for Myocardial Infarction Repair: Recent Developments, Challenges, and Future Directions. Cardiovasc Eng Technol 2014. [DOI: 10.1007/s13239-014-0193-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Lueders C, Jastram B, Hetzer R, Schwandt H. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg 2014; 46:593-601. [PMID: 25063052 DOI: 10.1093/ejcts/ezt510] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing technologies have reached a level of quality that justifies considering rapid manufacturing for medical applications. Herein, we introduce a new approach using 3D printing to simplify and improve the fabrication of human heart valve scaffolds by tissue engineering (TE). Custom-made human heart valve scaffolds are to be fabricated on a selective laser-sintering 3D printer for subsequent seeding with vascular cells from human umbilical cords. The scaffolds will be produced from resorbable polymers that must feature a number of specific properties: the structure, i.e. particle granularity and shape, and thermic properties must be feasible for the printing process. They must be suitable for the cell-seeding process and at the same time should be resorbable. They must be applicable for implementation in the human body and flexible enough to support the full functionality of the valve. The research focuses mainly on the search for a suitable scaffold material that allows the implementation of both the printing process to produce the scaffolds and the cell-seeding process, while meeting all of the above requirements. Computer tomographic data from patients were transformed into a 3D data model suitable for the 3D printer. Our current activities involve various aspects of the printing process, material research and the implementation of the cell-seeding process. Different resorbable polymeric materials have been examined and used to fabricate heart valve scaffolds by rapid manufacturing. Human vascular cells attached to the scaffold surface should migrate additionally into the inner structure of the polymeric samples. The ultimate intention of our approach is to establish a heart valve fabrication process based on 3D rapid manufacturing and TE. Based on the computer tomographic data of a patient, a custom-made scaffold for a valve will be produced on a 3D printer and populated preferably by autologous cells. The long-term goal is to support the growth of a new valve by a 3D structure resorbed by the human body in the course of the growth process. Our current activities can be characterized as basic research in which the fundamental steps of the technical process and its feasibility are investigated.
Collapse
Affiliation(s)
- Cora Lueders
- Deutsches Herzzentrum Berlin, Laboratory for Tissue Engineering, Berlin, Germany
| | - Ben Jastram
- Faculty of Mathematics and Natural Sciences, 3D Laboratory, Institute of Mathematics, MA 6-4, Technical University of Berlin, Berlin, Germany
| | - Roland Hetzer
- Deutsches Herzzentrum Berlin, Laboratory for Tissue Engineering, Berlin, Germany
| | - Hartmut Schwandt
- Faculty of Mathematics and Natural Sciences, 3D Laboratory, Institute of Mathematics, MA 6-4, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
47
|
Dempsey DK, Robinson JL, Iyer AV, Parakka JP, Bezwada RS, Cosgriff-Hernandez EM. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:535-54. [DOI: 10.1080/09205063.2014.880247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Ghasemi-Mobarakeh L, Prabhakaran MP, Nematollahi M, Karbalaie K, Ramakrishna S, Nasr-Esfahani MH. Embryonic Stem Cell Differentiation to Cardiomyocytes on Nanostructured Scaffolds for Myocardial Tissue Regeneration. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.830247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate) Bioelastomer. Polymers (Basel) 2013. [DOI: 10.3390/polym5041339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Fang J, Yin A, Wu C, Li D, Wu T, He L, Han F, Mo X. Synthesis and characterization of biodegradable poly(ester-urethane)urea for nerve tissue engineering. J Control Release 2013. [DOI: 10.1016/j.jconrel.2013.08.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|