1
|
Yang D, He D, Yang F, Meng X, Zheng K, Lin H, Cheng Y, Tam WC, Li G. Advances in harnessing biological macromolecules for periodontal tissue regeneration: A review. Int J Biol Macromol 2025; 311:144031. [PMID: 40345296 DOI: 10.1016/j.ijbiomac.2025.144031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Periodontitis is a chronic multifactorial inflammatory oral disease that can lead to gingival recession, destruction of the periodontal ligament, alveolar bone loss, and tooth loss. Solutions for periodontal tissue regeneration utilize biological macromolecules, including natural ones (such as collagen (COL), alginate (ALG), chitosan (CS), silk fibroin (SF), hyaluronic acid (HA), etc.), inorganic ones (such as hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), bioactive glass (BG), etc.), synthetic, composite, and nanomaterials. Carrier materials, including hydrogels, nanofibers, nanoparticles, microneedles, and thin films, are used to effectively deliver therapeutic agents and biological factors such as stem cells, bioactive molecules, and genes, so as to promote the elimination of bacteria and tissue regeneration at the damaged periodontal sites. This review mainly focuses on the latest progress of biological macromolecules and tissue engineering technologies in periodontal regeneration in recent years. It aims to inspire the design and development of innovative biomaterials and delivery systems for novel regenerative periodontal treatments.
Collapse
Affiliation(s)
- Dongyi Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dong He
- Department of Stomatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, China
| | - Fanlei Yang
- Orthopaedic Institute of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiangyou Meng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Zheng
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haitao Lin
- Silk Engineering Research Center of Guangxi, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yi Cheng
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Wai Cheong Tam
- Fire Research Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China; Silk Engineering Research Center of Guangxi, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China.
| |
Collapse
|
2
|
Vasilyev AV, Nedorubova IA, Chernomyrdina VO, Meglei AY, Basina VP, Mironov AV, Kuznetsova VS, Sinelnikova VA, Mironova OA, Trifanova EM, Babichenko II, Popov VK, Kulakov AA, Goldshtein DV, Bukharova TB. Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration. Int J Mol Sci 2024; 25:13300. [PMID: 39769064 PMCID: PMC11678707 DOI: 10.3390/ijms252413300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo. The elastic modulus of the disk-shaped PLGA scaffolds created using a specialized 3D printer was determined by compressive testing in both axial and radial directions. In vitro cytocompatibility was assessed using adipose-derived stem cells (ADSCs). The ability of Ad-BMP2 to transduce cells was evaluated. The osteoinductive and biocompatible properties of the scaffolds were also assessed in vivo. The Young's modulus of the 3D-printed PLGA scaffolds exhibited comparable values in both axial and radial compression directions, measuring 3.4 ± 0.7 MPa for axial and 3.17 ± 1.4 MPa for radial compression. The scaffolds promoted cell adhesion and had no cytotoxic effect on ADSCs. Ad-BMP2 successfully transduced the cells and induced osteogenic differentiation in vitro. In vivo studies demonstrated that the 3D-printed PLGA scaffolds had osteoinductive properties, promoting bone formation within the scaffold filaments as well as at the center of a critical calvarial bone defect.
Collapse
Affiliation(s)
- Andrey Vyacheslavovich Vasilyev
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Irina Alekseevna Nedorubova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Viktoria Olegovna Chernomyrdina
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Anastasiia Yurevna Meglei
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | | | - Anton Vladimirovich Mironov
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- NRC «Kurchatov Institute», 123182 Moscow, Russia;
| | - Valeriya Sergeevna Kuznetsova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| | - Victoria Alexandrovna Sinelnikova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
| | - Olga Anatolievna Mironova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- NRC «Kurchatov Institute», 123182 Moscow, Russia;
| | - Ekaterina Maksimovna Trifanova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- NRC «Kurchatov Institute», 123182 Moscow, Russia;
| | - Igor Ivanovich Babichenko
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
| | | | - Anatoly Alekseevich Kulakov
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
| | | | - Tatiana Borisovna Bukharova
- Central Research Institute of Dentistry and Maxillofacial Surgery, 119021 Moscow, Russia; (I.A.N.); (V.O.C.); (A.Y.M.); (A.V.M.); (V.S.K.); (V.A.S.); (O.A.M.); (E.M.T.); (I.I.B.); (T.B.B.)
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (V.P.B.)
| |
Collapse
|
3
|
Wang W, Chen B, Yang J, Li Y, Ding H, Liu H, Yuan C. Sema3A Modified PDLSCs Exhibited Enhanced Osteogenic Capabilities and Stimulated Differentiation of Pre-Osteoblasts. Cell Biochem Biophys 2023; 81:543-552. [PMID: 37421591 DOI: 10.1007/s12013-023-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Genetically engineered stem cells, not only acting as vector delivering growth factors or cytokines but also exhibiting improved cell properties, are promising cells for periodontal tissue regeneration. Sema3A is a power secretory osteoprotective factor. In this study, we aimed to construct Sema3A modified periodontal ligament stem cells (PDLSCs) and evaluated their osteogenic capability and crosstalk with pre-osteoblasts MC3T3-E1. First, Sema3A modified PDLSCs was constructed using lentivirus infection system carrying Sema3A gene and the transduction efficiency was analyzed. The osteogenic differentiation and proliferation of Sema3A-PDLSCs was evaluated. Then, MC3T3-E1 was directly co-cultured with Sema3A-PDLSCs or cultured in condition medium of Sema3A-PDLSCs and the osteogenic ability of MC3T3-E1 was assessed. The results showed that Sema3A-PDLSCs expressed and secreted upregulated Sema3A protein, which confirmed successful construction of Sema3A modified PDLSCs. After osteogenic induction, Sema3A-PDLSCs expressed upregulated ALP, OCN, RUNX2, and SP7 mRNA, expressed higher ALP activity, and produced more mineralization nodes, compared with Vector-PDLSCs. Whereas, there was no obvious differences in proliferation between Sema3A-PDLSCs and Vector-PDLSCs. MC3T3-E1 expressed upregulated mRNA of ALP, OCN, RUNX2, and SP7 when directly co-cultured with Sema3A-PDLSCs than Vector-PDLSCs. MC3T3-E1 also expressed upregulated osteogenic markers, showed higher ALP activity, and produced more mineralization nodes when cultured using condition medium of Sema3A-PDLSCs instead of Vector-PDLSCs. In conclusion, our results indicated that Sema3A modified PDLSCs showed enhanced osteogenic capability, and also facilitated differentiation of pre-osteoblasts.
Collapse
Affiliation(s)
- Wen Wang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Banghui Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jintao Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Yizhou Li
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Haonan Ding
- School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Xuzhou, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
4
|
Bougioukli S, Chateau M, Morales H, Vakhshori V, Sugiyama O, Oakes D, Longjohn D, Cannon P, Lieberman JR. Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther 2021; 28:729-739. [PMID: 32807899 DOI: 10.1038/s41434-020-0182-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated viral vectors (AAV) are unique in their ability to transduce a variety of both dividing and nondividing cells, with significantly lower risk of random genomic integration and with no known pathogenicity in humans, but their role in ex vivo regional gene therapy for bone repair has not been definitively established. The goal of this study was to test the ability of AAV vectors carrying the cDNA for BMP-2 to transduce human mesenchymal stem cells (MSCs), produce BMP-2, and induce osteogenesis in vitro as compared with lentiviral gene therapy with a two-step transcriptional amplification system lentiviral vector (LV-TSTA). To this end, we created two AAV vectors (serotypes 2 and 6) expressing the target transgene; eGFP or BMP-2. Transduction of human MSCs isolated from bone marrow (BMSCs) or adipose tissue (ASCs) with AAV2-eGFP and AAV6-eGFP led to low transduction efficiency (BMSCs: 3.57% and 8.82%, respectively, ASCs: 6.17 and 20.2%, respectively) and mean fluorescence intensity as seen with FACS analysis 7 days following transduction, even at MOIs as high as 106. In contrast, strong eGFP expression was detectable in all of the cell types post transduction with LV-TSTA-eGFP. Transduction with BMP-2 producing vectors led to minimal BMP-2 production in AAV-transduced cells 2 and 7 days following transduction. In addition, transduction of ASCs and BMSCs with AAV2-BMP-2 and AAV6-BMP-2 did not enhance their osteogenic potential as seen with an alizarin red assay. In contrast, the LV-TSTA-BMP-2-transduced cells were characterized by an abundant BMP-2 production and induction of the osteogenic phenotype in vitro (p < 0.001 vs. AAV2 and 6). Our results demonstrate that the AAV2 and AAV6 vectors cannot induce a significant transgene expression in human BMSCs and ASCs, even at MOIs as high as 106. The LV-TSTA vector is significantly superior in transducing human MSCs; thus this vector would be preferable when developing an ex vivo regional gene therapy strategy for clinical use in orthopedic surgery applications.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Freitas GP, Lopes HB, Souza ATP, Gomes MPO, Quiles GK, Gordon J, Tye C, Stein JL, Stein GS, Lian JB, Beloti MM, Rosa AL. Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Ther 2021; 28:748-759. [PMID: 33686254 PMCID: PMC8423866 DOI: 10.1038/s41434-021-00248-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Cell therapy is a valuable strategy for the replacement of bone grafts and repair bone defects, and mesenchymal stem cells (MSCs) are the most frequently used cells. This study was designed to genetically edit MSCs to overexpress bone morphogenetic protein 9 (BMP-9) using Clustered Regularly Interspaced Short Palindromic Repeats/associated nuclease Cas9 (CRISPR-Cas9) technique to generate iMSCs-VPRBMP-9+, followed by in vitro evaluation of osteogenic potential and in vivo enhancement of bone formation in rat calvaria defects. Overexpression of BMP-9 was confirmed by its gene expression and protein expression, as well as its targets Hey-1, Bmpr1a, and Bmpr1b, Dlx-5, and Runx2 and protein expression of SMAD1/5/8 and pSMAD1/5/8. iMSCs-VPRBMP-9+ displayed significant changes in the expression of a panel of genes involved in TGF-β/BMP signaling pathway. As expected, overexpression of BMP-9 increased the osteogenic potential of MSCs indicated by increased gene expression of osteoblastic markers Runx2, Sp7, Alp, and Oc, higher ALP activity, and matrix mineralization. Rat calvarial bone defects treated with injection of iMSCs-VPRBMP-9+ exhibited increased bone formation and bone mineral density when compared with iMSCs-VPR- and phosphate buffered saline (PBS)-injected defects. This is the first study to confirm that CRISPR-edited MSCs overexpressing BMP-9 effectively enhance bone formation, providing novel options for exploring the capability of genetically edited cells to repair bone defects.
Collapse
Affiliation(s)
- Gileade P Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helena B Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Paula O Gomes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Georgia K Quiles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonathan Gordon
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Coralee Tye
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Westhrin M, Holien T, Zahoor M, Moen SH, Buene G, Størdal B, Hella H, Yuan H, de Bruijn JD, Martens A, Groen RW, Bosch F, Smith U, Sponaas AM, Sundan A, Standal T. Bone Morphogenetic Protein 4 Gene Therapy in Mice Inhibits Myeloma Tumor Growth, But Has a Negative Impact on Bone. JBMR Plus 2019; 4:e10247. [PMID: 31956851 PMCID: PMC6957984 DOI: 10.1002/jbm4.10247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/03/2023] Open
Abstract
Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre‐ and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4‐treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human‐mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2−/− γC−/−mice. Mice were treated with adeno‐associated virus serotype 8 BMP4 vectors (AAV8‐BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8‐BMP4 mice compared with the AAV8‐CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4‐treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non‐myeloma femurs by μCT. Surprisingly, the AAV8‐BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8‐CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marita Westhrin
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Department of Hematology St. Olavs Hospital Trondheim Norway
| | - Muhammad Zahoor
- Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Siv Helen Moen
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Berit Størdal
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Hanne Hella
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Huipin Yuan
- Kuros Biosciences BV Bilthoven The Netherlands
| | - Joost D de Bruijn
- Kuros Biosciences BV Bilthoven The Netherlands.,The School of Engineering and Materials Science Queen Mary University of London London UK
| | - Anton Martens
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center Amsterdam The Netherlands
| | - Richard Wj Groen
- Department of Hematology Cancer Center Amsterdam, VU University Medical Center Amsterdam The Netherlands
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology School of Veterinary Medicine, Universitat Autònoma de Barcelona Barcelona Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Ulf Smith
- Department of Molecular and Clinical Medicine Sahlgrenska University Hospital Gothenburg Sweden
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU) Trondheim Norway.,Centre of Molecular Inflammation Research (CEMIR) Norwegian University of Science and Technology Trondheim Norway.,Department of Hematology St. Olavs Hospital Trondheim Norway
| |
Collapse
|
7
|
Gaihre B, Unagolla JM, Liu J, Ebraheim NA, Jayasuriya AC. Thermoresponsive Injectable Microparticle-Gel Composites with Recombinant BMP-9 and VEGF Enhance Bone Formation in Rats. ACS Biomater Sci Eng 2019; 5:4587-4600. [PMID: 33448832 PMCID: PMC10742348 DOI: 10.1021/acsbiomaterials.9b00082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone morphogenetic protein-9 (BMP-9) has been shown to be the most osteogenic BMP. Most of these experiments, however, involve an adenovirus-transfection strategy. Here, we used the scaffold-based strategy to study the bone forming ability of recombinant BMP-9 combined with vascular endothelial growth factor (VEGF). A robust, injectable, multicomponent-releasing scaffold in the form of a composite gel was developed by combining chitosan microparticles (MPs) with thermosensitive gel (MPs-gel). The MPs acted as the carriers for BMP-9 and the gel was loaded with VEGF. The developed gel consisted of hydrophobic chains of methyl cellulose (MC) and the cross-linked structures of alginate (Alg) and calcium. Gelation was achieved at physiological temperature and thus facilitated the injection and localization of MPs enabling an increased efficacy of incorporated growth factors at the target site. A release profile of incorporated growth factors over a two-week period showed higher release of VEGF at each time point compared to that of BMP-9. Human mesenchymal stem cells (hMSCs) encapsulated within the MPs-gel maintained their viability. BMP-9 enhanced the proliferation of hMSCs along the surface of MPs. Furthermore, BMP-9 potently induced the osteogenic differentiation of encapsulated hMSCs elucidated by the increased alkaline phosphatase (ALP) activity and the higher expression of ALP, collagen 1, and osteocalcin genes. In addition, in vivo experiments demonstrated that MPs-gel with the combination of BMP-9-VEGF could significantly enhance both subcutaneous and cranial bone formation (p < 0.05). Taken together, the results here strongly suggest that BMP-9-VEGF incorporated MPs-gel holds promise as an injectable bone tissue engineering platform.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Bioengineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Janitha M. Unagolla
- Department of Bioengineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jiayong Liu
- Department of Orthopaedic Surgery, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Nabil A. Ebraheim
- Department of Orthopaedic Surgery, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Ambalangodage C. Jayasuriya
- Department of Bioengineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
- Department of Orthopaedic Surgery, University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| |
Collapse
|
8
|
BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics 2019; 11:pharmaceutics11080393. [PMID: 31387267 PMCID: PMC6723260 DOI: 10.3390/pharmaceutics11080393] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) is a potent growth factor affecting bone formation. While recombinant human BMP-2 (rhBMP-2) has been commercially available in cases of non-union fracture and spinal fusion in orthopaedics, it has also been applied to improve bone regeneration in challenging cases requiring dental implant treatment. However, complications related to an initially high dosage for maintaining an effective physiological concentration at the defect site have been reported, although an effective and safe rhBMP-2 dosage for bone regeneration has not yet been determined. In contrast to protein delivery, BMP-2 gene transfer into the defect site induces BMP-2 synthesis in vivo and leads to secretion for weeks to months, depending on the vector, at a concentration of nanograms per milliliter. BMP-2 gene delivery is advantageous for bone wound healing process in terms of dosage and duration. However, safety concerns related to viral vectors are one of the hurdles that need to be overcome for gene delivery to be used in clinical practice. Recently, commercially available gene therapy has been introduced in orthopedics, and clinical trials in dentistry have been ongoing. This review examines the application of BMP-2 gene therapy for bone regeneration in the oral and maxillofacial regions and discusses future perspectives of BMP-2 gene therapy in dentistry.
Collapse
|
9
|
Goker F, Larsson L, Del Fabbro M, Asa'ad F. Gene Delivery Therapeutics in the Treatment of Periodontitis and Peri-Implantitis: A State of the Art Review. Int J Mol Sci 2019; 20:ijms20143551. [PMID: 31330797 PMCID: PMC6679027 DOI: 10.3390/ijms20143551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory condition that affects supporting tissues around teeth, resulting in periodontal tissue breakdown. If left untreated, periodontal disease could have serious consequences; this condition is in fact considered as the primary cause of tooth loss. Being highly prevalent among adults, periodontal disease treatment is receiving increased attention from researchers and clinicians. When this condition occurs around dental implants, the disease is termed peri-implantitis. Periodontal regeneration aims at restoring the destroyed attachment apparatus, in order to improve tooth stability and thus reduce disease progression and subsequent periodontal tissue breakdown. Although many biomaterials have been developed to promote periodontal regeneration, they still have their own set of disadvantages. As a result, regenerative medicine has been employed in the periodontal field, not only to overcome the drawbacks of the conventional biomaterials but also to ensure more predictable regenerative outcomes with minimal complications. Regenerative medicine is considered a part of the research field called tissue engineering/regenerative medicine (TE/RM), a translational field combining cell therapy, biomaterial, biomedical engineering and genetics all with the aim to replace and restore tissues or organs to their normal function using in vitro models for in vivo regeneration. In a tissue, cells are responding to different micro-environmental cues and signaling molecules, these biological factors influence cell differentiation, migration and cell responses. A central part of TE/RM therapy is introducing drugs, genetic materials or proteins to induce specific cellular responses in the cells at the site of tissue repair in order to enhance and improve tissue regeneration. In this review, we present the state of art of gene therapy in the applications of periodontal tissue and peri-implant regeneration. PURPOSE We aim herein to review the currently available methods for gene therapy, which include the utilization of viral/non-viral vectors and how they might serve as therapeutic potentials in regenerative medicine for periodontal and peri-implant tissues.
Collapse
Affiliation(s)
- Funda Goker
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy
| | - Farah Asa'ad
- Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
10
|
Yang K, Miron RJ, Bian Z, Zhang YF. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice. Bone 2018; 114:40-49. [PMID: 29883786 DOI: 10.1016/j.bone.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Osteoporosis is a serious health problem worldwide. Semaphorins (Sema) have been described as key molecules involved in the cross-talk between bone cells (osteoblasts/osteoclasts). In this study, we investigated whether plasmid containing Sema3a could ameliorate bone loss in an ovariectomized (OVX) mouse model via (AspSerSer)6, a selectively bone-targeting moiety. Plasmid pcDNA3.1(+)-Sema3a-GFP was fabricated and transfected cells with the plasmid demonstrated statistically higher levels of Sema3A in vitro (p < 0.001). Mice were ovariectomized and injected twice weekly with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP for four weeks. The aim of the study was twofold: firstly to design an effective bone-targeting drug-delivery system (AspSerSer)6. Secondly, the effects of Sem3A gene therapy on bone loss was investigated. Here, the targeting selectivity of pcDNA3.1(+)-Sema3a-GFP via (AspSerSer)6 to the trabecular bone surface was firstly verified by histological observation of frozen sections and immunofluorescence staining. Then, bone microstructure analysis by Micro-CT indicated significantly less bone loss in mice treated with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP compared to the control group (p < 0.05). Furthermore,H&E staining and Safranin O staining of the decalcified sections demonstrated statistically significantly higher bone area/total area in the mice that were injected with (AspSerSer)6-(STR-R8)+pcDNA3.1(+)-Sema3a-GFP (p < 0.001, p < 0.01,respectively). TRAP staining and immunohistochemistry staining of COL I demonstrated lower numbers of osteoclasts and significantly increased numbers of osteoblasts in the bone-targeting moiety delivering pcDNA3.1(+)-Sema3a-GFP group, when compared to the control group (p < 0.01, p < 0.001,respectively). Together, our findings have identified that, (AspSerSer)6, a bone-targeting drug-delivery system based on semaphorin3A gene therapy, ameliorated bone loss in osteoporotic ovariectomized mice, by suppressing osteoclastic bone resorption and simultaneously increasing osteoblastic bone formation. Gene therapy by local site-specific Sema3A overexpression might be a potential new strategy for treating osteoporosis and bone defects.
Collapse
Affiliation(s)
- K Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - R J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, Cell Therapy Institute, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Y F Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
In vitro evaluation of a lentiviral two-step transcriptional amplification system using GAL4FF transactivator for gene therapy applications in bone repair. Gene Ther 2018; 25:260-268. [PMID: 29907876 DOI: 10.1038/s41434-018-0024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023]
Abstract
In this study, we developed a lentiviral two-step transcriptional amplification (TSTA) system expressing bone morphogenetic protein-2 (BMP-2) under the control of a GAL4FF transactivator to enhance gene expression and limit toxicity for bone repair applications. To this end human MSCs, isolated from bone marrow or adipose tissue, were transduced overnight with a LV-TSTA system (GAL4FF or GAL4vp16) expressing BMP-2 or GFP and evaluated in vitro for transduction efficiency, mean fluorescence intensity, cell viability, and BMP-2 production. FACS analysis of GFP-transduced MSCs confirmed successful transduction with the GAL4FF+GFP vector. Moreover, ELISA demonstrated abundant BMP-2 production by GAL4FF+BMP2-transduced human MSCs over a period of 8 weeks, with minimal cytotoxicity at all time points. Compared to GAL4vp16, GAL4FF was superior with respect to BMP production at 1, 2, 4, 6, and 8 weeks in BMSCs. In ASCs, GAL4FF was still associated with higher BMP-2 production at weeks 2-8, but this difference was not as prominent as in BMSCs. To our knowledge, this is the first report of GAL4FF-mediated BMP-2 production by human BMSCs and ASCs. Compared to the standard GAL4vp16TSTA vector, GAL4FF was associated with lower cytotoxicity and higher in vitro gene expression in both BMSCs and ASCs.
Collapse
|
12
|
Munsell EV, Kurpad DS, Freeman TA, Sullivan MO. Histone-targeted gene transfer of bone morphogenetic protein-2 enhances mesenchymal stem cell chondrogenic differentiation. Acta Biomater 2018; 71:156-167. [PMID: 29481871 PMCID: PMC5899933 DOI: 10.1016/j.actbio.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/27/2023]
Abstract
Skeletal tissue regeneration following traumatic injury involves a complex cascade of growth factor signals that direct the differentiation of mesenchymal stem cells (MSCs) within the fracture. The necessity for controlled and localized expression of these factors has highlighted the role gene therapy may play as a promising treatment option for bone repair. However, the design of nanocarrier systems that negotiate efficient intracellular trafficking and nuclear delivery represents a significant challenge. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and activating DNA transcription. We previously established the ability to recapitulate these natural histone tail activities within non-viral nanocarriers, improving gene transfer and expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. Herein, we demonstrate that histone-targeting leads to ∼4-fold enhancements in osteogenic bone morphogenetic protein-2 (BMP-2) expression by MSCs over 6 days, as compared with standard polymeric transfection reagents. This improved expression augmented chondrogenesis, an essential first step in fracture healing. Importantly, significant enhancements of cartilage-specific protein expression were triggered by histone-targeted gene transfer, as compared with the response to treatment with equivalent amounts of recombinant BMP-2 protein. In fact, an ∼100-fold increase in recombinant BMP-2 was required to achieve similar levels of chondrogenic gene and protein expression. The enhancements in differentiation achieved using histone-targeting were in part enabled by an increase in transcription factor expression, which functioned to drive MSC chondrogenesis. These novel findings demonstrate the utility of histone-targeted gene transfer strategies to enable substantial reductions in BMP-2 dosing for bone regenerative applications. STATEMENT OF SIGNIFICANCE This contribution addresses significant limitations in non-viral gene transfer for bone regenerative applications by exploiting a novel histone-targeting approach for cell-triggered delivery that induces osteogenic BMP-2 expression coincident with the initiation of bone repair. During repair, proliferating MSCs respond to a complex series of growth factor signals that direct their differentiation along cellular lineages essential to mature bone formation. Although these MSCs are ideal targets for enhanced transfection during cellular mitosis, few non-viral delivery approaches exist to enable maximization of this effect. Accordingly, this contribution seeks to utilize our histone-targeted nanocarrier design strategy to stimulate BMP-2 gene transfer in dividing MSCs. This gene-based approach leads to significantly augmented MSC chondrogenesis, an essential first step in bone tissue repair.
Collapse
Affiliation(s)
- Erik V Munsell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| | - Deepa S Kurpad
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Theresa A Freeman
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| |
Collapse
|
13
|
Gene Therapy Strategies in Bone Tissue Engineering and Current Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:85-101. [DOI: 10.1007/5584_2018_253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Madrigal JL, Stilhano R, Silva EA. Biomaterial-Guided Gene Delivery for Musculoskeletal Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:347-361. [PMID: 28166711 PMCID: PMC5749599 DOI: 10.1089/ten.teb.2016.0462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy is a promising strategy for musculoskeletal tissue repair and regeneration where local and sustained expression of proteins and/or therapeutic nucleic acids can be achieved. However, the musculoskeletal tissues present unique engineering and biological challenges as recipients of genetic vectors. Targeting specific cell populations, regulating expression in vivo, and overcoming the harsh environment of damaged tissue accompany the general concerns of safety and efficacy common to all applications of gene therapy. In this review, we will first summarize these challenges and then discuss how biomaterial carriers for genetic vectors can address these issues. Second, we will review how limitations specific to given vectors further motivate the utility of biomaterial carriers. Finally, we will discuss how these concepts have been combined with tissue engineering strategies and approaches to improve the delivery of these vectors for musculoskeletal tissue regeneration.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Roberta Stilhano
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California , Davis, Davis, California
| |
Collapse
|
15
|
Pan T, Song W, Gao H, Li T, Cao X, Zhong S, Wang Y. miR-29b-Loaded Gold Nanoparticles Targeting to the Endoplasmic Reticulum for Synergistic Promotion of Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19217-19227. [PMID: 27399270 DOI: 10.1021/acsami.6b02969] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Precise control of stem cells, such as human bone marrow-derived mesenchymal stem cells (hMSCs), is critical for the development of effective cellular therapies for tissue engineering and regeneration medicine. Emerging evidence suggests that several miRNAs act as key regulators of diverse biological processes, including differentiation of various stem cells. In this study, we have described a delivery system for miR-29b using PEI-capped gold nanoparticles (AuNPs) to synergistically promote osteoblastic differentiation. The cell proliferation assay revealed that AuNPs and AuNPs/miR-29b exert negligible cytotoxicity to hMSCs and MC3T3-E1 cells. With the assistance of AuNPs as a delivery vector, miR-29b could efficiently enter the cytoplasm and regulate osteogenesis. AuNPs/miR-29b more effectively promoted osteoblast differentiation and mineralization through induced the expression of osteogenesis genes (RUNX2, OPN, OCN, ALP) for the long-term, compared to the widely used commercial transfection reagent, Lipofectamine. With no obvious cytotoxicity, PEI-capped AuNPs showed great potential as an adequate miRNA vector for osteogenesis differentiation. Interestingly, we observed loading of AuNPs as well as AuNPs/miR-29b into the lumen of the endoplasmic reticulum (ER). Our findings collectively suggest that AuNPs, together with miR-29b, exert a synergistic promotory effect on osteogenic differentiation of hMSCs and MC3T3-E1 cells.
Collapse
Affiliation(s)
- Ting Pan
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Wenjing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Tianjie Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| | - Shizhen Zhong
- School of Basic Medical Sciences, Southern Medical University , Guangzhou 510515, People's Republic of China
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, 510006, China
| |
Collapse
|
16
|
Kim H, Nam K, Nam JP, Kim HS, Kim YM, Joo WS, Kim SW. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs). J Control Release 2015; 220:222-228. [DOI: 10.1016/j.jconrel.2015.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023]
|
17
|
Fu TS, Chang YH, Wong CB, Wang IC, Tsai TT, Lai PL, Chen LH, Chen WJ. Mesenchymal stem cells expressing baculovirus-engineered BMP-2 and VEGF enhance posterolateral spine fusion in a rabbit model. Spine J 2015; 15:2036-44. [PMID: 25463976 DOI: 10.1016/j.spinee.2014.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/11/2014] [Accepted: 11/05/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Mesenchymal stem cell (MSC)-based cell therapy and gene transfer have converged and show great potential for accelerating bone healing. Gene therapy can provide more sustained expression of osteogenic factors such as bone morphogenetic protein-2 (BMP-2). We previously demonstrated that low-dose BMP-2 enhanced spinal posterolateral fusion by MSCs in a rabbit model. Herein, we genetically modified rabbit MSCs with a recombinant baculovirus encoding BMP-2 (Bac-CB) and vascular endothelial growth factor (Bac-VEGF) seeded into porous scaffolds to enhance spinal fusion. PURPOSE This study evaluates the success rate of the MSC-based cell therapy and gene transfer approach for single-level posterolateral spine fusion. We hypothesize that combining three-dimensional tricalcium phosphate (TCP) scaffolds and genetically modified allogeneic MSCs with baculovirus-mediated growth factor expression would increase the success rate of spinal fusion. STUDY DESIGN The study design was based on an animal model (approved by the Institutional Animal Care and Use Committee) using 18 adult male New Zealand rabbits. METHODS This study included 18 male New Zealand rabbits, weighing 3.5 to 4 kg. Allogeneic bone marrow-derived MSCs were isolated and genetically modified with Bac-CB and Bac-CV seeded onto TCP scaffolds (MSC/Bac/TCP). The animals were divided into three groups according to the material implanted into the bilateral L4-L5 intertransverse space: TCP scaffold (n=6), MSC/TCP (n=6), and MSC/Bac/TCP (n=6). After 12 weeks, the rabbits were euthanized for radiographic examination, manual palpation, and histologic study. RESULTS Bilateral fusion areas in each animal were evaluated independently. The radiographic fusion rates at 12 sites were 0 of 12 in the TCP scaffold group, 4 of 12 in the MSC/TCP group, and 10 of 12 in the MSC/Bac/TCP group. By manual palpation, there were zero solid fusions in the TCP scaffold group, two solid fusions in the MSC/TCP group, and five solid fusions in the MSC/Bac/TCP group. Fusion rates were significantly greater in the MSC/Bac/TCP group. CONCLUSIONS The results indicate the potential of using baculovirus as a vector for gene/cell therapy approaches to improve bone healing and support the feasibility of using allogeneic MSCs for inducing bone formation and intertransverse process fusion.
Collapse
Affiliation(s)
- Tsai-Sheng Fu
- Department of Orthopaedic Surgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 7F, No. 222, Maijin Rd, Keelung 20401, Taiwan.
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Chak-Bor Wong
- Department of Orthopaedic Surgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 7F, No. 222, Maijin Rd, Keelung 20401, Taiwan
| | - I-Chun Wang
- Department of Orthopaedic Surgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 7F, No. 222, Maijin Rd, Keelung 20401, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Lih-Huei Chen
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| | - Wen-Jer Chen
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Chang Gung University, No. 5, Fusing St., Gueishan, Taoyuan 333, Taiwan
| |
Collapse
|
18
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
19
|
Li KC, Chang YH, Lin CY, Hwang SM, Wang TH, Hu YC. Preclinical Safety Evaluation of ASCs Engineered by FLPo/Frt-Based Hybrid Baculovirus: In Vitro and Large Animal Studies. Tissue Eng Part A 2015; 21:1471-82. [DOI: 10.1089/ten.tea.2014.0465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Zhang Y, Miron RJ, Li S, Shi B, Sculean A, Cheng X. Novel MesoPorous BioGlass/silk scaffold containing adPDGF-B and adBMP7 for the repair of periodontal defects in beagle dogs. J Clin Periodontol 2015; 42:262-71. [PMID: 25580515 DOI: 10.1111/jcpe.12364] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Implantology; School of Stomatology; Wuhan University; Wuhan China
| | - Richard J. Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| | - Sue Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral Implantology; School of Stomatology; Wuhan University; Wuhan China
| | - Anton Sculean
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| | - Xiangrong Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
21
|
Drug delivery in aortic valve tissue engineering. J Control Release 2014; 196:307-23. [DOI: 10.1016/j.jconrel.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
|
22
|
Aino M, Nishida E, Fujieda Y, Orimoto A, Mitani A, Noguchi T, Makino H, Murakami S, Umezawa A, Yoneda T, Saito M. Isolation and characterization of the human immature osteoblast culture system from the alveolar bones of aged donors for bone regeneration therapy. Expert Opin Biol Ther 2014; 14:1731-44. [PMID: 25241883 DOI: 10.1517/14712598.2014.960387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Establishment of human osteoblast cultures that retain bone-forming capacity is one of the prerequisites for successful bone regeneration therapy. Because osteoblasts harvested from adults exhibit limited growth, the use of immature osteoblasts that can expand ex vivo should greatly facilitate bone regeneration therapy. In this study, we developed immature human osteoblasts isolated from aged alveolar bone (HAOBs). METHODS HAOBs obtained after the collagenase digestion of alveolar bones from elderly donors. Then, we assessed osteogenic ability of HAOB after treatment with recombinant human bone morphogenic protein-2 or transplantation into immunodeficient mice. In addition, we performed global gene expression analysis to identify functional marker for HAOB. RESULTS HAOBs, which can differentiate into osteoblasts and have a robust bone-forming ability, were successfully extracted from donors who were > 60 years of age. We found that the HAOBs exhibited a higher osteogenic ability compared with those of human mesenchymal stem cells and highly expressed NEBULETTE (NEBL) with osteogenic abilities. CONCLUSIONS HAOBs have properties similar to those of human immature osteoblasts and appear to be a novel material for cell-based bone regeneration therapy. Additionally, the expression level of NEBL may serve as a marker for the osteogenic ability of these cells.
Collapse
Affiliation(s)
- Makoto Aino
- Aichi-gakuin University, School of Dentistry, Department of Periodontology , Nagoya, Aichi , Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abdul Halim NSS, Fakiruddin KS, Ali SA, Yahaya BH. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell. Int J Mol Sci 2014; 15:15044-60. [PMID: 25162825 PMCID: PMC4200830 DOI: 10.3390/ijms150915044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/17/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
Collapse
Affiliation(s)
| | - Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Jalan Pahang 50588, Malaysia.
| | - Syed Atif Ali
- Cluster for Oncological and Radiological Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang 13200, Malaysia.
| |
Collapse
|
24
|
Cheng G, Li ZB. The root canal system: a channel through which we can seed cells into grafts. Med Sci Monit 2014; 20:624-7. [PMID: 24736331 PMCID: PMC3999076 DOI: 10.12659/msm.890057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bone tissue engineering is bringing hope to patients with jawbone defects, but this technology works well only for small- to moderate-sized jawbone defects. For large segmental jawbone defects, it is difficult to form the functional vascular networks within the graft due to limited diffusion of nutrition and uneven distribution of seed cells. From the standpoint of bionics, seed cells should be continuously transmitted into the graft to replace the necrotic cells during the entire process of bones regeneration. However, the existing one-time inoculation method (OIM) fails to achieve this goal because it is almost impossible to re-open the wound and inoculate cells into grafts that have already been implanted into the body. Inspired by the anatomical structure of jawbones, we hypothesize that the root canal in teeth of jawbones could be used as a channel through which seed cells could be delivered into the graft. Therefore, the multiple-times inoculation method (MIM) could be achieved via the root canal system if defects are located on the maxillofacial bones with teeth. Both osteogenesis and vascularization would be promoted to a large extent because the engineered construct has a limitless supply of seed cells and growth factors.
Collapse
Affiliation(s)
- Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China (mainland)
| | - Zu-Bing Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China (mainland)
| |
Collapse
|
25
|
Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 2014; 35:4901-10. [PMID: 24674465 DOI: 10.1016/j.biomaterials.2014.02.055] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/28/2014] [Indexed: 12/11/2022]
Abstract
Repair of large calvarial bony defect remains a challenge for orthopedic surgeons. Since microRNAs (miRNAs) modulate the osteogenesis of osteoprogenitor cells, we aimed to engineer human adipose-derived stem cells (hASCs), a promising cell source for bone engineering, with miRNA-expressing baculovirus vectors. We constructed 4 baculoviruses each expressing 1 human miRNA (miR-26a, miR-29b, miR-148b, miR-196a) and verified that the miRNA-expressing baculovirus vectors augmented hASCs osteogenesis. Among these 4 miRNAs, miR-148b and miR-196a exerted more potent osteoinductive effects than miR-26a and miR-29b. Furthermore, we unveiled that co-transduction of hASCs with miR-148b-expressing and bone morphogenetic protein 2 (BMP-2)-expressing baculovirus vectors enhanced and prolonged BMP-2 expression, and synergistically promoted the in vitro osteogenic differentiation of hASCs. Implantation of the hASCs co-expressing BMP-2/miR-148b into critical-size (4 mm in diameter) calvarial bone defects in nude mice accelerated and potentiated the bone healing and remodeling, filling ≈94% of defect area and ≈89% of defect volume with native calvaria-like flat bone in 12 weeks, as judged from micro computed tomography, histology and immunohistochemical staining. Altogether, this study confirmed the feasibility of combining miRNA and growth factor expression for synergistic stimulation of in vitro osteogenesis and in vivo calvarial bone healing.
Collapse
|
26
|
Takafuji M, Kitaura K, Nishiyama T, Govindarajan S, Gopal V, Imamura T, Ihara H. Chemically tunable cationic polymer-bonded magnetic nanoparticles for gene magnetofection. J Mater Chem B 2014; 2:644-650. [DOI: 10.1039/c3tb21290d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluates the efficiency of novel non-viral vectors consisting of super paramagnetic iron oxide nanoparticles functionalized with the chemically tunable cationic polymer forin vitrogene magnetofection.
Collapse
Affiliation(s)
- Makoto Takafuji
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto 860-8555, Japan
- Kumamoto Institute for Photo-Electro Organics (Phoenics)
- Kumamoto, Japan
| | - Kumiko Kitaura
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto 860-8555, Japan
| | - Takuro Nishiyama
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto 860-8555, Japan
| | | | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology
- Hyderabad 500 007, India
| | - Takashi Imamura
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto 860-8555, Japan
- The Chemo-Sero-Therapeutic Research Institute
- Kikuchi Research Center
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Kumamoto 860-8555, Japan
- Kumamoto Institute for Photo-Electro Organics (Phoenics)
- Kumamoto, Japan
| |
Collapse
|
27
|
Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31:1695-706. [DOI: 10.1016/j.biotechadv.2013.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
|
28
|
Wang B, Huang S, Pan L, Jia S. Enhancement of bone formation by genetically engineered human umbilical cord-derived mesenchymal stem cells expressing osterix. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:e221-9. [PMID: 22819334 DOI: 10.1016/j.oooo.2011.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The aim of this study was to investigate if overexpression of osterix (Osx) in human umbilical cord-derived mesenchymal stem cells (UC-MSCs) would facilitate osteogenic differentiation in bone regeneration. STUDY DESIGN UC-MSCs were isolated from UCs. A pEGFP-Osx plasmid was constructed and applied to transfect UC-MSCs. Cell proliferation, alkaline phosphatase (ALP) activity, and expression of bone-related genes were examined to evaluate the osteogenic potential of UC-MSCs. Bone regeneration in vivo was evaluated in nude mice using PLGA as a carrier. RESULTS Reverse-transcription polymerase chain reaction showed that pEGFP-Osx transfection enhanced expression of bone matrix proteins. Overexpression of Osx in UC-MSCs enhanced ALP activity, while not inhibited their proliferation rate. The Osx-transduced group formed significantly more bone at 4 weeks. CONCLUSIONS Concerning their simple isolation and proliferation, it is believed that genetically engineered UC-MSCs could play important roles in the study and application of bone tissue engineering.
Collapse
Affiliation(s)
- Bin Wang
- Attending Physician, Department of Orthodontics, Hefei Stomatologic Hospital, Hefei, China
| | | | | | | |
Collapse
|
29
|
Chen S, Yang J, Wang H, Chao Y, Zhang C, Shen J, Zhang P. Adenovirus encoding BMP-7 immobilized on titanium surface exhibits local delivery ability and regulates osteoblast differentiation in vitro. Arch Oral Biol 2013; 58:1225-31. [DOI: 10.1016/j.archoralbio.2013.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 03/20/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
|
30
|
The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev 2013; 24:579-92. [PMID: 23838360 DOI: 10.1016/j.cytogfr.2013.05.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023]
Abstract
Angiopoietin-1 and -2 are endogenous ligands for the vascular endothelial receptor tyrosine kinase Tie2. Signalling by angiopoietin-1 promotes vascular endothelial cell survival and the sprouting and reorganisation of blood vessels, as well as inhibiting activation of the vascular endothelial barrier to reduce leakage and leucocyte migration into tissues. Angiopoietin-2 generally has an opposing action, and is released naturally at times of vascular growth and inflammation. There is a significant body of emerging evidence that promoting the actions of angiopoietin-1 through Tie2 is of benefit in pathologies of vascular activation, such as sepsis, stroke, diabetic retinopathy and asthma. Similarly, methods to inhibit the actions of angiopoietin-2 are emerging and have been demonstrated to be of preclinical and clinical benefit in reducing tumour angiogenesis. Here the author reviews the evidence for potential benefits of modulation of the interaction of angiopoietins with Tie2, and the potential applications. Additionally, methods for delivery of the complex protein angiopoietin-1 are discussed, as well as potentially deleterious consequences of administering angiopoietin-1.
Collapse
|
31
|
Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P, Fan X. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials 2013; 34:6717-28. [PMID: 23768901 DOI: 10.1016/j.biomaterials.2013.05.042] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
With the increasing application of microRNAs (miRNAs) in the treatment and monitoring of different diseases, miRNAs have become an important tool in biological and medical research. Recent studies have proven that miRNAs are involved in the osteogenic differentiation of stem cells. However, few studies have reported the use of miRNA-modified adult stem cells to repair critical-sized defects (CSDs) using tissue engineering technology. It is known that miR-31 is a pleiotropically acting miRNA that inhibits cancer metastasis and targets special AT-rich sequence-binding protein 2 (Satb2) in fibroblasts. However, it is not clear whether the function of miR-31 is to enhance adipose tissue-derived stem cell (ASC) osteogenesis, along with its association with Satb2, during osteogenic differentiation and bone regeneration. In this study, we systematically evaluated the function of miR-31 in enhancing ASC osteogenesis and the therapeutic potential of miR-31-modified ASCs in a rat CSD model with β-tricalcium phosphate (β-TCP) scaffolds. ASCs were treated with lentivirus (Lenti)-miR-31, Lenti-as-miR-31 (antisense) or Lenti-NC (negative control). These genetically modified ASCs were then combined with β-TCP scaffolds to repair CSDs in rats. The results showed that in cultured ASCs in vitro, Lenti-as-miR-31 significantly enhanced osteogenic mRNA and protein expression when compared with the Lenti-NC group. Moreover, we firstly found that a Runt-related transcription factor 2 (Runx2), Satb2 and miR-31 regulatory loop triggered by bone morphogenetic protein-2 (BMP-2) plays an important role in ASCs' osteogenic differentiation and bone regeneration. More importantly, we found that miR-31-knockdown ASCs dramatically improved the repair of CSDs, including increased bone volume, increased bone mineral density (BMD) and decreased scaffold residue in vivo. These data confirm the essential role of miR-31-modified ASCs in osteogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kang JW, Park KD, Choi Y, Baek DH, Cho WS, Choi M, Park JH, Choi KS, Kim HS, Yoo TM. Biodistribution and in vivo efficacy of genetically modified human mesenchymal stem cells systemically transplanted into a mouse bone fracture model. Arch Pharm Res 2013; 36:1013-22. [PMID: 23615814 DOI: 10.1007/s12272-013-0132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have generated a great deal of interest in clinical application due to their ability to undergo multi-lineage differentiation. Recently, ex vivo genetic modification of hMSCs was attempted to increase their differentiation potential. The present study was conducted to evaluate the biodistribution and in vivo efficacy of genetically modified hMSCs. To accomplish this, Runx2, which is a key transcription factor associated with osteoblast differentiation, was transduced into hMSCs using lentiviral vectors expressing green fluorescent protein (GFP) or luciferase. Here, we developed an experimental fracture in mice femur to investigate the effects of Runx2-transduced hMSCs on bone healing and migration into injury site. We conducted bio-luminescence imaging (BLI) using luciferase-tagged vector and quantitative real-time PCR using GFP probe to investigate the biodistribution of Runx2-transduced hMSCs in the fracture model. The biodistribution of hMSC cells in the fractured femur was observed at 14 days post-transplantation upon both BLI imaging and real-time PCR. Moreover, the fractured mice transplanted with Runx2-transduced hMSCs showed superior bone healing when compared to mock-transduced hMSC and MRC5 fibroblasts which were used as control. These data suggested that transplanted genetically modified hMSCs systemically migrate to the fractured femur, where they contribute to bone formation in vivo.
Collapse
Affiliation(s)
- Jin Wook Kang
- Biotechnological Development Assistance Team, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chengwon-gun, Chungcheongbuk-do 363-700, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Meder F, Wehling J, Fink A, Piel B, Li K, Frank K, Rosenauer A, Treccani L, Koeppen S, Dotzauer A, Rezwan K. The role of surface functionalization of colloidal alumina particles on their controlled interactions with viruses. Biomaterials 2013; 34:4203-13. [PMID: 23498895 DOI: 10.1016/j.biomaterials.2013.02.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
Abstract
Materials that interact in a controlled manner with viruses attract increasing interest in biotechnology, medicine, and environmental technology. Here, we show that virus-material interactions can be guided by intrinsic material surface chemistries, introduced by tailored surface functionalizations. For this purpose, colloidal alumina particles are surface functionalized with amino, carboxyl, phosphate, chloropropyl, and sulfonate groups in different surface concentrations and characterized in terms of elemental composition, electrokinetic, hydrophobic properties, and morphology. The interaction of the functionalized particles with hepatitis A virus and phages MS2 and PhiX174 is assessed by virus titer reduction after incubation with particles, activity of viruses conjugated to particles, and imaged by electron microscopy. Type and surface density of particle functional groups control the virus titer reduction between 0 and 99.999% (5 log values). For instance, high sulfonate surface concentrations (4.7 groups/nm(2)) inhibit attractive virus-material interactions and lead to complete virus recovery. Low sulfonate surface concentrations (1.2 groups/nm(2)), native alumina, and chloropropyl-functionalized particles induce strong virus-particle adsorption. The virus conformation and capsid amino acid composition further influence the virus-material interaction. Fundamental interrelations between material properties, virus properties, and the complex virus-material interaction are discussed and a versatile pool of surface functionalization strategies controlling virus-material interactions is presented.
Collapse
Affiliation(s)
- Fabian Meder
- Advanced Ceramics, University of Bremen, Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ruan MZC, Guse K, Lee B. Prospects of Gene Therapy. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2013:133-150. [DOI: 10.1016/b978-0-12-387829-8.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
35
|
Kim TH, Kim M, Eltohamy M, Yun YR, Jang JH, Kim HW. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 2012. [PMID: 23184619 DOI: 10.1002/jbm.a.34466] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the ability of aminated mesoporous silica nanoparticles (MSN-NH2) with large mesopore space and positive-charged surface to deliver genes within rat mesenchymal stem cells (MSCs). The amine functionalized inorganic nanoparticles were complexed with bone morphogenetic protein-2 (BMP2) plasmid DNA (pDNA) to study their transfection efficiency in MSCs. Intracellular uptake of the complex BMP2 pDNA/MSN-NH2 occurred significantly, with a transfection efficiency of approximately 68%. Furthermore, over 66% of the transfected cells produced BMP2 protein. The osteogenic differentiation of the transfected MSCs was demonstrated by the expression of bone-related genes and proteins including bone sialoprotein, osteopontin, and osteocalcin. The MSN-NH2 delivery vehicle for BMP2 pDNA developed in this study may be a potential gene delivery system for bone tissue regeneration.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012; 64:1257-76. [PMID: 22626978 PMCID: PMC3425736 DOI: 10.1016/j.addr.2012.05.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/20/2022]
Abstract
Complications in treatment of large bone defects using bone grafting still remain. Our understanding of the endogenous bone regeneration cascade has inspired the exploration of a wide variety of growth factors (GFs) in an effort to mimic the natural signaling that controls bone healing. Biomaterial-based delivery of single exogenous GFs has shown therapeutic efficacy, and this likely relates to its ability to recruit and promote replication of cells involved in tissue development and the healing process. However, as the natural bone healing cascade involves the action of multiple factors, each acting in a specific spatiotemporal pattern, strategies aiming to mimic the critical aspects of this process will likely benefit from the usage of multiple therapeutic agents. This article reviews the current status of approaches to deliver single GFs, as well as ongoing efforts to develop sophisticated delivery platforms to deliver multiple lineage-directing morphogens (multiple GFs) during bone healing.
Collapse
Affiliation(s)
- Manav Mehta
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
37
|
Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012; 64:1292-309. [PMID: 22342771 PMCID: PMC3358582 DOI: 10.1016/j.addr.2012.01.016] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
Abstract
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with pre-programmed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering.
Collapse
Affiliation(s)
- Tiffany N. Vo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| |
Collapse
|
38
|
Zhang Y, Cheng N, Miron R, Shi B, Cheng X. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 2012; 33:6698-708. [PMID: 22763224 DOI: 10.1016/j.biomaterials.2012.06.021] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 06/15/2012] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a chronic disease affecting millions of people worldwide caused by an imbalance between bone-forming osteoblasts and bone-resorbing osteoclasts. Despite recent developments in pharmacological agents to prevent osteoporotic-related fractures, much less attention has been placed on the repair of bone defects following fracture. Critical to this process is the recruitment of mesenchymal stem cells (MSCs) to defect sites by growth factors. One method which has been effective for the sustained release of growth factors is that of gene therapy. The aim of the present study was to investigate newly developed mesoporous bioglass/silk fibrin scaffolds containing adPDGF-b and adBMP-7 into osteoporotic critical-sized femur defects in ovariectomised rats following treatment periods of 2 and 4 weeks. In vivo osteogenetic efficiency evaluated by μ-CT analysis, hematoxylin and eosin staining, and immunohistochemical (type I collagen, osteopontin and BSP) revealed significantly new bone formation in defects containing adenovirus for both PDGF-b and BMP-7 when compared to scaffolds alone and scaffolds containing BMP-7. TRAP-positive staining also demonstrated the ability for these scaffolds to be degraded over time and initiate bone turnover/remodeling. Although the use of gene therapy for clinical applications is still in its infancy, results from the present study demonstrate their potent ability to recruit mesenchymal progenitor cells through sustained release of PDGF-b and BMP-7 which may be beneficial for patients suffering from osteoporotic-related fractures.
Collapse
Affiliation(s)
- Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.
| | | | | | | | | |
Collapse
|
39
|
Deng WW, Cao X, Wang M, Qu R, Su WY, Yang Y, Wei YW, Xu XM, Yu JN. Delivery of a transforming growth factor β-1 plasmid to mesenchymal stem cells via cationized Pleurotus eryngii polysaccharide nanoparticles. Int J Nanomedicine 2012; 7:1297-311. [PMID: 22457592 PMCID: PMC3310408 DOI: 10.2147/ijn.s28010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to investigate the use of cationized Pleurotus eryngii polysaccharide (CPEPS) as a nonviral gene delivery vehicle to transfer plasmid DNA encoding transforming growth factor beta-1 (pTGF-β1) into mesenchymal stem cells (MSCs) in vitro. Crude P. eryngii polysaccharide was purified, and then cationized by grafting spermine onto the backbone of the polysaccharide. Agarose gel electrophoresis, transmission electron microscopy, and a Nano Sense Zetasizer (Malvern Instruments, Malvern, UK) were used to characterize the CPEPS-pTGF-β1 nanoparticles. The findings of cytotoxicity analysis showed that when the nanoparticles were formulated with a CPEPS/pTGF-β1 weight ratio ≥ 10:1, a greater gel retardation effect was observed during agarose gel electrophoresis. The CPEPS-pTGF-β1 nanoparticles with a weight ratio of 20:1, respectively, possessed an average particle size of 80.8 nm in diameter and a zeta potential of +17.4 ± 0.1 mV. Significantly, these CPEPS-pTGF-β1 nanoparticles showed lower cytotoxicity and higher transfection efficiency than both polyethylenimine (25 kDa) (P = 0.006, Student’s t-test) and LipofectamineTM 2000 (P = 0.002, Student’s t-test). Additionally, the messenger RNA expression level of TGF-β1 in MSCs transfected with CPEPS-pTGF-β1 nanoparticles was significantly higher than that of free plasmid DNA-transfected MSCs and slightly elevated compared with that of Lipofectamine 2000-transfected MSCs. Flow cytometry analysis demonstrated that 92.38% of MSCs were arrested in the G1 phase after being transfected with CPEPS-pTGF-β1 nanoparticles, indicating a tendency toward differentiation. In summary, the findings of this study suggest that the CPEPS-pTGF-β1 nanoparticles prepared in this work exhibited excellent transfection efficiency and low toxicity. Therefore, they could be developed into a promising nonviral vector for gene delivery in vitro.
Collapse
Affiliation(s)
- Wen Wen Deng
- Department of Pharmaceutics, School of Pharmacy and Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 2012; 33:3682-92. [PMID: 22361095 DOI: 10.1016/j.biomaterials.2012.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/02/2012] [Indexed: 02/08/2023]
Abstract
Repair of large calvarial bony defects remains clinically challenging because successful spontaneous calvarial re-ossification rarely occurs. Although bone marrow-derived mesenchymal stem cells (BMSCs) genetically engineered with baculovirus (BV) for transient expression of osteogenic/angiogenic factors hold promise for bone engineering, we hypothesized that calvarial bone healing necessitates prolonged growth factor expression. Therefore, we employed a hybrid BV vector system whereby one BV expressed FLP while the other harbored the BMP2 (or VEGF) cassette flanked by Frt sequences. Transduction of rabbit BMSCs with the FLP/Frt-based BV vector led to FLP-mediated episome formation, which not only extended the BMP2/VEGF expression beyond 28 days but augmented the BMSCs osteogenesis. After allotransplantation into rabbits, X-ray, PET/CT, μCT and histological analyses demonstrated that the sustained BMP2/VEGF expression remarkably ameliorated the angiogenesis and regeneration of critical-size (8 mm) calvarial defects, when compared with the group implanted with BMSCs transiently expressing BMP2/VEGF. The prolonged expression by BMSCs accelerated the bone remodeling and regenerated the bone through the natural intramembranous pathway, filling ≈83% of the area and ≈63% of the volume in 12 weeks. These data implicated the potential of the hybrid BV vector to engineer BMSCs for sustained BMP2/VEGF expression and the repair of critical-size calvarial defects.
Collapse
|
41
|
Paul A, Nayan M, Khan AA, Shum-Tim D, Prakash S. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. Int J Nanomedicine 2012; 7:663-82. [PMID: 22334788 PMCID: PMC3278230 DOI: 10.2147/ijn.s26882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The objective of this study was to develop angiopoietin-1 (Ang1)-expressing genetically modified human adipose tissue derived stem cells (hASCs) for myocardial therapy. For this, an efficient gene delivery system using recombinant baculovirus complexed with cell penetrating transactivating transcriptional activator TAT peptide/deoxyribonucleic acid nanoparticles (Bac-NP), through ionic interactions, was used. It was hypothesized that the hybrid Bac- NP(Ang1) system can efficiently transduce hASCs and induces favorable therapeutic effects when transplanted in vivo. To evaluate this hypothesis, a rat model with acute myocardial infarction and intramyocardially transplanted Ang1-expressing hASCs (hASC-Ang1), genetically modified by Bac-NP(Ang1), was used. Ang1 is a crucial pro-angiogenic factor for vascular maturation and neovasculogenesis. The released hAng1 from hASC-Ang1 demonstrated profound mitotic and anti-apoptotic activities on endothelial cells and cardiomyocytes. The transplanted hASC-Ang1 group showed higher cell retention compared to hASC and control groups. A significant increase in capillary density and reduction in infarct sizes were noted in the infarcted hearts with hASC-Ang1 treatment compared to infarcted hearts treated with hASC or the untreated group. Furthermore, the hASC-Ang1 group showed significantly higher cardiac performance in echocardiography (ejection fraction 46.28% ± 6.3%, P < 0.001 versus control, n = 8) than the hASC group (36.35% ± 5.7%, P < 0.01, n = 8), 28 days post-infarction. The study identified Bac-NP complex as an advanced gene delivery vehicle for stem cells and demonstrated its potential to treat ischemic heart disease with high therapeutic index for combined stem cell-gene therapy strategy.
Collapse
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Madhur Nayan
- Divisions of Cardiac Surgery and Surgical Research, The Montreal General Hospital, Montreal, QC, Canada
| | - Afshan Afsar Khan
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dominique Shum-Tim
- Divisions of Cardiac Surgery and Surgical Research, The Montreal General Hospital, Montreal, QC, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Cheng X, Yang T, Meng W, Liu H, Zhang T, Shi R. Overexpression of GDF5 through an adenovirus vector stimulates osteogenesis of human mesenchymal stem cells in vitro and in vivo. Cells Tissues Organs 2012; 196:56-67. [PMID: 22287558 DOI: 10.1159/000330791] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2011] [Indexed: 02/05/2023] Open
Abstract
The use of stem cells combined with gene therapy could be an important way to facilitate bone regeneration. In this study, the aim was to investigate the potential of growth and differentiation factor-5 (GDF5) to genetically manipulate human mesenchymal stem cells (hMSCs) for bone regeneration. Recombinant adenovirus Ad-GDF5 and Ad-GFP were constructed and identified, and the titer of both were determined. Third-passage hMSCs were infected with adenovirus, and the expression of GDF5 was confirmed by detection of GFP-positive cells, GDF5 mRNA levels, Western blotting, and enzyme-linked immunosorbent assay (ELISA). hMSCs at passage 3 were divided into four groups: (1) an experimental group infected with Ad-GDF5, (2) a positive control group cultured with osteogenic differentiation medium, (3) a control group infected with Ad-GFP cultured with standard medium, and (4) a blank control group cultured with standard medium. Evaluation of cell morphology and proliferation, analysis of the expression of genes related to osteogenic differentiation, von Kossa staining, and immunofluorescent staining of collagen I were used to investigate the osteogenesis of cells among the groups. After culturing the cells for 2 days under each corresponding condition, the cells were detached and subcutaneously injected into the backs of nude mice to evaluate bone formation. Samples were collected for histological staining, protein Western blotting, and micro-computer tomography. When infected with Ad-GDF5, hMSCs could overexpress GDF5 for a prolonged period in vitro and reach a concentration of 160 ng/ml. Cells infected with Ad-GDF5 or cultured in osteogenic medium displayed osteogenic differentiation based on their histological and cellular properties and on their gene and protein expression patterns. Furthermore, Ad-GDF5 showed a better ability to upregulate the expression of collagen I, alkaline phosphatase, and osteocalcin mRNA than the osteogenic medium. Furthermore, Ad-GDF5 expression was associated with enhanced bone formation in vivo. Our findings suggest that hMSCs infected with Ad-GDF5 can differentiate in an osteogenic direction and may be a promising cell source for bone regeneration.
Collapse
Affiliation(s)
- Xiangjun Cheng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Scheibe F, Gladow N, Mergenthaler P, Tucker AH, Meisel A, Prockop DJ, Priller J. Nonviral gene delivery of erythropoietin by mesenchymal stromal cells. Gene Ther 2011; 19:550-60. [DOI: 10.1038/gt.2011.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL, Yang ZJ, Luo SL, Tang XP, Li S. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2011; 111:412-9. [PMID: 20813560 DOI: 10.1016/j.tripleo.2010.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/08/2010] [Accepted: 05/13/2010] [Indexed: 01/30/2023]
Abstract
This study was designed to investigate the effects of local delivery of bone marrow mesenchymal stem cells (BMMSCs) with or without osterix (OSX) gene transfected on bone regeneration in the distracted zone using a rabbit model of mandibular lengthening. Fifty-four New Zealand white rabbits underwent osteodistraction of the left mandible and were then randomly divided into group A, group B, and group C (n = 18 for each group). At the end of distraction BMMSCs transfected with OSX, autologous BMMSCs and physiological saline were injected into the distraction gaps in groups A, B, and C, respectively. Nine animals from each group were humanely killed at 2 and 6 weeks after completion of distraction. The distracted mandibles were harvested and processed for radiographic, histological, and immunohistochemical examination. Excellent bone formation in the distracted callus was observed in group A and group B; the former showed better bone formation and highest bone mineral density (BMD), thickness of new trabeculae (TNT, mm) and volumes of the newly formed bone area (NBV) in the distraction zones. Group C animals showed poor bone formation in the distracted callus when compared with groups A and B. Positive immunostaining of bone sialoprotein (BSP) was observed in the distracted callus in all groups; however, BSP expression was much stronger in group A than in groups B and C. The results of this study suggest transplantation of BMMSCs can promote bone formation in DO; OSX-mediated ex vivo gene therapy was more effective during bone deposition and callus formation in distraction osteogenesis.
Collapse
Affiliation(s)
- Qing-Guo Lai
- Department of Oral and Maxillofacial Surgery, Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Im GI, Kim HJ, Lee JH. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 2011; 32:4385-92. [PMID: 21421267 DOI: 10.1016/j.biomaterials.2011.02.054] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/27/2011] [Indexed: 01/27/2023]
Abstract
We developed a chondrogenic scaffold system in which plasmid DNA (pDNA) containing SOX trio (SOX-5, -6, and -9) genes was incorporated into a PLGA scaffold and slowly released to transfect adipose stem cells (ASCs) seeded in the scaffold. The purpose of this study was to test the in vitro and in vivo efficacy of the system to induce chondrogenic differentiation of ASCs. The pDNA/PEI-PEG complex-incorporated PLGA/Pluronic F127 porous scaffolds were fabricated by a precipitation/particulate leaching method. The following five kinds of pDNA were incorporated into the scaffolds: 1) pECFP-C1 vector without an interposed gene (control group); 2) SOX-5 plasmids; 3) SOX-6 plasmids; 4) SOX-9 plasmids; and 5) one-third doses of each plasmid (SOX-5, -6, and -9). ASCs were seeded on pDNA-incorporated PLGA scaffolds and cultured in chondrogenic media for 21 days. ASCs were also isolated from rabbits, seeded in pDNA-incorporated PLGA scaffolds, and then implanted in the osteochondral defect created on the patellar groove. The rabbits were sacrificed and analyzed grossly and microscopically 8 weeks after implantation. The percentage of transfected cells was highest on day 14, around 70%. After 21 days, PLGA scaffolds incorporated with each gene showed markedly increased expression of the corresponding gene and protein. Glycosaminoglycan (GAG) assay and Safranin-O staining showed an increased proteoglycan production in SOX trio pDNA-incorporated scaffolds. The COL2A1 gene and protein were notably increased in SOX trio pDNA-incorporated scaffolds than in the control, while COL10A1 protein expression decreased. Gross and histological findings from the in vivo study showed enhanced cartilage regeneration in ASCs/SOX trio pDNA-incorporated PLGA scaffolds.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Siksa-Dong, Goyang, Republic of Korea.
| | | | | |
Collapse
|
46
|
Rios HF, Lin Z, Oh B, Park CH, Giannobile WV. Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 2011; 82:1223-37. [PMID: 21284553 DOI: 10.1902/jop.2011.100710] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology.
Collapse
Affiliation(s)
- Hector F Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109–1078, USA.
| | | | | | | | | |
Collapse
|
47
|
Lee JS, Lee JM, Im GI. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Biomaterials 2011; 32:760-8. [PMID: 20947160 DOI: 10.1016/j.biomaterials.2010.09.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/19/2010] [Indexed: 12/13/2022]
Abstract
In the present study, we tested the hypothesis that electroporation-mediated transfer of Runx2, Osterix, or both genes enhances the in vitro and in vivo osteogenesis from adipose stem cells (ASCs). ASCs were transfected with Runx2, Osterix, or both genes using electroporation, and further cultured in monolayer or in PLGA scaffold under osteogenic medium for 14 days, then analyzed for in vitro osteogenic differentiation. Transfected ASC-PLGA scaffold hybrids were also implanted on nude mice to test for in vivo ectopic bone formation. Runx2 and Osterix genes were strongly expressed in ASCs transfected with each gene on day 7, decreasing rapidly on day 14. Runx2 protein was strongly expressed in ASCs transfected with the Runx2 gene, while Osterix protein was strongly expressed in ASCs transfected with either or both Runx2 and Osterix genes. Overexpression of Runx2 and Osterix significantly increased the gene expression of osteogenic differentiation markers (alkaline phosphatase [ALP], osteocalcin [OCN], type I collagen [COL1A1], and bone sialoprotein [BSP]) in ASCs. Transfection of Runx2 and Osterix genes enhanced the protein expression of OCN, type I collagen, and BSP, as demonstrated by Western blot analysis, and ALP activity as well as enhancing mineralization in the monolayer culture and ASC-PLGA scaffold hybrids. Runx2- or Osterix-transfected ASC-PLGA scaffold hybrids promoted bone formation in nude mice after 6 weeks of in vivo implantation.
Collapse
Affiliation(s)
- Jai-Sun Lee
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | | | | |
Collapse
|
48
|
Biomolecular strategies of bone augmentation in spinal surgery. Trends Mol Med 2010; 17:215-22. [PMID: 21195666 DOI: 10.1016/j.molmed.2010.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/27/2010] [Accepted: 12/01/2010] [Indexed: 11/22/2022]
Abstract
Autologous bone grafts and allografts are the most accepted procedures for achieving spinal fusion. Recently, breakthroughs in understanding bone biology have led to the development of novel approaches to address the clinical problem of bone regeneration in an unfavorable environment, while bypassing the drawbacks of traditional treatments, including limited availability, donor site morbidity, risk of disease transmission and reduced osteogenicity. These approaches have also been studied for their effectiveness in reaching successful spinal fusion. This review focuses on the cellular and molecular mechanisms explaining the rationale behind these methods, including bone marrow aspirate and mesenchymal stem cells, platelet-rich plasma, bone morphogenetic proteins and gene therapy, which have opened a promising perspective in the field of bone formation in spinal surgery.
Collapse
|
49
|
Hanifi A, Fathi MH, Mir Mohammad Sadeghi H. Effect of strontium ions substitution on gene delivery related properties of calcium phosphate nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2601-2609. [PMID: 20623176 DOI: 10.1007/s10856-010-4123-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
Gene therapy has been considered a strategy for delivery of therapeutic nucleic acids to a specific site. Calcium phosphates are one gene delivery vector group of interest. However, low transfection efficiency has limited the use of calcium phosphate in gene delivery applications. Present work aims at studying the fabrication of strontium substituted calcium phosphate nanoparticles with improved gene delivery related properties. Strontium substituted calcium phosphate was prepared using a simple sol gel method. X-ray diffraction analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, specific surface area analysis, zeta potential measurement and ion release evaluation were used to characterize the samples. This characterization showed strontium and carbonate co-substituted calcium phosphate which resulted in nano size particles with low crystallinity, high specific surface area, positive surface charge, and a high dissolution rate. These improved properties could increase the DNA concentration on the vector as well as the endosomal escape of the complex that leads to higher transfection efficiency of this novel gene delivery vector.
Collapse
Affiliation(s)
- A Hanifi
- Biomaterials Group, Materials Engineering Department, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | | |
Collapse
|
50
|
Abstract
STUDY DESIGN A review and synopsis of recent literature pertinent to allograft bone healing. OBJECTIVE To review the basic principles and primary issues regarding the healing of allograft bone. To review progress made in understanding the molecular mechanisms of healing, and efforts being made to manipulate these processes to enhance healing. SUMMARY OF BACKGROUND DATA Bone grafting with both autografts and allografts is a common reconstructive procedure. Failure to heal and catastrophic failure of seemingly healed structural grafts occur. There is currently a great deal of excitement about the potential of bone marrow-derived cells to enhance healing. Gene transfer techniques have been developed which allow the insertion of desired deoxyribonucleic acid-encoded messages into cells. Such messages can result in the production of therapeutic proteins. Gene therapy has been used to enhance the healing of allografts in a murine model. METHODS Literature review. RESULTS Autografts heal by endochondral ossification at the graft-host interface and by intramembranous bone formation over the surface of the graft. Allografts heal predominately by endochondral ossification at the graft-host interface. The living periosteum of a graft contains progenitor cells that have an important role in graft healing. The addition of bone marrow-derived cells to an allograft does not improve healing unless they are genetically modified to express bone morphogenetic protein 2. Gene therapy to induce expression of several other proteins (VEGF and RANKL, caALK2) can also result in markedly improved allograft healing. CONCLUSION Gene therapy techniques can create revitalized allografts in a mouse model. These revitalized grafts heal faster, more completely, more durably, and stronger than allografts.
Collapse
|