1
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
2
|
Mansouri M, Imes WD, Roberts OS, Leipzig ND. Fabrication of oxygen-carrying microparticles functionalized with liver ECM-proteins to improve phenotypic three-dimensional in vitro liver assembly, function, and responses. Biotechnol Bioeng 2023; 120:3025-3038. [PMID: 37269469 DOI: 10.1002/bit.28456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 06/05/2023]
Abstract
Oxygen and extracellular matrix (ECM)-derived biopolymers play vital roles in regulating many cellular functions in both the healthy and diseased liver. This study highlights the significance of synergistically tuning the internal microenvironment of three-dimensional (3D) cell aggregates composed of hepatocyte-like cells from the HepG2 human hepatocellular carcinoma cell line and hepatic stellate cells (HSCs) from the LX-2 cell line to enhance oxygen availability and phenotypic ECM ligand presentation for promoting the native metabolic functions of the human liver. First, fluorinated (PFC) chitosan microparticles (MPs) were generated with a microfluidic chip, then their oxygen transport properties were studied using a custom ruthenium-based oxygen sensing approach. Next, to allow for integrin engagements the surfaces of these MPs were functionalized using liver ECM proteins including fibronectin, laminin-111, laminin-511, and laminin-521, then they were used to assemble composite spheriods along with HepG2 cells and HSCs. After in vitro culture, liver-specific functions and cell adhesion patterns were compared between groups and cells showed enhanced liver phenotypic responses to laminin-511 and 521 as evidenced via enhanced E-cadherin and vinculin expression, as well as albumin and urea secretion. Furthermore, hepatocytes and HSCs exhibited more pronounced phenotypic arrangements when cocultured with laminin-511 and 521 modified MPs providing clear evidence that specific ECM proteins have distinctive roles in the phenotypic regulation of liver cells in engineering 3D spheroids. This study advances efforts to create more physiologically relevant organ models allowing for well-defined conditions and phenotypic cell signaling which together improve the relevance of 3D spheroid and organoid models.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| | - William D Imes
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Owen S Roberts
- College of Engineering and Polymer Science, The University of Akron, Akron, Ohio, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
3
|
Sonoi R, Hagihara Y. Switching of cell fate through the regulation of cell growth during drug-induced intrahepatic cholestasis. J Biosci Bioeng 2020; 130:659-665. [PMID: 32868186 DOI: 10.1016/j.jbiosc.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Understanding the fundamental mechanisms that govern the fate of cells during drug-induced intrahepatic cholestasis provides strategies for the establishment of evaluation methods for drug screening. In the present study, the aggregates of a differentiated human hepatic cell line, HepaRG, were incubated in medium with Y27632 or bosentan to clarify the changes in the behavior of bile canaliculi (BC) with the growth of cells during drug-induced intrahepatic cholestasis. With elapsed exposure time, the aggregates in the culture with bosentan caused the dilation of BC, and the hepatocytes ultimately exhibited apoptotic death after the disruption of BC. Y27632 caused the disruption of BC in the aggregates after dilation. However, there was no change in the number of cells within the aggregates in the culture with Y27632, in spite of its cytotoxicity. After 144 h from the start of Y27632 exposure, the aggregates showed the rearrangement of BC. To inhibit cell division, the aggregates exposed to Y27632, which exhibited disruption of BC, were treated with mitomycin C for 2 h and continuously exposed to Y27632. The inhibition of cell division could not induce the rearrangement of BC within these aggregates, which was similar to the phenomenon observed in the aggregates exposed to bosentan. These findings indicate that growth is an important factor that influences the switching of cell fate toward survival or death in drug-induced intrahepatic cholestasis process. Thus, the autoregulation of growth is a major contributor to the rearrangement of BC within aggregates.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
4
|
Lee H, Ahn J, Jung C, Jeung Y, Cho H, Son MJ, Chung K. Optimization of 3D hydrogel microenvironment for enhanced hepatic functionality of primary human hepatocytes. Biotechnol Bioeng 2020; 117:1864-1876. [DOI: 10.1002/bit.27328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/03/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ho‐Joon Lee
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Jiwon Ahn
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Cho‐Rock Jung
- Gene Therapy UnitKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
| | - Yun‐Ji Jeung
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Hyun‐Soo Cho
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
| | - Kyung‐Sook Chung
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
- Biomedical Translational Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| |
Collapse
|
5
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
6
|
Shimomura S, Matsuno H, Kinoshita Y, Fujimura S, Tanaka K. Cellular behaviors on polymeric scaffolds with 2D-patterned mechanical properties. Polym J 2018. [DOI: 10.1038/s41428-018-0043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Hoshiba T, Maruyama H, Sato K, Endo C, Kawazoe N, Chen G, Tanaka M. Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2‐Methoxyethyl Acrylate) Analogous Polymers. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Innovative Flex Course for Frontier Organic Materials Systems Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Hiroka Maruyama
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Chiho Endo
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Guoping Chen
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Institute for Materials Chemistry and Engineering Kyushu University 744 Motooka, Nishi‐ku Fukuoka Fukuoka 819‐0395 Japan
| |
Collapse
|
8
|
Hoshiba T, Yoshihiro A, Tanaka M. Evaluation of initial cell adhesion on poly (2-methoxyethyl acrylate) (PMEA) analogous polymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:986-999. [DOI: 10.1080/09205063.2017.1312738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, Yonezawa, Japan
- Innovative Flex Course for Frontier Organic Materials Systems, Yamagata University, Yonezawa, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Ayano Yoshihiro
- Faculty of Engineering, Yamagata University, Yonezawa, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, Yonezawa, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
10
|
HOSHIBA T, TANAKA M. Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. ANAL SCI 2016; 32:1151-1158. [DOI: 10.2116/analsci.32.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashi HOSHIBA
- Frontier Center for Organic Materials, Yamagata University
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Masaru TANAKA
- Frontier Center for Organic Materials, Yamagata University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
11
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Hoshiba T, Otaki T, Nemoto E, Maruyama H, Tanaka M. Blood-Compatible Polymer for Hepatocyte Culture with High Hepatocyte-Specific Functions toward Bioartificial Liver Development. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18096-18103. [PMID: 26258689 DOI: 10.1021/acsami.5b05210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of bioartificial liver (BAL) is expected because of the shortage of donor liver for transplantation. The substrates for BAL require the following criteria: (a) blood compatibility, (b) hepatocyte adhesiveness, and (c) the ability to maintain hepatocyte-specific functions. Here, we examined blood-compatible poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) (PTHFA) as the substrates for BAL. HepG2, a human hepatocyte model, could adhere on PMEA and PTHFA substrates. The spreading of HepG2 cells was suppressed on PMEA substrates because integrin contribution to cell adhesion on PMEA substrate was low and integrin signaling was not sufficiently activated. Hepatocyte-specific gene expression in HepG2 cells increased on PMEA substrate, whereas the expression decreased on PTHFA substrates due to the nuclear localization of Yes-associated protein (YAP). These results indicate that blood-compatible PMEA is suitable for BAL substrate. Also, PMEA is expected to be used to regulate cell functions for blood-contacting tissue engineering.
Collapse
Affiliation(s)
- Takashi Hoshiba
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- ‡International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayuki Otaki
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Eri Nemoto
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroka Maruyama
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- §Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Meng Q, Tao C, Qiu Z, Akaike T, Cui F, Wang X. A hybrid substratum for primary hepatocyte culture that enhances hepatic functionality with low serum dependency. Int J Nanomedicine 2015; 10:2313-23. [PMID: 25848252 PMCID: PMC4376262 DOI: 10.2147/ijn.s75011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell culture systems have proven to be crucial for the in vitro maintenance of primary hepatocytes and the preservation of hepatic functional expression at a high level. A poly-(N-p-vinylbenzyl-4-O-β-D-galactopyranosyl-D-gluconamide) matrix can recognize cells and promote liver function in a spheroid structure because of a specific galactose–asialoglycoprotein receptor interaction. Meanwhile, a fusion protein, E-cadherin-Fc, when incubated with various cells, has shown an enhancing effect on cellular viability and metabolism. Therefore, a hybrid substratum was developed for biomedical applications by using both of these materials to combine their advantages for primary hepatocyte cultures. The isolated cells showed a monolayer aggregate morphology on the coimmobilized surface and displayed higher functional expression than cells on traditional matrices. Furthermore, the hybrid system, in which the highest levels of cell adhesion and hepatocellular metabolism were achieved with the addition of 1% fetal bovine serum, showed a lower serum dependency than the collagen/gelatin-coated surface. Accordingly, this substrate may attenuate the negative effects of serum and further contribute to establishing a defined culture system for primary hepatocytes.
Collapse
Affiliation(s)
- Qingyuan Meng
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China ; Biomaterials Center for Regenerative Medical Engineering, Ibaraki, Japan
| | - Chunsheng Tao
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China ; The 401 Hospital of Chinese People's Liberation Army, Qingdao, People's Republic of China
| | - Zhiye Qiu
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Ibaraki, Japan
| | - Fuzhai Cui
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Zhang S, Zhang B, Chen X, Chen L, Wang Z, Wang Y. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2699-2709. [PMID: 25056199 DOI: 10.1007/s10856-014-5279-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Tissue-engineered liver using primary hepatocytes has been considered a valuable new therapeutic modality as an alternative to whole organ liver transplantation for different liver diseases. The development of clinically feasible liver tissue engineering approaches, however, has been hampered by the poor engraftment efficiency of hepatocytes. We developed a three-dimensional (3D) culture system using a microgravity bioreactor (MB), biodegradable scaffolds and growth-factor-reduced Matrigel to construct a tissue-engineered liver for transplantation into the peritoneal cavity of non-obese diabetic severe combined immunodeficient mice. The number of viable cells in the hepatic tissue constructs was stably maintained in the 3D MB culture system. Hematoxylin-eosin staining and zonula occludens-1 expression revealed that neonatal mouse liver cells were reorganized to form tissue-like structures during MB culture. Significantly upregulated hepatic functions (albumin secretion, urea production and cytochrome P450 activity) were observed in the MB culture group. Post-transplantation analysis indicated that the engraftment efficiency of the hepatic tissue constructs prepared in MB cultures was higher than that of those prepared in the static cultures. Higher level of hepatic function in the implants was confirmed by the expression of albumin. These findings suggest that 3D MB culture systems may offer an improved method for creating tissue-engineered liver because of the higher engraftment efficiency and the reduction of the initial cell function loss.
Collapse
Affiliation(s)
- Shichang Zhang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China,
| | | | | | | | | | | |
Collapse
|
15
|
Shang Y, Tamai M, Ishii R, Nagaoka N, Yoshida Y, Ogasawara M, Yang J, Tagawa YI. Hybrid sponge comprised of galactosylated chitosan and hyaluronic acid mediates the co-culture of hepatocytes and endothelial cells. J Biosci Bioeng 2014; 117:99-106. [DOI: 10.1016/j.jbiosc.2013.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/23/2023]
|
16
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
17
|
Influence of cell culture configuration on the post-cryopreservation viability of primary rat hepatocytes. Biomaterials 2012; 33:829-36. [DOI: 10.1016/j.biomaterials.2011.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/10/2011] [Indexed: 02/08/2023]
|
18
|
Wang L, Kamath A, Frye J, Iwamoto GA, Chun JL, Berry SE. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 2011; 21:1069-89. [PMID: 21793703 DOI: 10.1089/scd.2011.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
19
|
Richter JR, de Guzman RC, Van Dyke ME. Mechanisms of hepatocyte attachment to keratin biomaterials. Biomaterials 2011; 32:7555-61. [DOI: 10.1016/j.biomaterials.2011.06.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
|
20
|
Kikkawa Y, Kataoka A, Matsuda Y, Takahashi N, Miwa T, Katagiri F, Hozumi K, Nomizu M. Maintenance of hepatic differentiation by hepatocyte attachment peptides derived from laminin chains. J Biomed Mater Res A 2011; 99:203-10. [DOI: 10.1002/jbm.a.33176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/17/2011] [Accepted: 05/27/2011] [Indexed: 12/16/2022]
|
21
|
Current development of bioreactors for extracorporeal bioartificial liver (Review). Biointerphases 2011; 5:FA116-31. [PMID: 21171705 DOI: 10.1116/1.3521520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The research and development of extracorporeal bioartificial liver is gaining pace in recent years with the introduction of a myriad of optimally designed bioreactors with the ability to maintain long-term viability and liver-specific functions of hepatocytes. The design considerations for bioartificial liver are not trivial; it needs to consider factors such as the types of cell to be cultured in the bioreactor, the bioreactor configuration, the magnitude of fluid-induced shear stress, nutrients' supply, and wastes' removal, and other relevant issues before the bioreactor is ready for testing. This review discusses the exciting development of bioartificial liver devices, particularly the various types of cell used in current reactor designs, the state-of-the-art culturing and cryopreservation techniques, and the comparison among many today's bioreactor configurations. This review will also discuss in depth the importance of maintaining optimal mass transfer of nutrients and oxygen partial pressure in the bioreactor system. Finally, this review will discuss the commercially available bioreactors that are currently undergoing preclinical and clinical trials.
Collapse
|
22
|
Ma Z, Liu Z, Myers DP, Terada LS. Mechanotransduction and anoikis: death and the homeless cell. Cell Cycle 2008; 7:2462-5. [PMID: 18719379 DOI: 10.4161/cc.7.16.6463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Developed organs display strict spatial organization of differentiated cells which is required for proper organ function. One important device that prevents tissue disorganization is the death of cells that lose anchorage to their native matrix, a signal that indicates potential loss of proper tissue context. Termed anoikis (Greek for Homelessness), this form of cell death is a specialized form of apoptosis. Interestingly, at certain stages of development and tissue repair, cells are required to migrate in an unanchored state, suggesting that anoikis must be strictly regulated at some level. Likewise, cellular transformation is often accompanied by an inappropriate loss of anoikis and subsequent acquisition of a metastatic phenotype. Despite its importance, the molecular pathways involved in the regulation of anoikis and the proximal signals reporting loss of anchorage are poorly understood. Recent studies suggest that attachment may be reported by a mechanosensory testing of the cell's physical environment.
Collapse
Affiliation(s)
- Zhenyi Ma
- The University of Texas Southwestern Medical Center at Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
23
|
Usechak P, Gates A, Webster CR. Activation of focal adhesion kinase and JNK contributes to the extracellular matrix and cAMP-GEF mediated survival from bile acid induced apoptosis in rat hepatocytes. J Hepatol 2008; 49:251-61. [PMID: 18550202 PMCID: PMC2585364 DOI: 10.1016/j.jhep.2008.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Adherence to an extracellular matrix (ECM) rescues hepatocytes from apoptosis, but how hepatocytes adhered to different ECM and respond to apoptotic and cytoprotective stimuli is unknown. METHODS Rat hepatocytes were plated on type 1 collagen (CI), laminin (LM) or polylysine (PL) and the amount of apoptosis induced by glycochenodeoxycholate (GCDC), deoxycholate (DCA), Fas ligand or serum withdrawal was determined by Hoechst staining. The response to cytoprotection by cAMP-guanine exchange factor (cAMP-GEF) activation was determined. Kinase activation was determined by immunoblotting with phosphospecific antibodies. RESULTS Hepatocytes on LM and PL had more apoptosis in response to all apoptotic stimuli. GCDC increased c-jun-N-terminal kinase (JNK) phosphorylation 2-fold in hepatocytes on CI, but 15- and 30-fold in hepatocytes on PL or LM. SP-600125, a JNK inhibitor, prevented LM and PL potentiation of bile acid apoptosis. GCDC induced dephosphorylation of focal adhesion kinase (FAK) was prevented by cAMP-GEF activation. Cytochalasin B which decreased FAK phosphorylation prevented cAMP-GEF cytoprotection. CONCLUSIONS JNK activation augments apoptosis in hepatocytes plated on PL and LM. Decreased FAK phosphorylation as seen in cells treated with bile acids or attached to PL and LM promotes hepatocyte apoptosis.
Collapse
Affiliation(s)
- Paul Usechak
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01539, USA
| | | | | |
Collapse
|
24
|
Cho C, Hoshiba T, Harada I, Akaike T. Regulation of hepatocyte behaviors by galactose-carrying polymers through receptor-mediated mechanism. REACT FUNCT POLYM 2007. [DOI: 10.1016/j.reactfunctpolym.2007.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Takashi H, Katsumi M, Toshihiro A. Hepatocytes maintain their function on basement membrane formed by epithelial cells. Biochem Biophys Res Commun 2007; 359:151-6. [PMID: 17531195 DOI: 10.1016/j.bbrc.2007.05.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
To establish liver tissue engineering, the effective substratum for hepatocytes culture should be developed. Up to now, it is believed that Matrigel, which contains several basement membrane proteins produced by sarcoma cells, is the most effective substratum. Matrigel does not contain extracellular matrix molecules derived from epithelial cells although the space of Disse contains the molecules such as laminin-511/521 (laminin-10/11). Therefore, the basement membrane formed by epithelial cells can be more effective substratum than Matrigel. In this study, we evaluated hepatocytes behavior on basement membrane (rBM) formed by alveolar epithelial cells. The viability of hepatocytes on rBM is higher than that of Matrigel within 5 days. Also, the expression of Cyp1a2 induced by beta-naphthoflavone can be observed in hepatocytes on rBM but not in Matrigel. These results indicate that rBM is a more effective substratum for hepatocyte culture than Matrigel.
Collapse
Affiliation(s)
- Hoshiba Takashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|