1
|
Raiten J, Abd GM, Handelsman SB, Patel HV, Ku JC, Parsons AM, Wassink JL, Hayes SL, Overbay J, Li Y. Hypoxia-induced PD-L1 expression and modulation of muscle stem cell allograft rejection. Front Pharmacol 2024; 15:1471563. [PMID: 39555101 PMCID: PMC11564730 DOI: 10.3389/fphar.2024.1471563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Stem cell therapy has shown immense promise in treating genetic disorders, particularly muscular diseases like Duchenne muscular dystrophy (DMD). This study investigates a novel method to enhance the viability of stem cell transplants in DMD by upregulating Programmed Death Ligand 1 (PD-L1) in muscle stem cells (MuSCs) through preconditioning with hypoxia and/or interferon-γ (IFN-γ) to mitigate T cell immune rejection. MuSCs were treated with 5% hypoxia for 72 h and further treated with IFN-γ to enhance PD-L1 expression. Additionally, gain and loss experiments using a PD-L1 inhibitor (BMS-1) were conducted to investigate cellular expression profiles in vitro and cell transplantation outcomes in vivo. Our results showed significant upregulation of PD-L1 in MuSCs under hypoxia and IFN-γ conditions without affecting cellular proliferation and differentiation in vitro. In vivo, these preconditioned MuSCs led to decreased infiltration of CD4+ and CD8+ T cells in implanted limb muscles of mouse models. Blocking PD-L1 reduced graft survival in muscles treated with MuSCs. Conversely, increased PD-L1 expression and reduced T cell infiltration correlated with improved graft survival, as identified by pre-labeled LacZ + MuSCs following transplantation. This study provides evidence that hypoxia and IFN-γ preconditioning of MuSCs can significantly enhance the efficacy of cell therapy for DMD by mitigating immune rejection. Our strategic approach aimed to improve donor cell survival and function post-transplantation by modifying immune responses towards the donor cells.
Collapse
Affiliation(s)
- Jacob Raiten
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Genevieve M. Abd
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Shane B. Handelsman
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Harshank V. Patel
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Agata M. Parsons
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jonathan L. Wassink
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Sheridan L. Hayes
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Juliana Overbay
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Division of BioMedical Engineering, Department of Surgical Science, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
2
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Ramzan F, Salim A, Hussain A, Khan I. Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
|
4
|
Gupta M, Rathored J. Hyperbaric oxygen therapy: future prospects in regenerative therapy and anti-aging. FRONTIERS IN AGING 2024; 5:1368982. [PMID: 38757145 PMCID: PMC11097100 DOI: 10.3389/fragi.2024.1368982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Hyperbaric Oxygen Therapy (HBOT) utilizes 100% oxygen at high atmospheric pressure for clinical applications. HBOT has proven to be an effective supplementary treatment for a variety of clinical and pathological disorders. HBOT's therapeutic results are based on the physiological effects of increased tissue oxygenation, or improved oxygen bioavailability. HBOT's current indications in illnesses like as wound healing, thermal or radiation burns, and tissue necrosis point to its function in facilitating the regeneration process. Various research has revealed that HBOT plays a function in vascularization, angiogenesis, and collagen production augmentation. Individual regeneration capacity is influenced by both environmental and genetic factors. Furthermore, the regenerating ability of different types of tissues varies, and this ability declines with age. HBOT affects physiological processes at the genetic level by altering gene expression, delaying cell senescence, and assisting in telomere length enhancement. The positive results in a variety of indications, ranging from tissue regeneration to better cognitive function, indicate that it has enormous potential in regenerative and anti-aging therapy.
Collapse
Affiliation(s)
- Manoj Gupta
- Datta Meghe Institute of Medical Sciences, Wardha, India
| | - Jaishriram Rathored
- Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
5
|
Hu W, Chen Y, Tsao C, Chen S, Tzeng C. Development of a multifunctional bioreactor to evaluate the promotion effects of cyclic stretching and electrical stimulation on muscle differentiation. Bioeng Transl Med 2024; 9:e10633. [PMID: 38435819 PMCID: PMC10905532 DOI: 10.1002/btm2.10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
A multifunctional bioreactor was fabricated in this study to investigate the facilitation efficiency of electrical and mechanical stimulations on myogenic differentiation. This bioreactor consisted of a highly stretchable conductive membrane prepared by depositing polypyrrole (PPy) on a flexible polydimethylsiloxane (PDMS) film. The tensile deformation of the PPy/PDMS membrane can be tuned by adjusting the channel depth. In addition, PPy/PDMS maintained its electrical conductivity under continuous cyclic stretching in the strain range of 6.5%-13% for 24 h. This device can be used to individually or simultaneously perform cyclic stretching and electrical stimulation. The results of single stimulation showed that either cyclic stretching or electrical stimulation upregulated myogenic gene expression and promoted myotube formation, where electrical stimulation improved better than cyclic stretching. However, only cyclic stretching can align C2C12 cells perpendicular to the stretching direction, and electrical stimulation did not affect cell morphology. Myosin heavy chain (MHC) immunostaining demonstrated that oriented cells under cyclic stretching resulted in parallel myotubes. The combination of these two stimuli exhibited synergetic effects on both myogenic gene regulation and myotube formation, and the incorporated electrical field did not affect the orientation effect of the cyclic stretching. These results suggested that these two treatments likely influenced cells through different pathways. Overall, the simultaneous application of cyclic stretching and electrical stimulation preserved both stimuli's advantages, so myo-differentiation can be highly improved to obtain abundant parallel myotubes, suggesting that our developed multifunctional bioreactor should benefit muscle tissue engineering applications.
Collapse
Affiliation(s)
- Wei‐Wen Hu
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Yen‐Chi Chen
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Chia‐Wen Tsao
- Department of Mechanical EngineeringNational Central UniversityTaoyuanTaiwan
| | - Shen‐Liang Chen
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| | - Chung‐Yuh Tzeng
- Department of OrthopedicsTaichung Veterans General HospitalTaichungTaiwan
- Department of RehabilitationJen‐Teh Junior College of Medicine, Nursing and ManagementMiaoliTaiwan
- Department of Medicinal Botanicals and Foods on Health ApplicationsDa‐Yeh UniversityChanghuaTaiwan
- Institute of Biomedical SciencesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
6
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
7
|
Zhang L, Hajebrahimi S, Tong S, Gao X, Cheng H, Zhang Q, Hinojosa DT, Jiang K, Hong L, Huard J, Bao G. Force-Mediated Endocytosis of Iron Oxide Nanoparticles for Magnetic Targeting of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37145890 DOI: 10.1021/acsami.2c20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Samira Hajebrahimi
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Haizi Cheng
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Daniel T Hinojosa
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lin Hong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
8
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
9
|
Sun L, Wang Y, Xu D, Zhao Y. Emerging technologies for cardiac tissue engineering and artificial hearts. SMART MEDICINE 2023; 2:e20220040. [PMID: 39188557 PMCID: PMC11235648 DOI: 10.1002/smmd.20220040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 08/28/2024]
Abstract
Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues. As an emerging field blending cell biology and material science, tissue engineering technique allows the construction of biomimetic living complexes as organ substitutes for heart repair. In this review, we will present the recent progress in cardiac tissue engineering and artificial hearts. After introducing the critical elements in cardiac tissue engineering, we will present advanced fabrication methods to achieve scaffolds with desired micro/nanostructure design as well as the applications of these bioinspired scaffolds. We will also discuss the current dilemma and possible development direction from a biomedical perspective.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
10
|
Seval MM, Koyuncu K. Current status of stem cell treatments and innovative approaches for stress urinary incontinence. Front Med (Lausanne) 2022; 9:1073758. [PMID: 36530893 PMCID: PMC9755676 DOI: 10.3389/fmed.2022.1073758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 01/06/2024] Open
Abstract
Stem cells are capable of self-renewal, differentiation, and the promotion of the release of chemokines and progenitor cells essential for tissue regeneration. Stem cells have the potential to develop into specialized cells if given the right conditions, to self-renew and maintain themselves, to generate a large number of new differentiated cells if injured, and to either generate new tissues or repair existing ones. In the last decade, it has become clear that treating lower urinary tract dysfunction with the patient's own adult stem cells is an effective, root-cause method. Regenerative medicine is predicated on the idea that a damaged rhabdosphincter can be repaired, leading to enhanced blood flow and improved function of the sphincter's exterior (striated) and internal (smooth) muscles. Stem cell therapy has the potential to cure stress urinary incontinence according to preclinical models. In contrast, stem cell treatment has not been licensed for routine clinical usage. This article reviews the current state of stem cell for stres urinary incontinence research and recommends future avenues to facilitate practical uses of this potential therapy modality.
Collapse
Affiliation(s)
- Mehmet Murat Seval
- Department of Obstetrics and Gynecology, Ankara University School of Medicine, Ankara, Turkey
| | - Kazibe Koyuncu
- Department of Obstetrics and Gynecology, Medicana Hospital, Istanbul, Turkey
| |
Collapse
|
11
|
Arabzadeh E, Shirvani H, Ebadi Zahmatkesh M, Riyahi Malayeri S, Meftahi GH, Rostamkhani F. Irisin/FNDC5 influences myogenic markers on skeletal muscle following high and moderate-intensity exercise training in STZ-diabetic rats. 3 Biotech 2022; 12:193. [PMID: 35910290 PMCID: PMC9325938 DOI: 10.1007/s13205-022-03253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
In the present study, we investigated the effects of high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) on irisin and expression of myogenic markers (paired box 7 (Pax7), myogenic differentiation 1 (MyoD), myogenin) in skeletal muscle of diabetic rats. Eighty-four male Wistar rats (6 weeks of age) were randomly divided into seven groups (n = 12): basic control (Co Basic), 8 weeks control (Co 8w), diabetes mellitus (DM), HIIT, DM + HIIT, MICT, and DM + MICT groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). TheV ˙ o 2 max protocol was characterized by running on a rodent treadmill with moderate intensity (60-70%V ˙ o 2 max ), 60 min per session, 5 days/week, for 6 weeks. HIIT consisted of six 3-min runs at a high intensity (80-90%V ˙ o 2 max ) alternated with 2-min running at low intensity (50%V ˙ o 2 max ), 30 min per session, 5 days/week, for 6 weeks. Results showed that DM decreased myoblast markers compared to Co Basic and Co 8w groups. Fibronectin type III domain-containing protein 5 (FNDC5) mRNA decrease was correlated with myoblast markers (Pax7 r = 0.632, p = 0.027; MyoD r = 0.999, p = 0.001; myogenin r = 1.000, p = 0.001) in DM group. DM + MICT significantly increased gene expression of MyoD, myogenin, and FNDC5 compared to DM and DM + HIIT. The results also showed that the intensity and duration of exercise on the treadmill were effective in stimulating irisin and myogenic markers after DM.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Shahin Riyahi Malayeri
- Department of Physical Education and Sport Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Rostamkhani
- Department of Biology, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
LncRNA HOTTIP facilitates osteogenic differentiation in bone marrow mesenchymal stem cells and induces angiogenesis via interacting with TAF15 to stabilize DLX2. Exp Cell Res 2022; 417:113226. [DOI: 10.1016/j.yexcr.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
13
|
Li J, Zhang Y, Zhou X, Wang S, Hao R, Han J, Li M, Zhao Y, Chen C, Xu H. Enzymatically functionalized RGD-gelatin scaffolds that recruit host mesenchymal stem cells in vivo and promote bone regeneration. J Colloid Interface Sci 2022; 612:377-391. [PMID: 34998197 DOI: 10.1016/j.jcis.2021.12.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
Critical-size bone defects are imposing a substantial biomedical burden. Despite being long regarded as a potential approach to mitigate this burden or an alternative to bone grafts, bone tissue engineering (BTE) has virtually not proceeded to widespread clinical practices. In the BTE field, it is highly required to find a facile method to prepare active scaffolds with tailored biological functions. Here, we immobilized cell adhesive RGD motifs onto gelatin sponge (GS) scaffolds through enzymatic linking. On the basis of the resulting RGD-functionalized GS (RGD/GS) scaffolds, we developed a new and convenient strategy for bone defect repair, in which the scaffolds were first used to recruit mesenchymal stem cells (MSCs) from skeletal muscle, immediately followed by their engraftment into bone defect. We demonstrated significantly enhanced host cells homing into RGD/GS scaffolds as a result of specific RGD-integrin interactions, and the recruited host cells showed a strong osteogenic differentiation potential. After ectopic implantation of cell-laden RGD/GS scaffolds into critical-size mouse bone defects, marked bone tissue regeneration occurred. The presented strategy not only provides an agile route for the preparation of bioactive scaffolds and the construction of osteoinductive bone-graft substitutes, but also avoids or minimizes the complicated and laborious cell isolation, in vitro expansion and cell seeding procedures used in the conventional BTE.
Collapse
Affiliation(s)
- Junling Li
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Yan Zhang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, 59 Shuilingshan Road, Qingdao 266400, China
| | - Shili Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Ruirui Hao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Ji'nan 250117, China
| | - Yurong Zhao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Cuixia Chen
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Hai Xu
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
14
|
Tseng H, Liu YL, Lu BJ, Chen CH. Immature Testicular Tissue Engineered from Weaned Mice to Adults for Prepubertal Fertility Preservation—An In Vivo Translational Study. Int J Mol Sci 2022; 23:ijms23042042. [PMID: 35216156 PMCID: PMC8880126 DOI: 10.3390/ijms23042042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Male pediatric survivors of cancers and bone marrow transplantation often require adjuvant chemoradiation therapy that may be gonadotoxic. The optimal methods to preserve fertility in these prepubertal males are still under investigation. This manuscript presents an in vivo experiment which involved transplantation of immature testicular tissues (ITT) from transgenic donor, to wild-type recipient mice. Donors and recipients were age-mismatched (from 20-week-old donors to 3-week-old recipients, and vice versa) and the transplantation sites involved the abdomen, skin of the head, back muscle, and scrotum. The application of poly-l-lactic acid (PLLA) scaffold was also evaluated in age-matched donors and recipients (both 3-weeks-old). To quantitively evaluate the process of spermatogenesis after ITT transplantation and scaffold application, bioluminescence imaging (BLI) was employed. Our result showed that ITT from 3-week-old mice had the best potential for spermatogenesis, and the optimal transplantation site was in the scrotum. Spermatogenesis was observed in recipient mice up to 51 days after transplantation, and up to the 85th day if scaffold was used. The peak of spermatogenesis occurred between the 42nd and 55th days in the scaffold group. This animal model may serve as a framework for further studies in prepubertal male fertility preservation.
Collapse
Affiliation(s)
- How Tseng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Liang Liu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan;
| | - Buo-Jia Lu
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Chi-Huang Chen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Cai Z, Liu D, Yang Y, Xie W, He M, Yu D, Wu Y, Wang X, Xiao W, Li Y. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther 2022; 13:28. [PMID: 35073997 PMCID: PMC8785537 DOI: 10.1186/s13287-022-02706-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Sarcopenia is a common age-related skeletal muscle disorder featuring the loss of muscle mass and function. In regard to tissue repair in the human body, scientists always consider the use of stem cells. In skeletal muscle, satellite cells (SCs) are adult stem cells that maintain tissue homeostasis and repair damaged regions after injury to preserve skeletal muscle integrity. Muscle-derived stem cells (MDSCs) and SCs are the two most commonly studied stem cell populations from skeletal muscle. To date, considerable progress has been achieved in understanding the complex associations between stem cells in muscle and the occurrence and treatment of sarcopenia. In this review, we first give brief introductions to sarcopenia, SCs and MDSCs. Then, we attempt to untangle the differences and connections between these two types of stem cells and further elaborate on the interactions between sarcopenia and stem cells. Finally, our perspectives on the possible application of stem cells for the treatment of sarcopenia in future are presented. Several studies emerging in recent years have shown that changes in the number and function of stem cells can trigger sarcopenia, which in turn leads to adverse influences on stem cells because of the altered internal environment in muscle. A better understanding of the role of stem cells in muscle, especially SCs and MDSCs, in sarcopenia will facilitate the realization of novel therapy approaches based on stem cells to combat sarcopenia.
Collapse
Affiliation(s)
- Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, 430056, China
| | - Xiuhua Wang
- Xiang Ya Nursing School, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
16
|
Ding DC, Li PC. Stem-cell therapy in stress urinary incontinence: A review. Tzu Chi Med J 2022. [DOI: 10.4103/tcmj.tcmj_145_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
MacDonald A, Gross A, Jones B, Dhar M. Muscle Regeneration of the Tongue: A review of current clinical and regenerative research strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1022-1034. [PMID: 34693743 DOI: 10.1089/ten.teb.2021.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Various abnormalities of the tongue, including cancers, commonly require surgical removal to sequester growth and metastasis. However, even minor resections can affect functional outcomes such as speech and swallowing, thereby reducing quality of life. Surgical resections alone create volumetric muscle loss whereby muscle tissue cannot self-regenerate within the tongue. In these cases, the tongue is reconstructed typically in the form of autologous skin flaps. However, flap reconstruction has many limitations and unfortunately is the primary option for oral and reconstructive surgeons to treat tongue defects. The alternative, but yet undeveloped strategy for tongue reconstruction is regenerative medicine, which widely focuses on building new organs with stem cells. Regenerative medicine has successfully treated many tissues, but research has inadequately addressed the tongue as a vital organ in need of tissue engineering. In this review, we address the current standard for tongue reconstruction, the cellular mechanisms of muscle cell development, and the stem cell studies that have attempted muscle engineering within the tongue. Until now, no review has focused on engineering the tongue with regenerative medicine, which could guide innovative strategies for tongue reconstruction.
Collapse
Affiliation(s)
- Amber MacDonald
- The University of Tennessee Knoxville College of Veterinary Medicine, 70737, Large Animal Clinical Sciences, 2407 River Drive, Knoxville, Tennessee, United States, 37996-4539;
| | - Andrew Gross
- The University of Tennessee Medical Center, 21823, Knoxville, Tennessee, United States;
| | - Brady Jones
- The University of Tennessee Medical Center, 21823, Knoxville, Tennessee, United States;
| | - Madhu Dhar
- University of Tennessee Knoxville College of Veterinary Medicine, 70737, Large Animal Clinical Sciences, College of Veterinary Medicine, 2407 River Drive, Knoxville, Tennessee, United States, 37996.,University of Tennessee;
| |
Collapse
|
18
|
Scala P, Rehak L, Giudice V, Ciaglia E, Puca AA, Selleri C, Della Porta G, Maffulli N. Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. Int J Mol Sci 2021; 22:10867. [PMID: 34639203 PMCID: PMC8509639 DOI: 10.3390/ijms221910867] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022] Open
Abstract
In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, 50126 Florence, Italy;
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Cardiovascular Research Unit, IRCCS MultiMedica, Via Milanese 300, 20138 Milan, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
19
|
Gilchrist AE, Serrano JF, Ngo MT, Hrnjak Z, Kim S, Harley BAC. Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel. Acta Biomater 2021; 131:138-148. [PMID: 34161871 PMCID: PMC8373770 DOI: 10.1016/j.actbio.2021.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023]
Abstract
Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli through cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), thereby reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report the insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of Sortase A, a mammalian-inert enzyme. Notably, Sortase A exposure preserves stem cell surface markers, which are an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to produce artificial stem cell niches with tunable biophysical properties, intrinsic cell-interaction motifs, and orthogonal addition of bioactive crosslinks. STATEMENT OF SIGNIFICANCE: We describe a maleimide-functionalized gelatin hydrogel that can be crosslinked via a thiol-maleimide mediated click reaction to form a stable hydrogel without the production of reactive oxygen species typical in light-based crosslinking. The mechanical properties can be tuned to match the in vivo bone marrow microenvironment for hematopoietic stem cell culture. Additionally, we report inclusion of a peptide crosslinker that can be cleaved via the proteolytic action of Sortase A and show that Sortase A exposure does not degrade sensitive surface marker expression patterns. Together, this approach reduces stem cell exposure to reactive oxygen species during hydrogel gelation and enables post-culture quantitative assessment of stem cell phenotype.
Collapse
Affiliation(s)
- Aidan E Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Julio F Serrano
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mai T Ngo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zona Hrnjak
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sanha Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Lu A, Guo P, Pan H, Tseng C, Sinha KM, Yang F, Scibetta A, Cui Y, Huard M, Zhong L, Ravuri S, Huard J. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J 2021; 35:e21378. [PMID: 33565161 DOI: 10.1096/fj.202001914r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated. One interesting idea is that pregnancy represents a unique biological model of a naturally shared circulatory system between developing and mature organisms. To test this hypothesis, we evaluated the muscle regeneration potential of pregnant mice using a cardiotoxin (CTX) injury mouse model. Our results indicate that the pregnant mice demonstrate accelerated muscle healing compared to nonpregnant control mice following muscle injury based on improved muscle histology, superior muscle regeneration, and a reduction in inflammation and necrosis. Additionally, we found that MPCs isolated from pregnant mice display a significant improvement of myogenic differentiation capacity in vitro and muscle regeneration in vivo when compared to the MPCs from nonpregnant mice. Furthermore, MPCs from nonpregnant mice display enhanced myogenic capacity when cultured in the presence of serum obtained from pregnant mice. Our proteomics data from these studies provides potential therapeutic targets to enhance the myogenic potential of progenitor cells and muscle repair.
Collapse
Affiliation(s)
- Aiping Lu
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Ping Guo
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chieh Tseng
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna M Sinha
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Scibetta
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ling Zhong
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
21
|
Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021; 22:5929. [PMID: 34072959 PMCID: PMC8198586 DOI: 10.3390/ijms22115929] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey;
| | - Ayca Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Hüseyin Avci
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
- Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
| | - Ali Akpek
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Gözde Yesiltas
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Tuba Canak-Ipek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| |
Collapse
|
22
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Tamaki T. Biomedical applications of muscle-derived stem cells: from bench to bedside. Expert Opin Biol Ther 2020; 20:1361-1371. [PMID: 32643444 DOI: 10.1080/14712598.2020.1793953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Skeletal muscle-derived stem cells (Sk-MDSCs) are considered promising sources of adult stem cell therapy. Skeletal muscle comprises approximately 40-50% of the total body mass with marked potential for postnatal adaptive response, such as muscle hypertrophy, hyperplasia, atrophy, and regenerative capacity. This strongly suggests that skeletal muscle contains various stem/progenitor cells related to muscle-nerve-vascular tissues, which would support the above postnatal events even in adulthood. AREA COVERED The focus of this review is the therapeutic potential of the Sk-MDSCs as an adult stem cell autograft. For this purpose, the validity of cell isolation and purification, tissue reconstitution capacity in vivo after transplantation, comparison of the results of basic mouse and preclinical human studies, potential problematic and beneficial aspects, and effective usage have been discussed following the history of clinical applications. EXPERT OPINION Although the clinical application of Sk-MDSCs began as a therapy for the systemic disease of Duchenne muscular dystrophy, here, through the unique local injection method, therapy for severely damaged peripheral nerves, particularly the long-gap nerve transection, has been introduced. The beneficial aspects of the use of Sk-MDSCs as the source of local tissue transplantation therapy have also been discussed.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Department of Physiology, Tokai University School of Medicine , Isehara, Kanagawa ,Japan
| |
Collapse
|
24
|
Barakat B, Franke K, Schakaki S, Hijazi S, Hasselhof V, Vögeli TA. Stem cell applications in regenerative medicine for stress urinary incontinence: A review of effectiveness based on clinical trials. Arab J Urol 2020; 18:194-205. [PMID: 33029431 PMCID: PMC7473152 DOI: 10.1080/2090598x.2020.1750864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective To evaluate the current state, therapeutic benefit and safety of urethral injection of autologous stem cells for the treatment stress urinary incontinence (SUI). Materials and methods A selective database search of PubMed, the Excerpta Medica dataBASE (EMBASE), Cochrane Library and Google Scholar was conducted to validate the effectiveness of stem cell-based therapy. The search included clinical trials published up until 4 January 2020, written in English, and included cohorts of women and men who had received stem cell-based therapy for SUI. The search used the following keywords in various combinations: ‘stem cell therapy’, ‘cell-based therapy for SUI’, ‘regenerative medicine for SUI’, and ‘tissue engineering’. The success rates were assessed according to cough test, urodynamics, pad tests, and International Consultation on Incontinence Questionnaire-Urinary Incontinence. The primary endpoint was continence rate to measure objectively the effect of the treatment. Results We identified four clinical trials using local injections of adipose-derived stem cells (ADSCs), 11 trails with muscle-derived stem cells (MDSCs), and two trails with human umbilical cord blood stem cells (HUCBs) and total nucleated cells (TNCs). The median improvement rate of intrinsic sphincter deficiency after ADSCs, MDSCs, TNCs, HUCBs injections were 88%, 77%, 89%, 36% (improvement rate: 1–2 pads) at a mean (range) follow-up of 6 (1–72) months. The cell sources, methods of cell processing, cell number, and implantation techniques differed considerably between studies. Most of the periurethral injections were at the 3, 5, 7, and 9 o’clock positions and for submucosa were at the 4, 6, and 8 o’clock positions. No significant postoperative complications were reported. Conclusion Despite many challenges in stem cell-based therapy for treating SUI, it appears to provide, in both male and female patients, acceptable functional results with minimal side-effects and complications. In the future, more clinical trials should be funded in order to optimise stem cell-based therapy and evaluate long-term outcomes. Abbreviations ADSC: adipose-derived stem cell; BMSCs: bone marrow-derived mesenchymal stem cell; CLPP: cough leak-point pressure; FPL: functional profile length; HUCB: human umbilical cord blood stem cell; ICIQ-(QOL)(SF)(UI): International Consultation on Incontinence Questionnaire (Quality of life) (-Urinary incontinence Short Form) (-Urinary Incontinence); IIQ-7: Incontinence Impact Questionnaire-short form; I-QOL: Incontinence quality of life questionnaire; ISD: intrinsic urinary sphincter deficiency; MDSC: muscle-derived stem cell; MUCP: maximum urethral closure pressure; NR: not reported; Pdet-max: maximum detrusor pressure; PVR: post-void residual urine volume; Qmax: maximum urinary flow; QOL: quality of life; RP: radical prostatectomy; TNC: total nucleated cell; (S)UI: (stress) urinary incontinence; UDSCs: urine-derived stem cells; UTUS: upper tract ultrasonography; VLPP: Valsalva leak-point pressure
Collapse
Affiliation(s)
- Bara Barakat
- Department of Urology and Pediatric Urology, Hospital Viersen, Viersen, Germany
| | - Knut Franke
- Department of Urology and Pediatric Urology, Hospital Viersen, Viersen, Germany
| | - Samer Schakaki
- Department of Urology, Hospital Osnabrück, Osnabruck, Germany
| | - Sameh Hijazi
- Department of Urology, Hospital Ibbenbüren, Ibbenbüren, Germany
| | | | - Thomas-Alexander Vögeli
- Department of Urology and Pediatric Urology, Universityhospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
25
|
Sun DZ, Abelson B, Babbar P, Damaser MS. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol 2020; 16:363-375. [PMID: 30923338 DOI: 10.1038/s41585-019-0169-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The extensive arsenal of bioactive molecules secreted by mesenchymal stem cells (MSCs), known as the secretome, has demonstrated considerable therapeutic benefit in regenerative medicine. Investigation into the therapeutic potential of the secretome has enabled researchers to replicate the anti-inflammatory, pro-angiogenic and trophic effects of stem cells without the need for the cells themselves. Furthermore, treatment with the MSC secretome could circumvent hurdles associated with cellular therapy, including oncogenic transformation, immunoreactivity and cost. Thus, a clear rationale exists for investigating the therapeutic potential of the MSC secretome in regenerative urology. Indeed, preclinical studies have demonstrated the therapeutic benefits of the MSC secretome in models of stress urinary incontinence, renal disease, bladder dysfunction and erectile dysfunction. However, the specific mechanisms underpinning therapeutic activity are unclear and require further research before clinical translation. Improvements in current proteomic methods used to characterize the secretome will be necessary to provide further insight into stem cells and their secretome in regenerative urology.
Collapse
Affiliation(s)
- Daniel Z Sun
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA. .,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Benjamin Abelson
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paurush Babbar
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
26
|
Li Z, Xiang S, Li EN, Fritch MR, Alexander PG, Lin H, Tuan RS. Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handb Exp Pharmacol 2020; 265:235-268. [PMID: 33471201 DOI: 10.1007/164_2020_377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Musculoskeletal injuries and associated conditions are the leading cause of physical disability worldwide. The concept of tissue engineering has opened up novel approaches to repair musculoskeletal defects in a fast and/or efficient manner. Biomaterials, cells, and signaling molecules constitute the tissue engineering triad. In the past 40 years, significant progress has been made in developing and optimizing all three components, but only a very limited number of technologies have been successfully translated into clinical applications. A major limiting factor of this barrier to translation is the insufficiency of two-dimensional cell cultures and traditional animal models in informing the safety and efficacy of in-human applications. In recent years, microphysiological systems, often referred to as organ or tissue chips, generated according to tissue engineering principles, have been proposed as the next-generation drug testing models. This chapter aims to first review the current tissue engineering-based approaches that are being applied to fabricate and develop the individual critical elements involved in musculoskeletal organ/tissue chips. We next highlight the general strategy of generating musculoskeletal tissue chips and their potential in future regenerative medicine research. Exemplary microphysiological systems mimicking musculoskeletal tissues are described. With sufficient physiological accuracy and relevance, the human cell-derived, three-dimensional, multi-tissue systems have been used to model a number of orthopedic disorders and to test new treatments. We anticipate that the novel emerging tissue chip technology will continually reshape and improve our understanding of human musculoskeletal pathophysiology, ultimately accelerating the development of advanced pharmaceutics and regenerative therapies.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
27
|
Matre PR, Mu X, Wu J, Danila D, Hall MA, Kolonin MG, Darabi R, Huard J. CRISPR/Cas9-Based Dystrophin Restoration Reveals a Novel Role for Dystrophin in Bioenergetics and Stress Resistance of Muscle Progenitors. Stem Cells 2019; 37:1615-1628. [PMID: 31574188 PMCID: PMC6916636 DOI: 10.1002/stem.3094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
Although the lack of dystrophin expression in muscle myofibers is the central cause of Duchenne muscular dystrophy (DMD), accumulating evidence suggests that DMD may also be a stem cell disease. Recent studies have revealed dystrophin expression in satellite cells and demonstrated that dystrophin deficiency is directly related to abnormalities in satellite cell polarity, asymmetric division, and epigenetic regulation, thus contributing to the manifestation of the DMD phenotype. Although metabolic and mitochondrial dysfunctions have also been associated with the DMD pathophysiology profile, interestingly, the role of dystrophin with respect to stem cells dysfunction has not been elucidated. In the past few years, editing of the gene that encodes dystrophin has emerged as a promising therapeutic approach for DMD, although the effects of dystrophin restoration in stem cells have not been addressed. Herein, we describe our use of a clustered regularly interspaced short palindromic repeats/Cas9‐based system to correct the dystrophin mutation in dystrophic (mdx) muscle progenitor cells (MPCs) and show that the expression of dystrophin significantly improved cellular properties of the mdx MPCs in vitro. Our findings reveal that dystrophin‐restored mdx MPCs demonstrated improvements in cell proliferation, differentiation, bioenergetics, and resistance to oxidative and endoplasmic reticulum stress. Furthermore, our in vivo studies demonstrated improved transplantation efficiency of the corrected MPCs in the muscles of mdx mice. Our results indicate that changes in cellular energetics and stress resistance via dystrophin restoration enhance muscle progenitor cell function, further validating that dystrophin plays a role in stem cell function and demonstrating the potential for new therapeutic approaches for DMD. stem cells2019;37:1615–1628
Collapse
Affiliation(s)
- Polina R Matre
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiaodong Mu
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Jianbo Wu
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Delia Danila
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mary A Hall
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Radbod Darabi
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA.,Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
28
|
Andrew TW, Kanapathy M, Murugesan L, Muneer A, Kalaskar D, Atala A. Towards clinical application of tissue engineering for erectile penile regeneration. Nat Rev Urol 2019; 16:734-744. [PMID: 31649327 DOI: 10.1038/s41585-019-0246-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 11/09/2022]
Abstract
Penile wounds after traumatic and surgical amputation require reconstruction in the form of autologous tissue transfers. However, currently used techniques are associated with high infection rates, implant erosion and donor site morbidity. The use of tissue-engineered neocorpora provides an alternative treatment option. Contemporary tissue-engineering strategies enable the seeding of a biomaterial scaffold and subsequent implantation to construct a neocorpus. Tissue engineering of penile tissue should focus on two main strategies: first, correcting the volume deficit for structural integrity in order to enable urinary voiding in the standing position and second, achieving erectile function for sexual activity. The functional outcomes of the neocorpus can be addressed by optimizing the use of stem cells and scaffolds, or alternatively, the use of gene therapy. Current research in penile tissue engineering is largely restricted to rodent and rabbit models, but the use of larger animal models should be considered as a better representation of the anatomical and physiological function in humans. The development of a cell-seeded scaffold to achieve and maintain erection continues to be a considerable challenge in humans. However, advances in penile tissue engineering show great promise and, in combination with gene therapy and surgical techniques, have the potential to substantially improve patient outcomes.
Collapse
Affiliation(s)
- Tom W Andrew
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.
| | - Muholan Kanapathy
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Log Murugesan
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Asif Muneer
- Department of Urology, University College London Hospital, London, UK
| | - Deepak Kalaskar
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
29
|
Weber FE. Reconsidering Osteoconduction in the Era of Additive Manufacturing. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:375-386. [PMID: 30997857 PMCID: PMC6784493 DOI: 10.1089/ten.teb.2019.0047] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Bone regeneration procedures in clinics and bone tissue engineering stand on three pillars: osteoconduction, osteoinduction, and stem cells. In the last two decades, the focus in this field has been on osteoinduction, which is realized by the use of bone morphogenetic proteins and the application of mesenchymal stem cells to treat bone defects. However, osteoconduction was reduced to a surface phenomenon because the supposedly ideal pore size of osteoconductive scaffolds was identified in the 1990s as 0.3-0.5 mm in diameter, forcing bone formation to occur predominantly on the surface. Meanwhile, additive manufacturing has evolved as a new tool to realize designed microarchitectures in bone substitutes, thereby enabling us to study osteoconduction as a true three-dimensional phenomenon. Moreover, by additive manufacturing, wide-open porous scaffolds can be produced in which bone formation occurs distant to the surface at a superior bony defect-bridging rate enabled by highly osteoconductive pores 1.2 mm in diameter. This review provides a historical overview and an updated definition of osteoconduction and related terms. In addition, it shows how additive manufacturing can be instrumental in studying and optimizing osteoconduction of bone substitutes, and provides novel optimized features and boundaries of osteoconductive microarchitectures. Impact Statement This review updates the definition of osteoconduction and draws clear lines to discriminate between osteoconduction, osseointegration, and osteoinduction. Moreover, additively manufactured libraries of scaffolds revealed that: osteoconduction is more a three-dimensional than a surface phenomenon; microarchitecture dictates defect bridging, which is the measure for osteoconduction; pore diameter or the diagonal of lattice microarchitectures of osteoconductive bone substitutes should be ∼1.2 mm.
Collapse
Affiliation(s)
- Franz E. Weber
- Oral Biotechnology and Bioengineering, Center of Dental Medicine Department of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
31
|
Liu G, Liao C, Chen X, Xu Y, Tan J, Han F, Ye X. Identification and Characterization of Skeletal Muscle Stem Cells from Human Orbicularis Oculi Muscle. Tissue Eng Part C Methods 2019; 24:486-493. [PMID: 29993336 DOI: 10.1089/ten.tec.2018.0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle stem cell (SMSC) transplantation has shown great therapeutical potential in repairing muscle loss and dysfunction, but the muscle acquisition is usually a traumatic procedure causing pain and morbidity to the donor. In this study, we investigated the feasibility of isolating SMSCs from human orbicularis oculi muscle (OOM), which is routinely removed and discarded during ophthalmic cosmetic surgeries. OOM fragments were harvested from 18 female healthy donors undergoing upper eyelid plasties. Plastic-adherent cells were isolated from the muscles using a two-step plating method combined with collagenase digestion. A total of 15 cell cultures were successfully established from the muscle samples. These adherent cells were positive for the specific markers of SMSCs and could be directed toward the osteogenic, adipogenic, chondrogenic, and myogenic phenotypes in the presence of lineage-specific inductive media. Moreover, after cultured in the myogenic inductive medium for 3 weeks, the muscle cells were injected into the tibialis anterior muscles of nude mice and the cell fate was detected using a DiI-labeling technique. In vivo myogenesis was evidenced by the expression of DiI fluorescence after cell transplantation. The donor cells could be found in the satellite cell position and incorporated into the host myofibers. Our results demonstrated that human OOM represents a novel source of myogenic precursors with stem cell-like properties, which may provide a foundation for the SMSC-based therapeutics of skeletal muscle diseases.
Collapse
Affiliation(s)
- Guangpeng Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Caihe Liao
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xi Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Yipin Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Jian Tan
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Fang Han
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xinhai Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
32
|
Muscle-Derived Stem Cell-Enriched Scaffolds Are Capable of Enhanced Healing of a Murine Volumetric Muscle Loss Defect. Plast Reconstr Surg 2019; 143:329e-339e. [PMID: 30531618 DOI: 10.1097/prs.0000000000005273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Volumetric muscle loss secondary to traumatic or surgical causes can lead to functional and aesthetic impairments. The authors hypothesize that an implantable muscle-derived stem cell-enriched collagen scaffold could significantly augment muscle regeneration in a murine model of volumetric muscle loss. METHODS Murine muscle-derived stem cells were isolated using a modified preplating technique and seeded onto type 1 collagen scaffolds to create the muscle-derived stem cell-enriched collagen scaffolds. Murine rectus femoris defects of 5 mm were created and randomized to one of three conditions (n = 6 per group): untreated controls, collagen scaffold only, and muscle-derived stem cell-enriched collagen scaffolds. In vivo muscle healing was quantified using micro-computed tomography. Muscle explants were analyzed using standard histology and whole-mount immunofluorescence at 8 weeks. RESULTS In vivo experiments demonstrated significantly greater quadriceps cross-sectional area in the muscle-derived stem cell-enriched collagen scaffold group compared with controls on micro-computed tomography (0.74 ± 0.21 versus 0.55 ± 0.06 versus 0.49 ± 0.04 ratio of experimental to naive quadriceps cross-sectional area; p < 0.05). Muscle explants of the muscle-derived stem cell-enriched collagen scaffold group demonstrated significantly higher cellular density compared with controls (1185 ± 360 versus 359 ± 62 versus 197 ± 68 nuclei/high-power field; p < 0.01). Immunofluorescence for laminin and myosin heavy chain confirmed formation of organized muscle fibers within the defect of the muscle-derived stem cell-enriched collagen scaffold group only. However, appreciable confocal colocalization of myosin heavy chain with green fluorescent protein expression was low. CONCLUSIONS The results of this study indicate that muscle-derived stem cell-enriched scaffolds significantly improved skeletal muscle regeneration in a murine muscle defect model. Based on the low fluorescent colocalization, host progenitor cells appear to contribute significantly to intradefect myogenesis, suggesting that deployment of a viable muscle-derived stem cell-enriched scaffold stimulates a regenerative mitogen response in native tissues.
Collapse
|
33
|
Kargozar S, Mozafari M, Hamzehlou S, Brouki Milan P, Kim HW, Baino F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES 2019; 9:174. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 144961-4535, Iran
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
34
|
Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 23:515-528. [PMID: 28490258 DOI: 10.1089/ten.teb.2016.0365] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a large variety of bioactive trophic factors that stimulate neighboring parenchymal cells to start repairing damaged tissues. These new findings could potentially replace the classical paradigm of MSC differentiation and cell replacement. These bioactive factors have diverse actions like modulating the local immune system, enhancing angiogenesis, preventing cell apoptosis, and stimulating survival, proliferation, and differentiation of resident tissue specific cells. Therefore, MSCs are referred to as conductors of tissue repair and regeneration by secreting trophic mediators. In this review article, we have summarized the studies that focused on the trophic effects of MSC within the context of tissue regeneration. We will also highlight the various underlying mechanisms used by MSCs to act as trophic mediators. Besides the secretion of growth factors, we discuss two additional mechanisms that are likely to mediate MSC's beneficial effects in tissue regeneration, namely the production of extracellular vesicles and the formation of membrane nanotubes, which can both connect different cells and transfer a variety of trophic factors varying from proteins to mRNAs and miRNAs. Furthermore, we postulate that apoptosis of the MSCs is an integral part of the trophic effect during tissue repair.
Collapse
Affiliation(s)
- Yao Fu
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Lisanne Karbaat
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Ling Wu
- 2 Center for Craniofacial Molecular Biology, University of Southern California , Los Angeles, Los Angeles, California
| | - Jeroen Leijten
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Sanne K Both
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| | - Marcel Karperien
- 1 Developmental BioEngineering, MIRA Institute for Biomedical Technology & Technical Medicine, University of Twente , Enschede, Netherlands
| |
Collapse
|
35
|
Karipott SS, Nelson BD, Guldberg RE, Ong KG. Clinical potential of implantable wireless sensors for orthopedic treatments. Expert Rev Med Devices 2018; 15:255-264. [PMID: 29558820 DOI: 10.1080/17434440.2018.1454310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. AREAS COVERED By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. EXPERT COMMENTARY Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.
Collapse
Affiliation(s)
| | - Bradley D Nelson
- a Biomedical Engineering , Michigan Technological University , Houghton , MI , USA
| | - Robert E Guldberg
- b George W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , Atlanta , GA , USA
| | - Keat Ghee Ong
- a Biomedical Engineering , Michigan Technological University , Houghton , MI , USA
| |
Collapse
|
36
|
Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 2018; 15:155-174. [DOI: 10.1038/nrurol.2018.5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Matthias N, Hunt SD, Wu J, Lo J, Smith Callahan LA, Li Y, Huard J, Darabi R. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res 2018; 27:65-73. [PMID: 29331939 PMCID: PMC5851454 DOI: 10.1016/j.scr.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects.
Collapse
Affiliation(s)
- Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Samuel D Hunt
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Jonathan Lo
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Laura A Smith Callahan
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Yong Li
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; Department of Pediatric Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| |
Collapse
|
38
|
Vascular Endothelial Growth Factor Induction of Muscle-Derived Stem Cells Enhances Vascular Phenotype While Preserving Myogenic Potential. Ann Plast Surg 2017; 79:404-409. [DOI: 10.1097/sap.0000000000001147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Steger CM, Bonatti J, Rieker RJ, Bonaros N, Schachner T. Stem cell therapy with skeletal myoblasts accelerates neointima formation in a mouse model of vein graft disease. ACTA ACUST UNITED AC 2017; 69:598-604. [DOI: 10.1016/j.etp.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/08/2017] [Accepted: 05/18/2017] [Indexed: 12/14/2022]
|
40
|
Yang S, Zhou X, Li R, Fu X, Sun P. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2017; 9:147-157. [PMID: 28910855 DOI: 10.1002/cpch.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polyethyleneimine (PEI), a cationic polymer vehicle, forms a complex with DNA which then can carry anionic nucleic acids into eukaryotic cells. PEI-based transfection is widely used for transient transfection of plasmid DNA. The efficiency of PEI-based transfection is affected by numerous factors, including the way the PEI/DNA complex is prepared, the ratio of PEI to DNA, the concentration of DNA, the storage conditions of PEI solutions, and more. Considering the major influencing factors, PEI-based transfection has been optimized to improve its efficiency, reproducibility, and consistency. This protocol outlines the steps for ordinary transient transfection and lentiviral production using PEI. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shaozhe Yang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
- Reproductive and Genetic Center, The First Affiliated Hospital of Luohe Medical College, Luohe, People's Republic of China
| | - Xiaoling Zhou
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Rongxiang Li
- Reproductive and Genetic Center, The First Affiliated Hospital of Luohe Medical College, Luohe, People's Republic of China
| | - Xiuhong Fu
- Reproductive and Genetic Center, The First Affiliated Hospital of Luohe Medical College, Luohe, People's Republic of China
| | - Pingnan Sun
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
41
|
Kovanecz I, Vernet D, Masouminia M, Gelfand R, Loni L, Aboagye J, Tsao J, Rajfer J, Gonzalez-Cadavid NF. Implanted Muscle-Derived Stem Cells Ameliorate Erectile Dysfunction in a Rat Model of Type 2 Diabetes, but Their Repair Capacity Is Impaired by Their Prior Exposure to the Diabetic Milieu. J Sex Med 2017; 13:786-97. [PMID: 27114192 DOI: 10.1016/j.jsxm.2016.02.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Muscle-derived stem cells (MDSCs) and other SCs implanted into the penile corpora cavernosa ameliorate erectile dysfunction in type 1 diabetic rat models by replenishing lost corporal smooth muscle cells (SMCs) and decreasing fibrosis. However, there are no conclusive data from models of type 2 diabetes (T2D) and obesity. AIM To determine whether MDSCs from obese Zucker (OZ) rats with T2D at an early stage of diabetes (early diabetic SCs isolated and cultured in low-glucose medium [ED-SCs]) counteract corporal veno-occlusive dysfunction and corporal SMC loss or lipo-fibrosis when implanted in OZ rats at a late stage of diabetes and whether MDSCs from these OZ rats with late diabetes (late diabetic SCs isolated and cultured in high-glucose medium [LD-SC]) differ from ED-SCs in gene transcriptional phenotype and repair capacity. METHODS ED-SCs and LD-SCs were compared by DNA microarray assays, and ED-SCs were incubated in vitro under high-glucose conditions (ED-HG-SC). These three MDSC types were injected into the corpora cavernosa of OZ rats with late diabetes (OZ/ED, OZ/LD, and OZ/ED-HG rats, respectively). Untreated OZ and non-diabetic lean Zucker rats functioned as controls. Two months later, rats were subjected to cavernosometry and the penile shaft and corporal tissues were subjected to histopathology and DNA microarray assays. MAIN OUTCOME MEASURES In vivo erectile dysfunction assessment by Dynamic Infusion Cavernosometry followed by histopathology marker analysis of the penile tissues. RESULTS Implanted ED-SCs and ED-HG-SCs improved corporal veno-occlusive dysfunction, counteracted corporal decreases in the ratio of SMCs to collagen and fat infiltration in rats with long-term T2D, and upregulated neuronal and endothelial nitric oxide. LD-SCs acquired an inflammatory, pro-fibrotic, oxidative, and dyslipidemic transcriptional phenotype and failed to repair the corporal tissue. CONCLUSION MDSCs from pre-diabetic rats injected into the corpora cavernosa of rats with long-term T2D improve corporal veno-occlusive dysfunction and the underlying histopathology. In contrast, MDSCs from rats with long-term uncontrolled T2D are imprinted by the hyperglycemic and dyslipidemic milieu with a noxious phenotype associated with an impaired tissue repair capacity. SCs affected by diabetes could lack tissue repair efficacy as autografts and should be reprogrammed in vitro or substituted by SCs from allogenic non-diabetic sources.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Aboagye
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Lough D, Swanson E, Sopko NA, Madsen C, Miller D, Wang H, Guo Q, Sursala SM, Kumar AR. Regeneration of Vascularized Corticocancellous Bone and Diploic Space Using Muscle-Derived Stem Cells. Plast Reconstr Surg 2017; 139:893-905. [DOI: 10.1097/prs.0000000000003209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Skeletal muscle derived stem cells microintegrated into a biodegradable elastomer for reconstruction of the abdominal wall. Biomaterials 2017; 113:31-41. [DOI: 10.1016/j.biomaterials.2016.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
|
44
|
Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet 2016; 7:213. [PMID: 28066501 PMCID: PMC5167763 DOI: 10.3389/fgene.2016.00213] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023] Open
Abstract
Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple "one size fits all," but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue.
Collapse
Affiliation(s)
| | - Csaba Matta
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Ilyas M. Khan
- Centre for NanoHealth, Swansea University Medical SchoolSwansea, UK
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical CentreNottingham, UK
- King Fahd Medical Research Center, King AbdulAziz UniversityJeddah, Saudi Arabia
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
45
|
Ostrovidov S, Shi X, Sadeghian RB, Salehi S, Fujie T, Bae H, Ramalingam M, Khademhosseini A. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy. Stem Cell Rev Rep 2016; 11:866-84. [PMID: 26323256 DOI: 10.1007/s12015-015-9618-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction & School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Ramin Banan Sadeghian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
- Christian Medical College Bagayam Campus, Centre for Stem Cell Research, Vellore, 632002, India
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea.
- Division of Biomedical Engineering, Department of Medicine, Harvard Medical School, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Boston, MA, 02139, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
46
|
|
47
|
Azizollahi S, Aflatoonian R, Sadighi Gilani MA, Behnam B, Tajik N, Asghari-Jafarabadi M, Asgari HR, Koruji M. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 2016; 33:771-81. [PMID: 27052833 DOI: 10.1007/s10815-016-0708-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/21/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Testicular ischemia is the main consequence of testicular torsion, in both clinical and experimental aspects. Preservation and auto-transplantation of spermatogonial stem cells (SSCs) could be a new treatment for infertility in testicular ischemia following testicular torsion. METHODS To apply the idea in this study, animals were randomly divided into four groups of control, sham, with torsion, and with torsion followed by transplantation (TT). Isolated SSCs from neonatal mice were cultured and identified by flow cytometry (C-KIT(-), INTEGRIN β1 (+)) and RT-PCR (Reverse transcription polymerase chain reaction) for specific spermatogonial cell markers (Oct4, Gfrα-1, Plzf, Vasa, Itgα 6 , and Itgβ 1 ). SSCs were transplanted upon a 2-h testicular torsion in the TT group. Cultured cells were transplanted into ischemia reperfusion testicle 2 weeks post-testicular torsion. Eight weeks after SSCs transplantation, the SSCs-transplanted testes and epididymis were removed for sperm analysis, weight and histopathological evaluation, and pre- and post-meiotic gene expression assessment by qRT-PCR. RESULTS Our findings indicated that all evaluated parameters (epididymal sperm profile, Johnsen score, Plzf, Gfrα-1, Scp-1, Tekt-1 expressions, and histopathological profile) were significantly decreased following testicular torsion (group 3) when compared to the control group (p ≤ 0.05). However, all abovementioned parameters showed a significant increase/improvement in torsion-transplantation group compared to torsion group. However, these parameters in the TT group were significantly lower in the sham and control groups (p ≤ 0.05). CONCLUSION SSCs transplantation could up-regulate the expression of pre- and post-meiotic genes in testicular ischemia, which resulted in improvement of both testicular function and structure after testicular torsion.
Collapse
Affiliation(s)
- Saeid Azizollahi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Babak Behnam
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,NIH Undiagnosed Diseases Program, NIH, Office of the Director, Bethesda, MD, 20892, USA.,National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA.,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Hemmat Highway, P. O. Box 14155-5983, Tehran, Iran
| | - Nader Tajik
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Hemmat Highway, P. O. Box 14155-5983, Tehran, Iran.
| |
Collapse
|
48
|
Regenerative pharmacology for the treatment of acute kidney injury: Skeletal muscle stem/progenitor cells for renal regeneration? Pharmacol Res 2016; 113:802-807. [PMID: 27001227 DOI: 10.1016/j.phrs.2016.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 01/01/2023]
Abstract
Regenerative pharmacology and advanced therapy medicinal products is a relatively new and challenging field in drug development. Acute kidney injury (AKI) is a common clinical condition in nephrology with increasing incidence and high mortality rate. During the last few decades, researchers have been eagerly trying to find novel therapeutic strategies for AKI treatment, including advanced pharmacological therapies using mesenchymal stem cells (MSCs). Several types of MSCs have been thoroughly investigated, including bone marrow, adipose derived and umbilical cord blood MSCs and shown promising results in kidney repair. Research has demonstrated, that MSCs exert their effect through reduction of apoptosis, increased production of growth factors, suppression of oxidative stress and inflammatory processes, promotion of renal tubular cell proliferation, as well as by migration and direct incorporation into the renal tissue. Skeletal muscle-derived stem/progenitor cells (MDSPCs) are mesenchymal stem cell lineage of multipotent cells, demonstrating long-term proliferation, high self-renewal capacities, and ability to enhance endogenous tissue repair. The capacity of MDSPCs to regenerate a variety of different tissues following acute injury or destructive tissue diseases have been demonstrated in preclinical and clinical studies. MDSPCs were also reported to promote endogenous tissue repair via paracrine pathway. Considering advantageous properties of MDSPCs, the administration of these cells might be considered as a potential strategy for the treatment of AKI. However, to date, the therapeutic effect of MDSPCs for renal regeneration has not been investigated. This review reflects the current development in AKI treatment using different types of MSCs and the pilot results of the experimental study in vivo using a novel type of stem cells - MDSPCs for the treatment of gentamicin-induced AKI.
Collapse
|
49
|
Baldino L, Cardea S, Maffulli N, Reverchon E. Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction. Br Med Bull 2016; 117:25-37. [PMID: 26837850 DOI: 10.1093/bmb/ldv056] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The complex structure of the bone-tendon and muscle-tendon junctions makes their reproduction for tissue engineering applications very difficult. Relatively few studies have investigated the characteristics of these regions from a tissue engineering view point. SOURCES OF DATA PubMed, Thomson Reuters, Scopus and Google Scholar databases were searched using various combinations of the keywords 'Tendon', 'Myotendinous junction', 'Osteotendinous junction', 'Tissue engineering' and 'Scaffold'. AREAS OF AGREEMENT The available studies can be divided according to whether the objective is to build an entire composite tissue unit or to assist the recreation of interfaces, such as improving integration of autografts with the surrounding bone or with the muscle. The most used techniques are based on the electrospinning and the self-reorganized constructs process, which were applied to both bone-to-tendon junction (BTJ) and muscle-to-tendon junction (MTJ) regeneration. The use of nanofibers that mimic the hierarchical structure of the extracellular matrix (ECM), eventually functionalized by encapsulation of bioactive components, allowed cell attachment and differentiation. AREAS OF CONTROVERSY There have been no translational investigations. GROWING POINTS There is a need to devise suitable techniques that allow suitable tissue engineering of BTJ and MTJ. AREAS TIMELY FOR DEVELOPING RESEARCH Appropriately planned studies are needed to translate tissue engineering from a scientific challenge to a clinically applicable technique.
Collapse
Affiliation(s)
- Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via Salvatore Allende, Baronissi, SA 84081, Italy Centre for Sport and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy NANO_MATES, Research Centre for Nanomaterials and Nanotechnology, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| |
Collapse
|
50
|
Wong YR. Micro- and nano-force evaluation of bioengineered muscle cells: a non-contact two-dimensional biosensing using surface acoustic wave devices. NANOTECHNOLOGY 2015; 26:312501. [PMID: 26183643 DOI: 10.1088/0957-4484/26/31/312501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A high degree of cell-generated force measurement is required to evaluate the biomechanical performance of bioengineered muscle tissues. However, the conventional cantilever types of direct force measurement methods have limitations in developing a non-contact two-dimensional force sensing device for a single muscle cell. In this paper, a method is proposed and discussed by using focused surface acoustic wave and magneto-optic Kerr measurements. To depict the capability of the proposed method, a conceptual design of such a sensory device is demonstrated for non-contact two-dimensional force measurement of a single muscle cell.
Collapse
Affiliation(s)
- Yoke-Rung Wong
- Biomechanics Laboratory Singapore General Hospital, 20 College Road, Academia, Level 1, 169856 Singapore
| |
Collapse
|