1
|
Rajendran AP, Meenakshi Sundaram DN, Morales LC, Kucharski C, Nasrullah M, Bulut B, Tsisar PM, Maguire AD, Kerr BJ, Uludağ H. Lipid-Modified PEI Derivative-Based Binary/Ternary Polyplex Formulations for the Delivery of pDNA and mRNA in Primary Cells. Biomacromolecules 2025; 26:2733-2749. [PMID: 40148262 DOI: 10.1021/acs.biomac.5c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A previous study has demonstrated the benefit of modification of polyethylenimine (PEI1.2k) by lipids through a p-hydroxyphenylacetic acid (PHPA) linker and polyanion (PA), which is now extended in this report to several primary cells. The formulated binary (lipopolymer/NAs) and ternary (lipopolymer/NAs/PA) complexes displayed no significant toxicity (MTT/hemolysis assay). The pDNA/mRNA complexes with PEI1.2k-PHPA-Lin9 and PEI1.2k-PHPA-Lau5-Ole5 lipopolymers showed gene expression levels higher than those of other lipopolymers. The transfection efficiencies of the ternary polyplexes of these lipopolymers possessed higher gene expression than those of the binary polyplexes. The serum-stable ternary polyplexes of PEI1.2k-PHPA-Lau5-Ole5 maintained high levels of mRNA expression in the lungs along with the spleen after intravenous injection. As in in vitro studies, transgene expression was relatively weak with binary complexes in muscle; however, a 10-fold higher efficiency was obtained with ternary complexes. Overall, our results provide improved gene formulations for the transfections of primary cells in vitro, as well as in in vivo animal models.
Collapse
Affiliation(s)
- Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | | | - Luis Carlos Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohammad Nasrullah
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Burcak Bulut
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Pavlo Michailo Tsisar
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Biomedical Engineering and Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
2
|
Yang W, Wang N, Yang J, Liu C, Ma S, Wang X, Li W, Shen M, Wu Q, Gong C. A multifunctional 'golden cicada' nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy. J Nanobiotechnology 2023; 21:228. [PMID: 37461088 DOI: 10.1186/s12951-023-01983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limitations, a multifunctional "Golden Cicada" nanoplatform (MGCN) with efficient gene delivery ability and excellent photothermal effects is constructed, overcoming the thermoresistance of tumor cells and improving the accumulation of indocyanine green (ICG). RESULTS Down-regulation of heat shock protein 70 (HSP70) makes tumor cells more susceptible to PTT, and a better therapeutic effect is achieved through such cascade augmented synergistic effects. MGCN has attractive features with prolonged circulation in blood, dual-targeting capability of CD44 and sialic acid (SA) receptors, and agile responsiveness of enzyme achieving size and charge double-variable transformation. It proves that, on the one hand, MGCN performs excellent capability for HSP70-shRNA delivery, resulting in breaking the cellular thermoresistance mechanism, on the other hand, ICG enriches in tumor site specifically and possesses a great thermal property to promoted PTT. CONCLUSIONS In short, MGCN breaks the protective mechanism of cellular heat stress response by downregulating the expression of HSP70 proteins and significantly augments synergistic effects of photothermal/gene therapy via cascade augmented synergistic effects.
Collapse
Affiliation(s)
- Wen Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ning Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiye Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenzhen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiling Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Xu D, Su Y, Xu Q, Huang T, Chen Z, Zhang T. Uniform iron oxide nanoparticles reduce the required amount of polyethylenimine in the gene delivery to mesenchymal stem cells. NANOTECHNOLOGY 2021; 33:125101. [PMID: 34874301 DOI: 10.1088/1361-6528/ac4066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Cationic polyethylenimine (PEI) is regarded as the 'golden standard' of non-viral gene vectors. However, the superiority of PEI with high positive charge density also induces its major drawback of cytotoxicity, which restricts its application for an effective and safe gene delivery to stem cells. To redress this shortcoming, herein, a magnetic gene complex containing uniform iron oxide nanoparticles (UIONPs), plasmid DNA, and free PEI is prepared through electrostatic interactions for the gene delivery to bone marrow-derived mesenchymal stem cells (BM-MSCs). Results show that UIONPs dramatically promote the gene delivery to BM-MSCs using the assistance of magnetic force. In addition, decreasing the free PEI nitrogen to DNA phosphate (N/P) ratio from 10 to 6 has little adverse impact on the transgene expression levels (over 300 times than that of PEI alone at the N/P ratio of 6) and significantly reduces the cytotoxicity to BM-MSCs. Further investigations confirmed that the decrease of free PEI has little influence on the cellular uptake after applying external magnetic forces, but that the reduced positive charge density decreases the cytotoxicity. The present study demonstrates that magnetic gene delivery not only contributes to the enhanced gene expression but also helps to reduce the required amount of PEI, providing a potential strategy for an efficient and safe gene delivery to stem cells.
Collapse
Affiliation(s)
- Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhilan Chen
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Ye Y, Jin R, Hu X, Zhuang J, Xia W, Lin C. Bioreducible poly(urethane amine)s for robust nucleic acid transfection in stem cells. Biomater Sci 2019; 7:3510-3518. [PMID: 31215549 DOI: 10.1039/c9bm00605b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for cationic polymeric carriers enabling robust gene transfection against stem cells remains a challenge. Herein, linear bioreducible poly(urethane amine)s (denoted as SSPUAs) with repeated disulfide and protonable amino groups were prepared and used as non-viral vectors for in vitro gene transfection of different stem cells. The polyurethane copolymers (denoted as SSBT) with varied molar ratios of 1,4-bis(3-aminopropyl)piperazine (BAP) and tris(2-aminoethyl) amine (TAA) moieties could lead to superb transfection activity against human adipose-derived stem cells (hADSCs) and human bone marrow stem cells (hBMSCs). Data indicated that under optimal transfection conditions, SSBT10 with a BAP/TAA molar ratio of 90/10 caused the transfection of ∼60% of green fluorescence protein-positive (GFP+) hADSCs, and SSBT30 with the ratio of 70/30 resulted in the transfection of ∼40% of GFP+ hBMSCs. Also, the SSBT30 and polyurethane with BAP residues (denoted as SSBAP) could mediate efficient gene transfer into bone marrow stem cells of experimental animals such as SD rats, beagle dogs and rhesus monkeys, with ∼40-70% of GFP+ cells. Additionally, the SSBAP elicited robust transfection ability (∼60% of GFP+ cells) against E14 mouse embryonic stem cells without compromising the expression of multipotent stemness-related markers of the cells. Importantly, the transfection efficiencies of these SSPUAs were higher as compared to those yielded by 25 kDa branched polyethylenimine and Lipofectamine 2000 reagents as positive controls. The SSBT30 was further practical to deliver siRNAs into hADSCs for BCL2L2 or TRIB2 gene silencing, causing superior gene silencing efficacy to Lipofectamine 2000. Besides their high gene transfection or silencing efficacy, these SSPUAs revealed low cytotoxicity against stem cells. This study highlights the SSPUA system as a distinct platform for robust nucleic acid delivery into stem cells.
Collapse
Affiliation(s)
- Ying Ye
- Institute for Translational Medicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, Shanghai, 200092, P.R. China. and Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Rd, Shanghai, 200137, P. R. China.
| | - Rong Jin
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaoxin Hu
- Institute for Translational Medicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Juhua Zhuang
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Rd, Shanghai, 200137, P. R. China.
| | - Wei Xia
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Rd, Shanghai, 200137, P. R. China.
| | - Chao Lin
- Institute for Translational Medicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
5
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
6
|
Ranucci E, Manfredi A. Polyamidoamines: Versatile Bioactive Polymers with Potential for Biotechnological Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00046-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Zhou D, Zeng M, Gao Y, Sigen A, Lyu J, Wang W. Advanced Polymers for Nonviral Gene Delivery. NUCLEIC ACID NANOTHERANOSTICS 2019:311-364. [DOI: 10.1016/b978-0-12-814470-1.00010-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Chen L, Long D, Huang S, Yang Q, Hao J, Wu N, Peng L. Evaluation of a novel poly(amidoamine) with pendant aminobutyl group on the cellular properties of transfected bone marrow mesenchymal stem cells. J Biomed Mater Res A 2017; 106:686-697. [PMID: 28986940 DOI: 10.1002/jbm.a.36264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 02/05/2023]
Abstract
Stem cell-based gene therapy has been considered in the treatment of many degenerative diseases. Gene-modified stem cells should maintain its reproductive activity without losing stem cell properties, including genetic phenotype and differentiation potential. In the study, a novel poly (amidoamine) with pendant aminobutyl group (PAA-BA) designed by our group was used in the transfection of bone marrow mesenchymal stromal cells (BMSCs) and the cellular properties post-transfection were evaluated, including DNA content, colony forming capacity, genetic phenotype, and multi-directional differentiation. Two classical non-viral gene delivery vectors, polyethylenimine (PEI) and Lipofectamine 2000 (LP2000) were also used. Compared to non-transfected group, PAA-BA showed minor decreased DNA content but maintained BMSCs' phenotype, reproductive activity and multi-differentiation potential (osteogenic, chondrogenic, adipogenic, and neurogenic differentiation). Both PAA-BA and PEI transfected BMSCs demonstrated improved osteogenic differentiation ability at late stage but suppressed adipogenic as well as mature neural differentiation in vitro. LP2000 and PEI transfected BMSCs displayed significantly lower DNA content and reproductive activity. These findings suggest that PAA-BA is one of safe gene delivery vectors in BMSCs transfection and plays a role in stem cell's osteogenic and neurogenic differentiation. This study proposes the potential application of PAA-BA in BMSCs based gene therapy, in particular bone and nerve relative diseases. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 686-697, 2018.
Collapse
Affiliation(s)
- Lili Chen
- Department of Orthopedic Surgery, West China Hospital, Sichuan University; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.,Division of Health Quarantine, Shenzhen Entry-Exit Inspection and Quarantine Bureau, 518045, China
| | - Dan Long
- Department of Orthopedic Surgery, West China Hospital, Sichuan University; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University; Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jin Hao
- Program in Biological Sciences in Dental Medicine, Harvard School of Dental Medicine, Boston, Massachusetts, 02115
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Sun Y, Xian L, Yu J, Yang T, Zhang J, Yang Z, Jiang J, Cai C, Zhao X, Yang L, Ding P. Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/27/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Lei Xian
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jiankun Yu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; School of Pharmacy; Husson University; Bangor ME 04401-2929 USA
| | - Jinmin Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Zhen Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jingzheng Jiang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology; School of life Science and Biopharmaceutics; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
10
|
|
11
|
Zhang B, Ma XP, Sui MH, Van Kirk E, Murdoch WJ, Radosz M, Lin NM, Shen YQ. Guanidinoamidized linear polyethyleneimine for gene delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1644-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Asayama S, Matsuda K, Negishi Y, Kawakami H. Intracellular co-delivery of zinc ions and plasmid DNA for enhancing gene transfection activity. Metallomics 2014; 6:82-7. [PMID: 24084762 DOI: 10.1039/c3mt00226h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Zinc ions, methylated poly(1-vinylimidazole) (PVIm-Me) and plasmid DNA (pDNA) have formed ternary complexes for gene delivery. The resulting Zn-PVIm-Me-pDNA complexes have delivered both Zn(2+) ions and pDNA inside cells, leading to the nuclear translocation of the pDNA. By use of the pDNA containing a nuclear protein, NF-κB, binding sequence, the intracellular co-delivery of Zn(2+) ions and pDNA has enhanced gene expression. These results suggest that the intracellular Zn(2+) ions delivered by Zn-PVIm-Me-pDNA complexes activated the NF-κB, enhancing the nuclear translocation of the pDNA. In conclusion, it has been demonstrated that the Zn-PVIm-Me-pDNA complex is capable of enhancing the gene transfection activity by a synergic effect of the PVIm-Me and the co-delivered intracellular Zn(2+) ions.
Collapse
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | |
Collapse
|
13
|
Vankayala R, Chiang CS, Chao JI, Yuan CJ, Lin SY, Hwang KC. A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites. Biomaterials 2014; 35:8261-72. [PMID: 24973297 DOI: 10.1016/j.biomaterials.2014.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 02/06/2023]
Abstract
Gene therapy provides a new hope for previously "incurable" diseases. Low gene transfection efficiency, however, is the bottle-neck to the success of gene therapy. It is very challenging to develop non-viral nanocarriers to achieve ultra-high gene transfection efficiencies. Herein, we report a novel design of "tight binding-but-detachable" lipid-nanoparticle composite to achieve ultrahigh gene transfection efficiencies of 60∼82%, approaching the best value (∼90%) obtained using viral vectors. We show that Fe@CNPs nanoparticles coated with LP-2000 lipid molecules can be used as gene carriers to achieve ultra-high (60-80%) gene transfection efficiencies in HeLa, U-87MG, and TRAMP-C1 cells. In contrast, Fe@CNPs having surface-covalently bound N,N,N-trimethyl-N-2-methacryloxyethyl ammonium chloride (TMAEA) oligomers can only achieve low (23-28%) gene transfection efficiencies. Similarly ultrahigh gene transfection/expression was also observed in zebrafish model using lipid-coated Fe@CNPs as gene carriers. Evidences for tight binding and detachability of DNA from lipid-nanoparticle nanocarriers will be presented.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-I Chao
- Department of Biological Science, National Chiao Tung University, Hsinchu 30013, Taiwan
| | - Chiun-Jye Yuan
- Department of Biological Science, National Chiao Tung University, Hsinchu 30013, Taiwan
| | - Shyr-Yeu Lin
- Department of Biological Science, National Chiao Tung University, Hsinchu 30013, Taiwan; Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Obstetrics and Gynecology, Department of Medical Research, Stem Cell Lab, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
14
|
Han L, Zhao J, Liu J, Duan XL, Li LH, Wei XF, Wei Y, Liang XJ. A universal gene carrier platform for treatment of human prostatic carcinoma by p53 transfection. Biomaterials 2014; 35:3110-20. [PMID: 24411335 DOI: 10.1016/j.biomaterials.2013.12.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022]
|
15
|
Park JS, Yang HN, Woo DG, Jeon SY, Park KH. Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 2013; 34:8819-34. [PMID: 23937912 DOI: 10.1016/j.biomaterials.2013.07.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/23/2013] [Indexed: 12/24/2022]
Abstract
Drugs, proteins, and cells can be macro- and micro-encapsulated by unique materials that respond to specific stimuli. The phases and hydrophobic interactions of these materials are reversibly altered by environmental stimuli such as pH and temperature. These changes can lead to self-assembly of the materials, which enables controlled drug release and safe gene delivery into cells and tissues. The fate of stem cells delivered by such methods is of great interest. The formation of transgenic tissues requires genes to be delivered safely into stem cells. A cell tracing vehicle and a gene delivery carrier were simultaneously introduced into human mesenchymal stem cells (hMSCs). A thermo-sensitive hydrogel, poly(N-isopropylacrylamide-co-acrylic acid) (p(NiPAAm-co-AAc)), was created to generate self-assembled nanoparticles with nanogel characteristics. Hydrophobic interactions mediated the binding of the carboxyl group on the outside of p(NiPAAm-co-AAc) with the amine group of iron oxide. Nanogels carrying iron oxide and a fluorescent dye were complexed with specific genes. These nanogels could be internalized by hMSCs, and the transplantation of these cells into mice was monitored by in vivo imaging. Self-assembled p(NiPAAm-co-dAAc) nanogels complexed with green fluorescent protein were highly expressed in hMSCs and are a potential material for gene delivery.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University, 3F, Yatap Acecore, 502 Yatap-dong Bundang-gu, Seongnam-si, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Paolo Ferruti
- Dipartimento di Chimicavia C. Golgi 1920133Milano Italy
- Consorzio Nazionale Interuniversitario di Scienza e Tecnologia dei Materiali (INSTM)via G. Giusti 950121Firenze Italy
| |
Collapse
|
17
|
|
18
|
Liu WM, Liu M, Xue YN, Peng N, Xia XM, Zhuo RX, Huang SW. Poly(amidoamine)s with pendant primary amines and flexible backbone for enhanced nonviral gene delivery: Transfection and intracellular trafficking. J Biomed Mater Res A 2012; 100:872-81. [DOI: 10.1002/jbm.a.33309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/07/2011] [Accepted: 09/27/2011] [Indexed: 11/10/2022]
|
19
|
Borger JG, Cardenas-Maestre JM, Zamoyska R, Sanchez-Martin RM. Novel strategy for microsphere-mediated DNA transfection. Bioconjug Chem 2011; 22:1904-8. [PMID: 21899351 DOI: 10.1021/bc200289n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new approach for microsphere-mediated delivery of plasmid DNA has been developed and successfully evaluated. Basic molecular biology techniques were used to linearize and functionalize plasmid DNA by aminomodification, enabling efficient conjugation to carboxy-functionalized microspheres. A T cell hybridoma line was successfully transfected as determined by the efficient expression of a biologically relevant YFP fusion protein. Moreover, our data identified microsphere-mediated delivery of plasmid DNA as a noninvasive, nontoxic, and efficient gene delivery method with the potential to be applied to transfection-resistant, nondividing primary cells, including naïve T cells.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
20
|
Lü K, Zeng D, Zhang Y, Xia L, Xu L, Kaplan DL, Jiang X, Zhang F. BMP-2 gene modified canine bMSCs promote ectopic bone formation mediated by a nonviral PEI derivative. Ann Biomed Eng 2011; 39:1829-39. [PMID: 21347550 DOI: 10.1007/s10439-011-0276-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/11/2011] [Indexed: 12/20/2022]
Abstract
The study was to explore the effects of BMP-2 gene modified canine bone marrow stromal cells (bMSCs) mediated by a nonviral PEI derivative (GenEscort™ II) in promoting bone formation in vitro and in vivo. Canine bMSCs were cultured and transfected with plasmids containing bone morphogenetic protein-2 gene (pBMP-2) or enhanced green fluorescent protein gene (pEGFP). Gene transfection conditions were initially optimized by varying GenEscort™ II/plasmid ratios. Osteogenic differentiation of gene modified bMSCs was investigated via alkaline phosphatase (ALP) activity analysis and real-time quantitative PCR (RT-qPCR) analysis in vitro. The bone formation ability of pBMP-2 transfected bMSCs combined with apatite-coated silk scaffolds (mSS) was explored and compared with pEGFP transfected bMSCs/mSS or untreated bMSCs/mSS at 8, 12 weeks after operation. Results showed that gene transfection efficiency reached up to 36.67 ± 4.12% as demonstrated by EGFP expression. ALP staining and activity assay were stronger with pBMP-2 gene transfection, and the mRNA expression of BMP-2, bone sialoprotein (BSP), Runt-related transcription factor 2 (Runx-2), and osteopontin (OPN) up-regulated in bMSCs 3, 6, 9 days in pBMP-2 group. Besides, the tissue-engineered bone complex with pBMP-2 modified bMSCs achieved significantly increased de novo bone formation compared with control groups (p < 0.01). We conclude that pBMP-2 transfection mediated by GenEscort™ II could enhance the osteogenic differentiation of canine bMSCs and promote the ectopic new bone formation in nude mice. GenEscort™ II mediated pBMP-2 gene transfer appears to be a safe and effective nonviral method for gene enhanced bone tissue engineering.
Collapse
Affiliation(s)
- Kaige Lü
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
He WT, Xue YN, Peng N, Liu WM, Zhuo RX, Huang SW. One-pot preparation of polyethylenimine-silica nanoparticles as serum-resistant gene delivery vectors: Intracellular trafficking and transfection. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11021g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liu WM, Xue YN, Peng N, He WT, Zhuo RX, Huang SW. Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novel strategy for magnetofection. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11460c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Vázquez E, Cubarsi R, Unzueta U, Roldán M, Domingo-Espín J, Ferrer-Miralles N, Villaverde A. Internalization and kinetics of nuclear migration of protein-only, arginine-rich nanoparticles. Biomaterials 2010; 31:9333-9. [PMID: 20869766 DOI: 10.1016/j.biomaterials.2010.08.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/24/2010] [Indexed: 12/13/2022]
Abstract
Understanding the intracellular trafficking of nanoparticles internalized by mammalian cells is a critical issue in nanomedicine, intimately linked to therapeutic applications but also to toxicity concerns. While the uptake mechanisms of carbon nanotubes and polymeric particles have been investigated fairly extensively, there are few studies on the migration and fate of protein-only nanoparticles other than natural viruses. Interestingly, protein nanoparticles are emerging as tools in personalized medicines because of their biocompatibility and functional tuneability, and are particularly promising for gene therapy and also conventional drug delivery. Here, we have investigated the uptake and kinetics of intracellular migration of protein nanoparticles built up by a chimerical multifunctional protein, and functionalized by a pleiotropic, membrane-active (R9) terminal peptide. Interestingly, protein nanoparticles are first localized in endosomes, but an early endosomal escape allows them to reach and accumulate in the nucleus (but not in the cytoplasm), with a migration speed of 0.0044 ± 0.0003 μm/s, ten-fold higher than that expected for passive diffusion. Interestingly, the plasmatic, instead of the nuclear membrane is the main cellular barrier in the nuclear way of R9-assisted protein-only nanoparticles.
Collapse
Affiliation(s)
- Esther Vázquez
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Peng L, Gao Y, Xue YN, Huang SW, Zhuo RX. Cytotoxicity and in vivo tissue compatibility of poly(amidoamine) with pendant aminobutyl group as a gene delivery vector. Biomaterials 2010; 31:4467-76. [DOI: 10.1016/j.biomaterials.2010.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/10/2010] [Indexed: 12/11/2022]
|