1
|
Sun X, Cui H, Li J, An B, Liu R, Guo Z, Chu D, Geng X, Cui B, Zhu L, Li J, Li Z. An injectable shape-adaptive hydrogel system for subconjunctival injuries: In situ and permanently releases rapamycin to prevent fibrosis via promoting autophagy. Mater Today Bio 2025; 30:101380. [PMID: 39790484 PMCID: PMC11713510 DOI: 10.1016/j.mtbio.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Subconjunctival fibrosis (SCF) is a common and refractory eye disease that is a serious threat to vision. The severe side effects of existing drugs and low drug bioavailability due to the ocular barrier are major challenges in SCF treatment. Hence, there is an urgent need to explore safer and more effective strategies for administering anti-SCF drugs. Herein, an injectable and adaptable hydrogel system containing the antifibrotic drug rapamycin was fabricated to address this complex need. This system possesses moderate mechanical properties, self-healing and shape-adaptive capabilities, injectability, and biosafety. It is designed to promote autophagy by modulating the PI3K/AKT/mTOR/WIPI2 pathway, thereby inhibiting SCF. In vivo experiments utilizing a rat subconjunctival injury model indicated that in situ administration of this hydrogel system effectively inhibited SCF. This system constitutes a promising method for promoting autophagy to protect against SCF, which will foster its widespread application for other fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Jingfan Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Boyuan An
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| |
Collapse
|
2
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
3
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
5
|
Cho E, Qiao Y, Chen C, Xu J, Cai J, Li Y, Zhao J. Injectable FHE+BP composites hydrogel with enhanced regenerative capacity of tendon-bone interface for anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 2023; 11:1117090. [PMID: 36911205 PMCID: PMC9996450 DOI: 10.3389/fbioe.2023.1117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Features of black phosphorous (BP) nano sheets such as enhancing mineralization and reducing cytotoxicity in bone regeneration field have been reported. Thermo-responsive FHE hydrogel (mainly composed of oxidized hyaluronic acid (OHA), poly-ε-L-lysine (ε-EPL) and F127) also showed a desired outcome in skin regeneration due to its stability and antibacterial benefits. This study investigated the application of BP-FHE hydrogel in anterior cruciate ligament reconstruction (ACLR) both in in vitro and in vivo, and addressed its effects on tendon and bone healing. This BP-FHE hydrogel is expected to bring the benefits of both components (thermo-sensitivity, induced osteogenesis and easy delivery) to optimize the clinical application of ACLR and enhance the recovery. Our in vitro results confirmed the potential role of BP-FHE via significantly increased rBMSC attachment, proliferation and osteogenic differentiation with ARS and PCR analysis. Moreover, In vivo results indicated that BP-FHE hydrogels can successfully optimize the recovery of ACLR through enhancing osteogenesis and improving the integration of tendon and bone interface. Further results of Biomechanical testing and Micro-CT analysis [bone tunnel area (mm2) and bone volume/total volume (%)] demonstrated that BP can indeed accelerate bone ingrowth. Additionally, histological staining (H&E, Masson and Safranin O/fast green) and immunohistochemical analysis (COL I, COL III and BMP-2) strongly supported the ability of BP to promote tendon-bone healing after ACLR in murine animal models.
Collapse
Affiliation(s)
- Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Changan Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
6
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
7
|
DiPasquale SA, Wuchte LD, Mosley RJ, Demarest RM, Voyles ML, Byrne ME. One Week Sustained In Vivo Therapeutic Release and Safety of Novel Extended-Wear Silicone Hydrogel Contact Lenses. Adv Healthc Mater 2022; 11:e2101263. [PMID: 34519442 DOI: 10.1002/adhm.202101263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Since the seminal work of Wichterle in 1965 describing the first soft contact lenses and their potential for ocular drug delivery, the field has yet to realize his vision. Maintaining all lens commercial properties combined with a mechanism for controlled drug release of therapeutically relevant concentrations for duration of wear is a major challenge. Here, successful in vivo week-long sustained release of a small molecular weight therapeutic in rabbits from extended-wear silicone hydrogel contact lenses meeting all commercial specifications by utilizing a novel macromolecular memory strategy is reported for the first time. Lens-treated eyes show a continuous, therapeutically relevant bromfenac tear concentration of 256.4 ± 23.1 µg mL-1 for 8 days. Bromday (bromfenac ophthalmic solution, 0.09%, Bausch+Lomb) topical drops exhibit a quick peak concentration of 269.3 ± 85.7 µg mL-1 and 100 min duration. Bioavailability (AUC0-8days ) and mean residence time of lenses are 26 and 155 times higher than drops, respectively. Lenses are safe, well tolerated, and no corneal histological differences are observed. This work highlights the enormous potential of drug releasing lenses as a platform strategy, and offers a new dropless clinical strategy for post-cataract, uveitis, post-LASIK, and corneal abrasion treatment.
Collapse
Affiliation(s)
- Stephen A. DiPasquale
- OcuMedic, Inc. 107 Gilbreth Parkway Mullica Hill NJ 08062 USA
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
| | - Liana D. Wuchte
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
| | - Robert J. Mosley
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
| | - Renee M. Demarest
- School of Osteopathic Medicine Rowan University Stratford NJ 08084 USA
| | | | - Mark E. Byrne
- OcuMedic, Inc. 107 Gilbreth Parkway Mullica Hill NJ 08062 USA
- Biomimetic & Biohybrid Materials Biomedical Devices and Drug Delivery Laboratories Department of Biomedical Engineering Rowan University Glassboro NJ 08028 USA
- Department of Chemical Engineering Rowan University Glassboro NJ 08028 USA
| |
Collapse
|
8
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
9
|
Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. Carbohydr Polym 2021; 267:118217. [PMID: 34119171 DOI: 10.1016/j.carbpol.2021.118217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022]
Abstract
In several ocular diseases, vascular endothelial growth factor (VEGF) level has been found to be unregulated. Bevacizumab, an anti-VEGF drug, is the most commonly used off level drug for diabetic retinopathy (DR). The present study was to evaluate the chitosan-coated poly (lactide-co-glycolic acid) nanoparticles (CS-PLGA NPs) for sustained and effective delivery of bevacizumab to posterior ocular tissues. The penetration of NP through sclera was studied by confocal laser scanning microscopy (CLSM). For pharmacokinetic study, bevacizumab loaded NPs were administered into the rat eye through subconjunctival injection (SCJ) and pharmacokinetic parameters were compared to drug solution. CLSM and pharmacokinetic study showed better penetration of formulation and higher concentration of bevacizumab in posterior ocular tissues. In retinopathy model, CS-PLGA NPs by SCJ route showed more reduction of VEGF level in retina than the topical and intravitreal administration of formulation. Thus, CS-coated PLGA NPs can be potentially useful as carriers to target retina.
Collapse
Affiliation(s)
- Jayamanti Pandit
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India.
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| |
Collapse
|
10
|
Nian S, Lo ACY, Mi Y, Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. EYE AND VISION 2021; 8:15. [PMID: 33931128 PMCID: PMC8088070 DOI: 10.1186/s40662-021-00239-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR), one of the common complications of diabetes, is the leading cause of visual loss in working-age individuals in many industrialized countries. It has been traditionally regarded as a purely microvascular disease in the retina. However, an increasing number of studies have shown that DR is a complex neurovascular disorder that affects not only vascular structure but also neural tissue of the retina. Deterioration of neural retina could precede microvascular abnormalities in the DR, leading to microvascular changes. Furthermore, disruption of interactions among neurons, vascular cells, glia and local immune cells, which collectively form the neurovascular unit, is considered to be associated with the progression of DR early on in the disease. Therefore, it makes sense to develop new therapeutic strategies to prevent or reverse retinal neurodegeneration, neuroinflammation and impaired cell-cell interactions of the neurovascular unit in early stage DR. Here, we present current perspectives on the pathophysiology of DR as a neurovascular disease, especially at the early stage. Potential novel treatments for preventing or reversing neurovascular injuries in DR are discussed as well.
Collapse
Affiliation(s)
- Shen Nian
- Department of Pathology, Xi'an Medical University, Xi'an, Shaanxi Province, China.
| | - Amy C Y Lo
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yajing Mi
- Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Kai Ren
- Department of Biochemistry and Molecular Biology, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
11
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
12
|
Rathore P, Mahor A, Jain S, Haque A, Kesharwani P. Formulation development, in vitro and in vivo evaluation of chitosan engineered nanoparticles for ocular delivery of insulin. RSC Adv 2020; 10:43629-43639. [PMID: 35519724 PMCID: PMC9058365 DOI: 10.1039/d0ra07640f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022] Open
Abstract
Insulin-dependent diabetic patients have to count on the administration of painful and discomforting insulin injections. However, inadequate insulin absorption and the risk of insulin level escalation in the blood are some disadvantages associated with insulin therapy. Thus, the current study intends to formulate insulin-loaded chitosan nanoparticles for refining the systemic absorption of insulin via the ocular route. Insulin-loaded chitosan nanoparticles were prepared by the ionotropic gelation method and characterized for various parameters. Optimized insulin loaded nanoparticles (C4T4I4) were positively charged with a particle size of 215 ± 2.5 nm and showed 65.89 ± 4.3% entrapment efficiency. The in vitro drug release exhibited sustained release of insulin, where 77.2 ± 2.1% of release was observed after 12 h and leads to an assumption of the non-Fickian diffusion release mechanism. The permeation study discloses good mucoadhesive and better permeation properties of insulin loaded nanoparticles compared to free Insulin. No significant difference was observed in the size of particles after six months of storage, signifying their adequate stability. Nanoparticles were found to be non-irritant to ocular tissues and exhibited prominent blood glucose level reduction in vivo. The outcomes of this study suggested that the chitosan nanoparticulate system could act as a prominent carrier system for insulin with enhanced stability and efficacy.
Collapse
Affiliation(s)
- Priyanka Rathore
- Sagar Institute of Research and Technology Pharmacy Bhopal India
| | - Alok Mahor
- Institute of Pharmacy, Bundelkhand University Jhansi India +91 9889395119
| | - Surendra Jain
- Sagar Institute of Research and Technology Pharmacy Bhopal India
| | - Anzarul Haque
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdul Aziz University Alkharj Kingdom of Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India +91-7999710141 +91-7999710141
| |
Collapse
|
13
|
Bisht R, Nirmal S, Agrawal R, Jain GK, Nirmal J. Injectable in-situ gel depot system for targeted delivery of biologics to the retina. J Drug Target 2020; 29:46-59. [PMID: 32729731 DOI: 10.1080/1061186x.2020.1803886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In current clinical settings, frequent intravitreal (IVT) injections of anti-vascular endothelial growth factors are used due to their short in-vivo half-life and rapid clearance from the back of the eye. The IVT injections are associated with pain, risk of infection, retinal detachment, and financial burden. Biologics molecules can undergo physical, chemical, and enzymatic degradation during formulation development and in the biological environment. Moreover, the complex ocular structures also act as a rate-limiting barrier for these biologics. Thus, delivering stable and clinically relevant biologics concentration to the back of the eye is still a challenge. Compare to other drug delivery platforms, injectable in-situ gelling depot systems (IISGDs) have emerged as an effective system for biologics delivery. In this review, we have discussed various biologics used in ocular therapeutics and their associated challenges. Different routes of delivery and associated tissue barriers are also discussed. Different types of IISGDs developed to date for biologics delivery to the back of the eye were also covered. To conclude, various critical parameters related to the formulation development process and injectable depot systems that need careful consideration and further investigations were highlighted.
Collapse
Affiliation(s)
- Rohit Bisht
- Department of Pharmacy, Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, Telangana, India
| | - Sonali Nirmal
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Incozen Therapeutics Pvt. Ltd., Hyderabad, Telangana, India (Current affiliation)
| | - Rupesh Agrawal
- School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Jayabalan Nirmal
- Department of Pharmacy, Translational Pharmaceutics Research Laboratory, Birla Institute of Technology and Science (BITS)-Pilani, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Hoshi A, Nagai N, Daigaku R, Motoyama R, Saijo S, Kaji H, Abe T. Effect of sustained insulin-releasing device made of poly(ethylene glycol) dimethacrylates on retinal function in streptozotocin-induced diabetic rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:52. [PMID: 32462459 DOI: 10.1007/s10856-020-06392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, we developed a subcutaneous insulin-releasing device consisting of a disk-shaped capsule and drug formulation comprised of poly(ethylene glycol) dimethacrylates, then evaluated its efficacy on retinal function in streptozotocin (STZ)-induced diabetic rats. In vitro release studies showed that recombinant human insulin was released with a constant rate for more than 30 days. The device was able to maintain a basal level of blood glucose in diabetic rats for a prolonged period of more than 30 days, simultaneously preventing a decrease in body weight. For assessing the pharmacological effect of the device on retinal function in diabetic rats, electroretinograms were conducted for 12 weeks. The reduction in amplitude and delay in implicit time were attenuated by the device during the initial 4 weeks of application. The increase in gene expression of protein kinase C (PKC)-γ and caspase-3 in the diabetic retina was also attenuated by the device. Immunohistochemistry showed that the increase in glial fibrillary acidic protein expression in the diabetic retina was attenuated by the device. Histological evaluation of subcutaneous tissue around the device showed the biocompatibility of the device. In conclusion, the insulin-releasing device attenuated the reduction of retinal function in STZ-induced diabetic conditions for 4 weeks and the efficacy of the device might be partially related to PKC signaling in the retina. The long-term ability to control the blood glucose level might help to reduce the daily frequency of insulin injections.
Collapse
Affiliation(s)
- Ayako Hoshi
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Reiko Daigaku
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Remi Motoyama
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Saaya Saijo
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
15
|
Sustained subconjunctival drug delivery systems: current trends and future perspectives. Int Ophthalmol 2020; 40:2385-2401. [DOI: 10.1007/s10792-020-01391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
|
16
|
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020; 12:E269. [PMID: 32188045 PMCID: PMC7151081 DOI: 10.3390/pharmaceutics12030269] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
The treatment of the posterior-segment ocular diseases, such as age-related eye diseases (AMD) or diabetic retinopathy (DR), present a challenge for ophthalmologists due to the complex anatomy and physiology of the eye. This specialized organ is composed of various static and dynamic barriers that restrict drug delivery into the target site of action. Despite numerous efforts, effective intraocular drug delivery remains unresolved and, therefore, it is highly desirable to improve the current treatments of diseases affecting the posterior cavity. This review article gives an overview of pharmacokinetic and biopharmaceutics aspects for the most commonly-used ocular administration routes (intravitreal, topical, systemic, and periocular), including information of the absorption, distribution, and elimination, as well as the benefits and limitations of each one. This article also encompasses different conventional and novel drug delivery systems designed and developed to improve drug pharmacokinetics intended for the posterior ocular segment treatment.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Conde-Penedo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Molecular Imaging Group. University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| |
Collapse
|
17
|
Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today 2019; 24:1458-1469. [DOI: 10.1016/j.drudis.2019.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|
18
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
19
|
Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov Today 2019; 24:1470-1482. [PMID: 31202673 DOI: 10.1016/j.drudis.2019.05.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/11/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022]
Abstract
Hydrogels are water-laden polymer networks that have been used for myriad biological applications. By controlling the chemistry through which a hydrogel is constructed, a wide range of chemical and physical properties can be accessed, making them an attractive class of biomaterials. In this review, we cover the application of hydrogels for sustained delivery of biologics to the back of the eye. In adapting hydrogels to this purpose, success is dependent on careful consideration of material properties, route of administration, means of injection, and control of drug efflux, all of which are addressed. We also provide a perspective on clinical and chemistry, manufacturing and controls (CMC) considerations that are integral to the development of an ocular hydrogel delivery system.
Collapse
|
20
|
Rong X, Ji Y, Zhu X, Yang J, Qian D, Mo X, Lu Y. Neuroprotective effect of insulin-loaded chitosan nanoparticles/PLGA-PEG-PLGA hydrogel on diabetic retinopathy in rats. Int J Nanomedicine 2018; 14:45-55. [PMID: 30587984 PMCID: PMC6302824 DOI: 10.2147/ijn.s184574] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To pursuit effective sustained release systems for insulin to treat diabetic retinopathy (DR), a novel insulin delivering system was developed via loading onto chitosan nanoparticles/poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid) hydrogel (ICNPH). METHODS AND MATERIALS Examinations including electroretinography, HE staining, transmission electron microscopy, terminal deoxynucleotidyl transferased UTP nick-end labeling, immunofluorescence, Western blot, and real-time polymerase chain reaction were performed to evaluate the neuroprotective efficacy of ICNPH on DR by a single subconjunctival injection. RESULTS Compared with the insulin, blank, and sham treatment groups, subconjunctival injection of ICNPH significantly reduced the decrease of scotopic B-wave amplitude, alleviated retinal micro- and ultrastructural changes, and reduced retinal cell apoptosis caused in DR rats. Meanwhile, a significant reduction of vascular endothelial growth factor and glial fibrillary acidic protein expression as well as a remarkable increase in Occludin expression was also found in retinas in ICNPH group compared with the sham treatment group. CONCLUSION The results indicate that ICNPH has sufficient neuroprotective effect on retinas through subconjunctival injection in DR rats and facilitates controlled insulin delivery. It might be one of the therapeutic strategies for DR in the near future.
Collapse
Affiliation(s)
- Xianfang Rong
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| | - Yinghong Ji
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| | - Xiangjia Zhu
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| | - Jin Yang
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| | - Dongjin Qian
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| | - Xiaofen Mo
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| | - Yi Lu
- Department of Ophthalmology and The Eye Institute, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China, ;
- The Key Laboratory of Myopia, Ministry of Health, Shanghai, China, ;
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China, ;
- Key National Health Committee Key Laboratory of Myopia, Fudan University, Shanghai, China, ;
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China, ;
| |
Collapse
|
21
|
Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol 2018; 11:1038-1044. [PMID: 29977820 DOI: 10.18240/ijo.2018.06.23] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 11/23/2022] Open
Abstract
Retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR) are the leading causes of blindness in adults over the age of 50 years in the US. While most of those conditions do not have a cure, currently available treatment options attempt to prevent further vision loss. For many ophthalmic drugs, an efficient delivery system to provide maximum therapeutic efficacy and promote patient compliance remains an unmet medical need. An exploration of literature via PubMed spanning from 2007 to 2017 was conducted to identify studies that have evaluated nanotechnology as platforms for delivering therapeutic agents to the posterior segment of the eye where the retina is located. Until now, four routes that have been utilized for retinal drug delivery are the intravitreal, periocular, subretinal, and systemic routes. Intravitreal injections are now widely used in clinical practice due to their ability to directly target the back of the eye but are highly invasive procedures that may cause several complications, particularly with repeated uses over a short timespan. Nanotechnology shows great promise to revolutionize retinal drug delivery, offering many advantages such as a targeted delivery system towards the specific site of the retina as well as sustained delivery of therapeutic agents. In this review, specific eye anatomy and constraints on ocular drug administration are illustrated. Further, we list and highlight several examples of nanosystems, such as hydrogels, liposomes, dendrimers, and micelles, used via different drug delivery routes to treat various retinal diseases.
Collapse
Affiliation(s)
- Sibo Jiang
- Department of Pharmaceutics, University of Florida, Orlando, FL 32827, USA
| | - Yesenia L Franco
- Department of Pharmaceutics, University of Florida, Orlando, FL 32827, USA
| | - Yan Zhou
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
22
|
Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Healthc Mater 2018; 7:e1701213. [PMID: 29388356 PMCID: PMC6248342 DOI: 10.1002/adhm.201701213] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Indexed: 12/21/2022]
Abstract
In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.
Collapse
Affiliation(s)
- Arti Vashist
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Anujit Ghosal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Y. K. Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India, 110025
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
23
|
Abd AJ, Kanwar RK, Pathak YV, Al Mohammedawi M, Kanwar JR. Nanomedicine-Based Delivery to the Posterior Segment of the Eye: Brighter Tomorrow. DRUG DELIVERY FOR THE RETINA AND POSTERIOR SEGMENT DISEASE 2018:195-212. [DOI: 10.1007/978-3-319-95807-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Iohara D, Okubo M, Anraku M, Uramatsu S, Shimamoto T, Uekama K, Hirayama F. Hydrophobically Modified Polymer/α-Cyclodextrin Thermoresponsive Hydrogels for Use in Ocular Drug Delivery. Mol Pharm 2017; 14:2740-2748. [DOI: 10.1021/acs.molpharmaceut.7b00291] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Daisuke Iohara
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masanori Okubo
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Anraku
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shunji Uramatsu
- Daido Chemical Corporation, 4-4-28 Takeshima,
Nishiyodogawa-ku, Osaka 555-0011, Japan
| | - Toshio Shimamoto
- Daido Chemical Corporation, 4-4-28 Takeshima,
Nishiyodogawa-ku, Osaka 555-0011, Japan
| | - Kaneto Uekama
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
25
|
Abstract
Drug delivery to the posterior segment via the periocular route is a promising route for delivery of a range of formulations. In this review, we have highlighted the challenges and opportunities of posterior segment drug delivery via the periocular route. Consequently, we have discussed different types of periocular routes, physiological barriers that limit effective drug delivery, practical challenges regarding patient compliance and acceptability and recent advances in developing innovative strategies to enhance periocular drug delivery. We conclude with a perspective on how we envisage the importance of understanding complex barrier functions so as to continue to develop innovative drug-delivery systems.
Collapse
|
26
|
Eleftheriou CG, Cehajic-Kapetanovic J, Martial FP, Milosavljevic N, Bedford RA, Lucas RJ. Meclofenamic acid improves the signal to noise ratio for visual responses produced by ectopic expression of human rod opsin. Mol Vis 2017; 23:334-345. [PMID: 28659709 PMCID: PMC5479694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/14/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Retinal dystrophy through outer photoreceptor cell death affects 1 in 2,500 people worldwide with severe impairment of vision in advanced stages of the disease. Optogenetic strategies to restore visual function to animal models of retinal degeneration by introducing photopigments to neurons spared degeneration in the inner retina have been explored, with variable degrees of success. It has recently been shown that the non-steroidal anti-inflammatory and non-selective gap-junction blocker meclofenamic acid (MFA) can enhance the visual responses produced by an optogenetic actuator (channelrhodopsin) expressed in retinal ganglion cells (RGCs) in the degenerate retina. Here, we set out to determine whether MFA could also enhance photoreception by another optogenetic strategy in which ectopic human rod opsin is expressed in ON bipolar cells. METHODS We used in vitro multielectrode array (MEA) recordings to characterize the light responses of RGCs in the rd1 mouse model of advanced retinal degeneration following intravitreal injection of an adenoassociated virus (AAV2) driving the expression of human rod opsin under a minimal grm6 promoter active in ON bipolar cells. RESULTS We found treated retinas were light responsive over five decades of irradiance (from 1011 to 1015 photons/cm2/s) with individual RGCs covering up to four decades. Application of MFA reduced the spontaneous firing rate of the visually responsive neurons under light- and dark-adapted conditions. The change in the firing rate produced by the 2 s light pulses was increased across all intensities following MFA treatment, and there was a concomitant increase in the signal to noise ratio for the visual response. Restored light responses were abolished by agents inhibiting glutamatergic or gamma-aminobutyric acid (GABA)ergic signaling in the MFA-treated preparation. CONCLUSIONS These results confirm the potential of MFA to inhibit spontaneous activity and enhance the signal to noise ratio of visual responses in optogenetic therapies to restore sight.
Collapse
|
27
|
Bisht R, Jaiswal JK, Rupenthal ID. Nanoparticle-loaded biodegradable light-responsive in situ forming injectable implants for effective peptide delivery to the posterior segment of the eye. Med Hypotheses 2017; 103:5-9. [PMID: 28571808 DOI: 10.1016/j.mehy.2017.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Diseases affecting the posterior segment the eye, such as age-related macular degeneration (AMD), are the leading cause of blindness worldwide. Conventional dosage forms, such as eye drops, have to surmount several elimination mechanisms and complex barriers to achieve therapeutic concentrations at the target site often resulting in low anterior segment bioavailability (ca. 2-5%) with generally none of the drug reaching posterior segment tissues. Thus, frequent intravitreal injections are currently required to treat retinal conditions which have been associated with poor patient compliance due to pain, risk of infection, hemorrhages, retinal detachment and high treatment related costs. To partially overcome these issues, ocular implants have been developed for some posterior segment indications; however, the majority require surgical implantation and removal at the end of the intended treatment period. The transparent nature of the cornea and lens render light-responsive systems an attractive strategy for the management of diseases affecting the back of the eye. Light-responsive in situ forming injectable implants (ISFIs) offer various benefits such as ease of application in a minimally invasive manner and more site specific control over drug release. Moreover, the biodegradable nature of such implants avoids the need for surgical removal after release of the payload. Incorporating drug-loaded polymeric nanoparticles (NPs) into these implants may reduce the high initial burst release from the polymeric matrix and further sustain drug release thus avoiding the need for frequent injections as well as minimizing associated side effects. However, light-responsive systems for ophthalmic application are still in their early stages of development with limited reports on their safety and effectiveness. We hypothesize that the innovative design and properties of NP-containing light-responsive ISFIs can serve as a platform for effective management of ocular diseases requiring long term treatment.
Collapse
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jagdish K Jaiswal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
28
|
Joseph RR, Venkatraman SS. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond) 2017; 12:683-702. [PMID: 28186436 DOI: 10.2217/nnm-2016-0379] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ocular drug delivery has seen several advances in the past few decades, with respect to new drugs, improved formulations, targeted delivery, as well as exploration of new routes of drug administration. New materials have been explored for encasing existing drugs, which can enhance treatment by increasing bioavailability, decreasing toxicity, providing better tissue adherence, targeted delivery as well as increased duration of action. The challenges and requirements are different for the anterior and posterior ocular segments. This review summarizes the recent advances in sustained ocular therapy, both to the anterior and posterior segments, which have been made possible, thanks to nanotechnology. We also discuss the distribution and fate of these nanocarriers themselves, postadministration, as well as clearance from ocular tissues.
Collapse
Affiliation(s)
- Rini Rachel Joseph
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Subbu S Venkatraman
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore.,NTU-Northwestern Institute for Nanomedicine, School of Materials Science & Engineering (MSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
29
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 450] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
30
|
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, du Toit LC, Pillay V. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules 2016; 21:E1580. [PMID: 27879635 PMCID: PMC6272998 DOI: 10.3390/molecules21111580] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Pariksha J Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
31
|
Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1397-1407. [PMID: 27855494 DOI: 10.1080/21691401.2016.1243545] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In several ocular diseases, the vascular endothelial growth factor (VEGF) level has been found to be upregulated. Bevacizumab, an anti-VEGF drug, is the most commonly used off level drug for these conditions. Delivery of drug to the posterior site is desired for the effective management of these diseases. The present study was to develop and optimize the chitosan (CS)-coated poly(lactide-co-glycolic acid) (PLGA) nanoparticles (NPs) of bevacizumab for sustained and effective delivery to posterior ocular tissues. NPs were prepared by double emulsion solvent evaporation method and optimized for various variables (i.e., CS concentration, PLGA content, polyvinyl alcohol (PVA) concentration, and sonication time) by employing a 4-factor 3-level Box-Behnken statistical design. NPs were characterized for particle size, polydispersity index (PDI), entrapment efficiency (EE), and in vitro release. Transscleral flux was determined through goat sclera, and ocular tolerance assay was done by Hen's Egg Test chorioallantoic membrane method. The particle size and PDI of the optimized NPs were 222.28 ± 7.45 nm and 0.19 ± 0.08, respectively. The developed NPs showed an EE of 69.26 ± 1.31% with an extended release profile. The flux was significantly higher that is, 0.3204 ± 0.026 μg/cm2/h for the NPs compared to drug solution. Thus, CS-coated PLGA NPs can be potentially useful as ocular drug carriers to target retina.
Collapse
Affiliation(s)
- Jayamanti Pandit
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Yasmin Sultana
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| | - Mohd Aqil
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard (Hamdard University) , New Delhi , India
| |
Collapse
|
32
|
Imai H, Misra GP, Wu L, Janagam DR, Gardner TW, Lowe TL. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats. Invest Ophthalmol Vis Sci 2016; 56:7839-46. [PMID: 26658505 DOI: 10.1167/iovs.15-16998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. METHODS The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. RESULTS The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. CONCLUSIONS The developed hydrogels have great potential to sustain release of insulin to the retina via subconjunctival implantation to minimize DR without the risk of hypoglycemia.
Collapse
Affiliation(s)
- Hisanori Imai
- Department of Ophthalmology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States
| | - Gauri P Misra
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States
| | - Linfeng Wu
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States 3Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Dileep R Janagam
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Thomas W Gardner
- Department of Ophthalmology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States 4Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Tao L Lowe
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, United States 3Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
33
|
Bisht R, Jaiswal JK, Chen YS, Jin J, Rupenthal ID. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv 2016; 13:953-62. [DOI: 10.1517/17425247.2016.1163334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rohit Bisht
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jagdish Kumar Jaiswal
- Auckland Cancer Society Research Center, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ying-Shan Chen
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jianyong Jin
- School of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Ilva Dana Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Trinh HM, Joseph M, Cholkar K, Pal D, Mitra AK. Novel strategies for the treatment of diabetic macular edema. World J Pharmacol 2016; 5:1-14. [DOI: 10.5497/wjp.v5.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Macular edema such as diabetic macular edema (DME) and diabetic retinopathy are devastating back-of-the-eye retinal diseases leading to loss of vision. This area is receiving considerable medical attention. Posterior ocular diseases are challenging to treat due to complex ocular physiology and barrier properties. Major ocular barriers are static (corneal epithelium, corneal stroma, and blood-aqueous barrier) and dynamic barriers (blood-retinal barrier, conjunctival blood flow, lymph flow, and tear drainage). Moreover, metabolic barriers impede posterior ocular drug delivery and treatment. To overcome such barriers and treat back-of-the-eye diseases, several strategies have been recently developed which include vitreal drainage, laser photocoagulation and treatment with biologics and/or small molecule drugs. In this article, we have provided an overview of several emerging novel strategies including nanotechnology based drug delivery approach for posterior ocular drug delivery and treatment with an emphasis on DME.
Collapse
|
35
|
Gan J, Guan X, Zheng J, Guo H, Wu K, Liang L, Lu M. Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Adv 2016. [DOI: 10.1039/c6ra03045a] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cumulative release of LVF-loaded TBHs exhibited a thermo-induced slow sustained drug release and a reduction-induced fast release.
Collapse
Affiliation(s)
- Jianqun Gan
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| | - XiaoXiao Guan
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| | - Jian Zheng
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| | - Huilong Guo
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| | - Kun Wu
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| | - Liyan Liang
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| | - Mangeng Lu
- Key Laboratory of Cellulose and Lignocellulosics Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- China
- Key Laboratory of Polymer Materials for Electronics
| |
Collapse
|
36
|
Hernández C, Dal Monte M, Simó R, Casini G. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy. J Diabetes Res 2016; 2016:9508541. [PMID: 27123463 PMCID: PMC4830713 DOI: 10.1155/2016/9508541] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- *Cristina Hernández: and
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- *Giovanni Casini:
| |
Collapse
|
37
|
Fabrication of pluronic and methylcellulose for etidronate delivery and their application for osteogenesis. Int J Pharm 2015; 499:110-118. [PMID: 26748362 DOI: 10.1016/j.ijpharm.2015.12.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/09/2015] [Accepted: 12/27/2015] [Indexed: 11/23/2022]
Abstract
Novel hydrogels were prepared by blending 4% (w/w) methylcellulose (MC) with various concentrations of 12, 14, 16, 18 and 20% (w/w) pluronic F127 (PF) to form injectable implant drug delivery systems. The blends formed gels using lower concentrations of PF compared to when using PF alone. Etidronate sodium (EDS) at a concentration of 4×10(-3)M was loaded into these blends for producing an osteogenesis effect. The pure gels or EDS loaded gels exhibited cytocompatibility to both the osteoblast (MC3T3-E1) and myoblast (C2C12) cell lines whereas the gels of 16PF, 18PF and 20PF were very cytotoxic to the cells. The EDS loaded gels demonstrated significantly greater alkaline phosphatase (ALP) activities compared to the pure gels. The longer exposure time periods of the samples to the cells, the greater was the ALP activity. These EDS loaded gels significantly increased proliferation of both cell lines thus indicating a bone regeneration effect. The PF/MC blends prolonged the in vitro release of EDS for more than 28 days. Based on the in vitro degradation test, the MC extensively improved the gel strength of the PF and delayed the degradation of the gels thus making them more functional for a sustained drug delivery for osteogenesis.
Collapse
|
38
|
Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res 2015; 48:160-80. [PMID: 25936649 DOI: 10.1016/j.preteyeres.2015.04.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy remains as a leading cause of blindness in developed countries. Current treatments target late stages of DR when vision has already been significantly affected. A better understanding of the pathogenesis of DR would permit the development of more efficient preventional/interventional strategies against early stages of DR. In this article a critical review of the state of the art of this issue is provided along with a discussion of problems which have yet to be overcome. Neuroprotection as a new approach for the treatment of the early stages of DR has been particularly emphasized. The development and progression of DR is not homogeneous and, apart from blood glucose levels and blood pressure, it depends on genetic factors which remain to be elucidated. In addition, the role of the pathogenic pathways is not the same in all patients. All these factors should be taken into account in the near future when an individualized oriented treatment for DR could become feasible. The new techniques in retinal imaging acquisition, the identification of useful circulating biomarkers and the individualized analysis of biological samples could facilitate the development of early and personalized therapy in the setting of DR. Finally, it should be noted that only a coordinated action among ophthalmologists, diabetologists, basic researchers, experts in pharmaco-economics and health care providers addressed to the design of rational strategies targeting prevention and the early stages of DR will be effective in reducing the burden and improving the clinical outcome of this devastating complication of diabetes.
Collapse
Affiliation(s)
- Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| | - Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
39
|
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: an immense hope for diabetics. Drug Deliv 2014; 23:2371-2390. [PMID: 25544604 DOI: 10.3109/10717544.2014.991001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CONTEXT Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. OBJECTIVE The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. METHODS Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. RESULTS The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. CONCLUSION In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Nidhi Mishra
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| | - Ashish Kumar Agrawal
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Sanyog Jain
- b Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research , Mohali , Punjab , India
| | - Narayan Prasad Yadav
- a Herbal Medicinal Products Department , CSIR - Central Institute of Medicinal and Aromatic Plants , Lucknow , Uttar Pradesh , India and
| |
Collapse
|
40
|
Burek M, Czuba ZP, Waskiewicz S. Novel acid-degradable and thermo-sensitive poly( N -isopropylacrylamide) hydrogels cross-linked by α,α-trehalose diacetals. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Dou QQ, Liow SS, Ye E, Lakshminarayanan R, Loh XJ. Biodegradable thermogelling polymers: working towards clinical applications. Adv Healthc Mater 2014; 3:977-88. [PMID: 24488805 DOI: 10.1002/adhm.201300627] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/04/2013] [Indexed: 11/08/2022]
Abstract
As society ages, aging medical problems such as organ damage or failure among senior citizens increases, raising the demand for organ repair technologies. Synthetic materials have been developed and applied in various parts of human body to meet the biomedical needs. Hydrogels, in particular, have found extensive applications as wound healing, drug delivery and controlled release, and scaffold materials in the human body. The development of the next generation of soft hydrogel biomaterials focuses on facile synthetic methods, efficacy of treatment, and tunable multi-functionalities for applications. Supramolecular 3D entities are highly attractive materials for biomedical application. They are assembled by modules via various non-covalent bonds (hydrogen bonds, p-p stacking and/or van der Waals interactions). Biodegradable thermogels are a class of such supramolecular assembled materials. Their use as soft biomaterials and their related applications are described in this Review.
Collapse
Affiliation(s)
- Qing Qing Dou
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
42
|
Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, Grossniklaus HE, Naash MI, Lewin AS, Horsager A, Edelhauser HF. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci 2014; 55:2714-30. [PMID: 24777644 DOI: 10.1167/iovs.13-13707] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
43
|
Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 2014; 20:26-37. [PMID: 23580849 PMCID: PMC3617524 DOI: 10.4103/0974-9233.106384] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Blindness is a major health concern worldwide that has a powerful impact on afflicted individuals and their families, and is associated with enormous socio-economical consequences. The Middle East is heavily impacted by blindness, and the problem there is augmented by an increasing incidence of diabetes in the population. An appropriate drug/gene delivery system that can sustain and deliver therapeutics to the target tissues and cells is a key need for ocular therapies. The application of nanotechnology in medicine is undergoing rapid progress, and the recent developments in nanomedicine-based therapeutic approaches may bring significant benefits to address the leading causes of blindness associated with cataract, glaucoma, diabetic retinopathy and retinal degeneration. In this brief review, we highlight some promising nanomedicine-based therapeutic approaches for drug and gene delivery to the anterior and posterior segments.
Collapse
Affiliation(s)
- Qingguo Xu
- Department of Ophthalmology, Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
44
|
Prasannan A, Tsai HC, Chen YS, Hsiue GH. A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2014; 2:1988-1997. [DOI: 10.1039/c3tb21360a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2014; 2:147-166. [DOI: 10.1039/c3tb21016b] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Kwatra D, Mitra AK. Drug delivery in ocular diseases: Barriers and strategies. World J Pharmacol 2013; 2:78-83. [DOI: 10.5497/wjp.v2.i4.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 08/29/2013] [Indexed: 02/06/2023] Open
Abstract
The eye is a complex organ made up of diversified cells with specified functions. Presence of anatomical, physiological and physiochemical barriers make it difficult to deliver drugs in therapeutic amounts at intended sites. To overcome these, drug delivery scientists have followed two distinct yet complimentary approaches. The first involves using alternate delivery routes to conventional ones allowing for more direct access to intended target sites. Second approach involves development of novel drug delivery systems providing better permeability, treatability and controlled release at target site. Combination of both these approaches are being utilized and optimized in order to achieve optimal therapy with minimal adverse effects.
Collapse
|
47
|
Bassyouni F, ElHalwany N, Abdel Rehim M, Neyfeh M. Advances and new technologies applied in controlled drug delivery system. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1338-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Study in vivo intraocular biocompatibility of in situ gelation hydrogels: poly(2-ethyl oxazoline)-block-poly(ε-caprolactone)-block-poly(2-ethyl oxazoline) copolymer, matrigel and pluronic F127. PLoS One 2013; 8:e67495. [PMID: 23840873 PMCID: PMC3698124 DOI: 10.1371/journal.pone.0067495] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/20/2013] [Indexed: 11/19/2022] Open
Abstract
The long term in vivo biocompatibility is an essential feature for the design and development of sustained drug release carriers. In the recent intraocular drug delivery studies, hydrogels were suggested as sustained release carriers. The biocompatibility test for these hydrogels, however, was commonly performed only through in vitro cell culture examination, which is insufficient before the clinical applications. We compared three thermosensitive hydrogels that have been suggested as the carriers for drugs by their gel-solution phase-change properties. A new block terpolymer (PEOz-PCL-PEOz, ECE) and two commercial products (Matrigel® and Pluronic F127) were studied. The results demonstrated that the ocular media remained translucent for ECE and Pluronic F127 in the first 2 weeks, but cataract formation for Matrigel occurred in 2 weeks and for Pluronic F127 in 1 month, while turbid media was observed for both Matrigel and Pluronic F127 in 2 months. The electrophysiology examinations showed significant neuroretinal toxicity of Matrigel and Pluronic F127 but good biocompatibility of ECE. The neuroretinal toxicity of Matrigel and Pluronic F127 and superior biocompatibility of ECE hydrogel suggests ECE as more appropriate biomaterial for use in research and potentially in intraocular application.
Collapse
|
49
|
Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36:172-98. [PMID: 23603534 DOI: 10.1016/j.preteyeres.2013.04.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 01/25/2023]
Abstract
Treatment and management of diseases of the posterior segment of the eye such as diabetic retinopathy, retinoblastoma, retinitis pigmentosa, and choroidal neovascularization is a challenging task due to the anatomy and physiology of ocular barriers. For instance, traditional routes of drug delivery for therapeutic treatment are hindered by poor intraocular penetration and/or rapid ocular elimination. One possible approach to improve ocular therapy is to employ nanotechnology. Nanomedicines, products of nanotechnology, having at least one dimension in the nanoscale include nanoparticles, micelles, nanotubes, and dendrimers, with and without targeting ligands. Nanomedicines are making a significant impact in the fields of ocular drug delivery, gene delivery, and imaging, the focus of this review. Key applications of nanotechnology discussed in this review include a) bioadhesive nanomedicines; b) functionalized nanomedicines that enhance target recognition and/or cell entry; c) nanomedicines capable of controlled release of the payload; d) nanomedicines capable of enhancing gene transfection and duration of transfection; f) nanomedicines responsive to stimuli including light, heat, ultrasound, electrical signals, pH, and oxidative stress; g) diversely sized and colored nanoparticles for imaging, and h) nanowires for retinal prostheses. Additionally, nanofabricated delivery systems including implants, films, microparticles, and nanoparticles are described. Although the above nanomedicines may be administered by various routes including topical, intravitreal, intravenous, transscleral, suprachoroidal, and subretinal routes, each nanomedicine should be tailored for the disease, drug, and site of administration. In addition to the nature of materials used in nanomedicine design, depending on the site of nanomedicine administration, clearance and toxicity are expected to differ.
Collapse
Affiliation(s)
- Uday B Kompella
- Nanomedicine and Drug Delivery Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are the leading causes of blindness in adults. The impact of these conditions on the quality of life is increasing in significance with a rise in life expectancy. The role of hyperglycemia, oxidative stress and inflammatory responses in the development and/or progression of DR and AMD, and several other sight threatening ocular diseases, is well established. In proliferative retinopathy, signals sent by the retina for nourishment, triggers the growth of fragile and abnormal blood vessels. Changes in ocular pressure may lead to rupture of these blood vessels causing severe vision problems. Recent in vitro and preclinical studies demonstrate that certain phytochemicals possessing potent antioxidant and anti-inflammatory activity and ocular blood flow enhancing properties may be very useful in the treatment of, or as a prophylactic measure for, DR and AMD. Apart from these properties they have also been investigated for their anti-bacterial, hormonal, enzyme stimulation, and anti-angiogenic activities. The attractive aspect of these potential therapeutic candidates is that they can act on multiple pathways identified in the etiology of DR, AMD, cataract and other ocular diseases. However, results from clinical trials have been somewhat ambiguous, raising questions about the concentrations of these bioflavonoids achieved in the neural retina following oral administration. Unfortunately, as of date, an efficient noninvasive means to deliver therapeutic agents/candidates to the back-of-the eye is still not available. This review examines some of these promising natural agents and discusses the challenges encountered in delivering them to the posterior segment ocular tissues through the oral route.
Collapse
|