1
|
Sigaroodi F, Jalali Monfared M, Foroutan Koudehi M, Zibaseresht R. Electrospun Decellularized Skeletal Muscle Tissue/Polycaprolactone/Polyaniline as a Potential Scaffold for Muscle Tissue Engineering. J Biomed Mater Res A 2025; 113. [PMID: 40292658 DOI: 10.1002/jbm.a.37920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Skeletal muscle tissue is capable of self-healing on a small scale. However, during extensive trauma or surgery, regenerative capacities are lost due to the loss of muscle cells and extracellular matrix. Therefore, the development of tissue engineering strategies for the regeneration of muscle tissue should be considered. In this study, we electrospun decellularized skeletal muscle tissue (DSM)/polycaprolactone (PCL)/polyaniline (PANi) as a bioactive polymer composite and investigated the structural characteristics, physicochemical properties, and effect of PANi on these properties. Next, the biological and myogenic effects of scaffolds on human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) were investigated. The results showed that DSM/PCL/PANi is a conductive fibrous scaffold with favorable physical and chemical properties for muscle tissue engineering; it is biocompatible with hWJ-MSCs and stimulates their morphology. Additionally, hWJ-MSCs cultured on DSM/PCL/PANi showed a significant increase in the expression of MyoD, Myogenin, and MHC. Laboratory experiments showed that the electrospun scaffold of DSM/PCL/PANi is biocompatible with favorable physical properties for the growth of stem cells and the expression of myogenic markers, which can be useful in the development of biological scaffold approaches for muscle tissue engineering.
Collapse
Affiliation(s)
- Faraz Sigaroodi
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Marziyeh Jalali Monfared
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Masoumeh Foroutan Koudehi
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Ramin Zibaseresht
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Nowshahr, Iran
| |
Collapse
|
2
|
Sonaye SY, Sikder P. Bioengineered Constructs as a Tissue Engineering-Based Therapy for Volumetric Muscle Loss. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40265282 DOI: 10.1089/ten.teb.2025.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Severe skeletal muscle injuries involving substantial tissue loss can significantly impair muscle strength and functionality, reducing the quality of life for affected individuals. Such injuries, termed volumetric muscle loss, require extensive clinical intervention, as the body's innate healing mechanisms are insufficient to regenerate functional muscle. The current standard of care primarily involves autologous muscle tissue transfer, with some consideration of acellular synthetic constructs. However, both approaches have limited therapeutic efficacy, presenting challenges such as donor-site morbidity, infection risks, and suboptimal functional recovery. Over the past decade, skeletal muscle tissue engineering (SMTE) has emerged as a promising strategy for regenerating functional muscle through bioengineered constructs. Advanced biofabrication techniques, including bioprinting, have further enabled the development of synthetic constructs that closely mimic native muscle architecture. Given these advancements, a critical review of recent therapeutic strategies, their achievements, and limitations is necessary. This review examines the spectrum of bioengineered constructs developed from various biomaterials and evaluates their therapeutic potential. Special emphasis is placed on 3D bioprinting strategies and their role in creating physiologically relevant constructs for functional muscle restoration. In addition, the integration of machine learning in optimizing construct design, predicting cellular behavior, and enhancing tissue integration is discussed. The review indicates that despite significant progress in SMTE, key challenges remain, including replicating the complex structural organization of muscle tissue, minimizing fibrosis, and achieving vascularization and innervation to regenerate functional, strengthened muscle. Future research should address these barriers while prioritizing the development of translational, clinically relevant regenerative constructs. In addition, efforts should focus on advancing scalable, construct-based regenerative treatments that are readily available at the point of care and easily managed in surgical settings.
Collapse
Affiliation(s)
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Wang Z, Liang W, Ao R, An Y. Adipose Decellularized Matrix: A Promising Skeletal Muscle Tissue Engineering Material for Volume Muscle Loss. Biomater Res 2025; 29:0174. [PMID: 40248249 PMCID: PMC12003953 DOI: 10.34133/bmr.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Volume muscle loss is a severe injury often caused by trauma, fracture, tumor resection, or degenerative disease, leading to long-term dysfunction or disability. The current gold-standard treatment is autologous muscle tissue transplantation, with limitations due to donor site restrictions, complications, and low regeneration efficiency. Tissue engineering shows potential to overcome these challenges and achieve optimal muscle regeneration, vascularization, nerve repair, and immunomodulation. In the field of muscle tissue engineering, skeletal muscle decellularized matrices are regarded as an ideal material due to their similarity to the defect site environment, yet they suffer from difficulties in preparation, severe fibrosis, and inconsistent experimental findings. Adipose decellularized matrices (AdECMs) have demonstrated consistent efficacy in promoting muscle regeneration, and their ease of preparation and abundant availability make them even more attractive. The full potential of AdECMs for muscle regeneration remains to be explored. The aim of this review is to summarize the relevant studies on using AdECMs to promote muscle regeneration, to summarize the preparation methods of various applied forms, and to analyze their advantages and shortcomings, as well as to further explore their mechanisms and to propose possible improvements, so as to provide new ideas for the clinical solution of the problem of volume muscle loss.
Collapse
Affiliation(s)
| | - Wei Liang
- Address correspondence to: (W.L.); (Y.A.)
| | - Rigele Ao
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
Hayam R, Hamias S, Skitel Moshe M, Davidov T, Yen FC, Baruch L, Machluf M. Porcine Bone Extracellular Matrix Hydrogel as a Promising Graft for Bone Regeneration. Gels 2025; 11:173. [PMID: 40136879 PMCID: PMC11942433 DOI: 10.3390/gels11030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Bone defects resulting from trauma, tumors, or congenital conditions pose significant challenges for natural healing and often require grafting solutions. While autografts remain the gold standard, their limitations, such as restricted availability and donor site complications, underscore the need for alternative approaches. The present research investigates the potential of porcine-derived bone extracellular matrix (pbECM) hydrogel as a highly promising bioactive scaffold for bone regeneration, comparing it to the human-derived bECM (hbECM). Porcine and human cancellous bones were decellularized and characterized in terms of their composition and structure. Further, the ECMs were processed into hydrogels, and their rheological properties and cytocompatibility were studied in vitro while their biocompatibility was studied in vivo using a mouse model. The potential of the pbECM hydrogel as a bone graft was evaluated in vivo using a rat femoral defect model. Our results demonstrated the excellent preservation of essential ECM components in both the pbECM and hbECM with more than 90% collagen out of all proteins. Rheological analyses revealed the superior mechanical properties of the pbECM hydrogel compared to the hbECM, with an approximately 10-fold higher storage modulus and a significantly later deformation point. These stronger gel properties of the pbECM were attributed to the higher content of structural proteins and residual minerals. Both the pbECM and hbECM effectively supported mesenchymal stem cell adhesion, viability, and proliferation, achieving a 20-fold increase in cell number within 10 days and highlighting their strong bioactive potential. In vivo, pbECM hydrogels elicited a minimal immunogenic response. Most importantly, when implanted in a rat femoral defect model, pbECM hydrogel had significantly enhanced bone regeneration through graft integration, stem cell recruitment, and differentiation. New bone formation was observed at an average of 50% of the defect volume, outperforming the commercial demineralized bone matrix (DBM), in which the new bone filled only 35% of the defect volume. These results position pbECM hydrogel as a highly effective and biocompatible scaffold for bone tissue engineering, offering a promising alternative to traditional grafting methods and paving the way for future clinical applications in bone repair.
Collapse
Affiliation(s)
- Rotem Hayam
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Shani Hamias
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Michal Skitel Moshe
- The Interdisciplinary Program for Biotechnology, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Feng-Chun Yen
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| |
Collapse
|
5
|
Rodríguez-Quesada L, Ramírez-Sánchez K, Formosa-Dague C, Dague E, Sáenz-Arce G, García-González CA, Vásquez-Sancho F, Avendaño-Soto E, Starbird-Pérez R. Evaluation of Conductive Porous Biobased Composites with Tunable Mechanical Properties for Potential Biological Applications. ACS OMEGA 2024; 9:43426-43437. [PMID: 39493987 PMCID: PMC11525745 DOI: 10.1021/acsomega.4c04391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
In this work, starch-based porous cryogels with controlled mechanical and electrical properties were prepared for tissue engineering applications. The starch cryogels were formulated using κ-carrageenan, poly(vinyl alcohol) (PVA), and styrylpyridinium-substituted PVA (SbQ) into the composite. A conductive cryogel was polymerized by chemical oxidation of 3,4-ethylenedioxythiophene (EDOT) using iron(III) p-toluenesulfonate as a strategy to control the electrical properties. The physical, thermal, and mechanical properties were evaluated for the obtained composites. Macro- and nanoscale results confirmed the capability of tuning the mechanical properties of the material by the addition of biopolymers in different contents. The presence of κ-carrageenan significantly increased the storage modulus and decreased the damping effect in the formulations. The presence of PVA showed a plasticizing effect in the formulations, confirmed by the buffering effect and an increase in storage modulus. PVA-SBQ improved the mechanical properties by cross-linking. The addition of PEDOT increased the mechanical and electrical properties of the obtained materials.
Collapse
Affiliation(s)
- Laria Rodríguez-Quesada
- Centro
de Investigación en Servicios Químicos y Microbiológicos
(CEQIATEC), Escuela de Química, Instituto
Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master
Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Departamento
de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro
de Investigación en Servicios Químicos y Microbiológicos
(CEQIATEC), Escuela de Química, Instituto
Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | | | - Etienne Dague
- LAAS-CNRS,
CNRS, Université de Toulouse, 31400Toulouse, France
| | - Giovanni Sáenz-Arce
- Departamento
de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional, Heredia 86-3000, Costa Rica
- Centro de
Investigación en Óptica y Nanofísica, Departamento
de Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Carlos A. García-González
- Departamento
de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Fabián Vásquez-Sancho
- Centro
de Investigación en Ciencia e Ingeniería de Materiales
(CICIMA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- School
of Physics, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Esteban Avendaño-Soto
- Centro
de Investigación en Ciencia e Ingeniería de Materiales
(CICIMA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
- School
of Physics, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Pérez
- Centro
de Investigación en Servicios Químicos y Microbiológicos
(CEQIATEC), Escuela de Química, Instituto
Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
6
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Mantovani M, Damaceno-Rodrigues N, Ronatty G, Segovia R, Pantanali C, Rocha-Santos V, Caldini E, Sogayar M. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz J Med Biol Res 2024; 57:e13107. [PMID: 39166604 PMCID: PMC11338550 DOI: 10.1590/1414-431x2024e13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.
Collapse
Affiliation(s)
- M.C. Mantovani
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Divisão Técnica de Apoio ao Ensino, Pesquisa e Inovação (DTAPEPI) - Centro de Biotecnologia e Inovação, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.T.S. Ronatty
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - R.S. Segovia
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - C.A. Pantanali
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha-Santos
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.G. Caldini
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
8
|
Ege D, Lu HH, Boccaccini AR. Bioactive Glass and Silica Particles for Skeletal and Cardiac Muscle Tissue Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:448-461. [PMID: 38126329 DOI: 10.1089/ten.teb.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
When skeletal and cardiac tissues are damaged, surgical approaches are not always successful and tissue regeneration approaches are investigated. Reports in the literature indicate that silica nanoparticles and bioactive glasses (BGs), including silicate bioactive glasses (e.g., 45S5 BG), phosphate glass fibers, boron-doped mesoporous BGs, borosilicate glasses, and aluminoborates, are promising for repairing skeletal muscle tissue. Silica nanoparticles and BGs have been combined with polymers to obtain aligned nanofibers and to maintain controlled delivery of nanoparticles for skeletal muscle repair. The literature indicates that cardiac muscle regeneration can be also triggered by the ionic products of BGs. This was observed to be due to the release of vascular endothelial growth factor and other growth factors from cardiomyocytes, which regulate endothelial cells to form capillary structures (angiogenesis). Specific studies, including both in vitro and in vivo approaches, are reviewed in this article. The analysis of the literature indicates that although the research field is still very limited, BGs are showing great promise for muscle tissue engineering and further research in the field should be carried out to expand our basic knowledge on the application of BGs in muscle (skeletal and cardiac) tissue regeneration. Impact statement This review highlights the potential of silica particles and bioactive glasses (BGs) for skeletal and cardiac tissue regeneration. These biomaterials create scaffolds triggering muscle cell differentiation. Ionic products from BGs stimulate growth factors, supporting angiogenesis in cardiac tissue repair. Further research is required to expand our know-how on silica particles and BGs in muscle tissue engineering.
Collapse
Affiliation(s)
- Duygu Ege
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hsuan-Heng Lu
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
10
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
11
|
Anjum S, Li T, Saeed M, Ao Q. Exploring polysaccharide and protein-enriched decellularized matrix scaffolds for tendon and ligament repair: A review. Int J Biol Macromol 2024; 254:127891. [PMID: 37931866 DOI: 10.1016/j.ijbiomac.2023.127891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Tissue engineering (TE) has become a primary research topic for the treatment of diseased or damaged tendon/ligament (T/L) tissue. T/L injuries pose a severe clinical burden worldwide, necessitating the development of effective strategies for T/L repair and tissue regeneration. TE has emerged as a promising strategy for restoring T/L function using decellularized extracellular matrix (dECM)-based scaffolds. dECM scaffolds have gained significant prominence because of their native structure, relatively high bioactivity, low immunogenicity, and ability to function as scaffolds for cell attachment, proliferation, and differentiation, which are difficult to imitate using synthetic materials. Here, we review the recent advances and possible future prospects for the advancement of dECM scaffolds for T/L tissue regeneration. We focus on crucial scaffold properties and functions, as well as various engineering strategies employed for biomaterial design in T/L regeneration. dECM provides both the physical and mechanical microenvironments required by cells to survive and proliferate. Various decellularization methods and sources of allogeneic and xenogeneic dECM in T/L repair and regeneration are critically discussed. Additionally, dECM hydrogels, bio-inks in 3D bioprinting, and nanofibers are briefly explored. Understanding the opportunities and challenges associated with dECM-based scaffold development is crucial for advancing T/L repairs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mohammad Saeed
- Dr. A.P.J Abdul Kalam Technical University, Lucknow 226031, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
12
|
Qu L, Chen Z, Chen J, Gan Y, Tan X, Wang Y, Zhang C, Chen B, Dai J, Chen J, Shi C. Collagen biomaterials promote the regenerative repair of abdominal wall defects in Bama miniature pigs. Biomater Sci 2023; 11:7926-7937. [PMID: 37916513 DOI: 10.1039/d3bm01209c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Due to adhesion and rejection of recent traditional materials, it is still challenging to promote the regenerative repair of abdominal wall defects caused by different hernias or severe trauma. However, biomaterials with a high biocompatibility and low immunogenicity have exhibited great potential in the regeneration of abdominal muscle tissue. Previously, we have designed a biological collagen scaffold material combined with growth factor, which enables a fusion protein-collagen binding domain (CBD)-basic fibroblast growth factor (bFGF) to bind and release specifically. Though experiments in rodent animals have indicated the regeneration function of CBD-bFGF modified biological collagen scaffolds, its translational properties in large animals or humans are still in need of solid evidence. In this study, the abdominal wall defect model of Bama miniature pigs was established by artificial operations, and the defective abdominal wall was sealed with or without a polypropylene patch, and unmodified and CBD-bFGF modified biological collagen scaffolds. Results showed that a recurrent abdominal hernia was observed in the defect control group (without the use of mesh). Although the polypropylene patch can repair the abdominal wall defect, it also induced serious adhesion and inflammation. Meanwhile, both kinds of collagen biomaterials exhibited positive effects in repairing abdominal wall defects and reducing regional adhesion and inflammation. However, CBD-bFGF-modified collagen biomaterials failed to induce the regenerative repair reported in rat experiments. In addition, unmodified collagen biomaterials induced abdominal wall muscle regeneration rather than fibrotic repair. These results indicated that the unmodified collagen biomaterials are a better option among translational patches for the treatment of abdominal wall defects.
Collapse
Affiliation(s)
- Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Jianhua Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| | - Bing Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
13
|
Ohashi A, Terai S, Furukawa S, Yamamoto S, Kashimoto R, Satoh A. Tenascin-C-enriched regeneration-specific extracellular matrix guarantees superior muscle regeneration in Ambystoma mexicanum. Dev Biol 2023; 504:98-112. [PMID: 37778717 DOI: 10.1016/j.ydbio.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Suzuno Terai
- Okayama University, Faculty of Science, Department of Biological Sciences, Okayama, Japan
| | - Saya Furukawa
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Sakiya Yamamoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Rena Kashimoto
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan
| | - Akira Satoh
- Graduate School of Environment, Life, Natural Science and Technology, Okayama University, Japan; Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan.
| |
Collapse
|
14
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
15
|
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. NANO CONVERGENCE 2023; 10:48. [PMID: 37864632 PMCID: PMC10590364 DOI: 10.1186/s40580-023-00398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sebastián Herrera Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Zhu C, Karvar M, Koh DJ, Sklyar K, Endo Y, Quint J, Samandari M, Tamayol A, Sinha I. Acellular collagen-glycosaminoglycan matrix promotes functional recovery in a rat model of volumetric muscle loss. Regen Med 2023; 18:623-633. [PMID: 37491948 DOI: 10.2217/rme-2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Aim: Volumetric muscle loss (VML) is a composite loss of skeletal muscle, which heals with fibrosis, minimal muscle regeneration, and incomplete functional recovery. This study investigated whether collagen-glycosaminoglycan scaffolds (CGS) improve functional recovery following VML. Methods: 15 Sprague-Dawley rats underwent either sham injury or bilateral tibialis anterior (TA) VML injury, with or without CGS implantation. Results: In rats with VML injuries treated with CGS, the TA exhibited greater in vivo tetanic forces and in situ twitch and tetanic dorsiflexion forces compared with those in the non-CGS group at 4- and 6-weeks following injury, respectively. Histologically, the VML with CGS group demonstrated reduced fibrosis and increased muscle regeneration. Conclusion: Taken together, CGS implantation has potential augment muscle recovery following VML.
Collapse
Affiliation(s)
- Christina Zhu
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Mehran Karvar
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Koh
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Karina Sklyar
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yori Endo
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06269, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06269, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06269, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Zhang M, Yang F, Han D, Zhang SY, Dong Y, Li X, Ling L, Deng Z, Cao X, Tian J, Ye Q, Wang Y. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int J Bioprint 2023; 9:774. [PMID: 37555081 PMCID: PMC10406171 DOI: 10.18063/ijb.774] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 08/10/2023] Open
Abstract
Millions of individuals across the world suffer from corneal stromal diseases that impair vision. Fortunately, three-dimensional (3D) bioprinting technology which has revolutionized the field of regenerative tissue engineering makes it feasible to create personalized corneas. In this study, an artificial cornea with a high degree of precision, smoothness, and programmable curvature was prepared by using digital light processing (DLP) 3D bioprinting in one piece with no support structure, and the construct was then confirmed by optical coherence tomography (OCT). On the basis of this approach, we developed a novel corneal decellularized extracellular matrix/gelatin methacryloyl (CECM-GelMA) bioink that can produce complex microenvironments with highly tunable mechanical properties while retaining high optical transmittance. Furthermore, the composite hydrogel was loaded with human corneal fibroblasts (hCFs), and in vitro experiments showed that the hydrogel maintained high cell viability and expressed core proteins. In vivo tests revealed that the hydrogel might promote epithelial regeneration, keep the matrix aligned, and restore clarity. This demonstrates how crucial a role CECM plays in establishing a favorable environment that encourages the transformation of cell function. Therefore, artificial corneas that can be rapidly customized have a huge potential in the development of in vitro corneal matrix analogs.
Collapse
Affiliation(s)
- Mingshan Zhang
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
- Institute of Modern Optics, Eye Institute, Nankai
University, Tianjin, China
- Nankai University Eye Institute, Nankai University
Afflicted Eye Hospital, Nankai University, Tianjin, China
| | - Fang Yang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
- Department of Ophthalmology, Renmin Hospital, Hubei
University of Medicine, Shiyan, China
| | - Daobo Han
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Shi-yao Zhang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Yipeng Dong
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Xinyu Li
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Liyun Ling
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
| | - Zhichao Deng
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Xuewei Cao
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry
of Education, School of Physics and TEDA Applied Physics, Nankai University,
Tianjin, China
- Nankai University Eye Institute, Nankai University
Afflicted Eye Hospital, Nankai University, Tianjin, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical
University, Tianjin, China
- Tianjin Eye Hospital and Nankai University Eye Institute,
Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai
University Affiliated Eye Hospital, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Nishiguchi A, Ito S, Nagasaka K, Taguchi T. Tissue-Adhesive Decellularized Extracellular Matrix Patches Reinforced by a Supramolecular Gelator to Repair Abdominal Wall Defects. Biomacromolecules 2023; 24:1545-1554. [PMID: 36880637 DOI: 10.1021/acs.biomac.2c01210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Implantation of surgical meshes composed of synthetic and biological materials has been applied for abdominal wall defect repair. Despite many efforts, there are no reliable meshes that fully satisfy clinical requirements because of their lack of biodegradability, mechanical strength, and tissue-adhesive properties. Here, we report biodegradable, decellularized extracellular matrix (dECM)-based biological patches to treat abdominal wall defects. By incorporating a water-insoluble supramolecular gelator that forms physical cross-linking networks through intermolecular hydrogen bonding, dECM patches were reinforced to improve mechanical strength. Reinforced dECM patches possessed higher tissue adhesion strength and underwater stability compared with the original dECM because of enhanced interfacial adhesion strength. In vivo experiments using an abdominal wall defect rat model showed that reinforced dECM patches induced collagen deposition and the formation of blood vessels during material degradation, and the accumulation of CD68-positive macrophages was suppressed compared to nonbiodegradable synthetic meshes. Tissue-adhesive and biodegradable dECM patches with improved mechanical strength by a supramolecular gelator have enormous potential for use in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shima Ito
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazuhiro Nagasaka
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
19
|
Behre A, Tashman JW, Dikyol C, Shiwarski DJ, Crum RJ, Johnson SA, Kommeri R, Hussey GS, Badylak SF, Feinberg AW. 3D Bioprinted Patient-Specific Extracellular Matrix Scaffolds for Soft Tissue Defects. Adv Healthc Mater 2022; 11:e2200866. [PMID: 36063047 PMCID: PMC9780169 DOI: 10.1002/adhm.202200866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/02/2022] [Indexed: 01/28/2023]
Abstract
Soft tissue injuries such as volumetric muscle loss (VML) are often too large to heal normally on their own, resulting in scar formation and functional deficits. Decellularized extracellular matrix (dECM) scaffolds placed into these wounds have shown the ability to modulate the immune response and drive constructive healing. This provides a potential solution for functional tissue regeneration, however, these acellular dECM scaffolds are challenging to fabricate into complex geometries. 3D bioprinting is uniquely positioned to address this, being able to create patient-specific scaffolds based on clinical 3D imaging data. Here, a process to use freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting and computed tomography (CT) imaging to build large volume, patient-specific dECM patches (≈12 × 8 × 2 cm) for implantation into canine VML wound models is developed. Quantitative analysis shows that these dECM patches are dimensionally accurate and conformally adapt to the surface of complex wounds. Finally, this approach is extended to a human VML injury to demonstrate the fabrication of clinically relevant dECM scaffolds with precise control over fiber alignment and micro-architecture. Together these advancements represent a step towards an improved, clinically translatable, patient-specific treatment for soft tissue defects from trauma, tumor resection, and other surgical procedures.
Collapse
Affiliation(s)
- Anne Behre
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Joshua W. Tashman
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Caner Dikyol
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Daniel J. Shiwarski
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Raphael J. Crum
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Scott A. Johnson
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Remya Kommeri
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - George S. Hussey
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
| | - Adam W. Feinberg
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPA15219USA
- Department of Materials Science & EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
20
|
Nan J, Liu W, Zhang K, Sun Y, Hu Y, Lei P. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes. Front Bioeng Biotechnol 2022; 10:1038250. [PMID: 36507273 PMCID: PMC9730409 DOI: 10.3389/fbioe.2022.1038250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Segmental bone defects, accompanied by periosteum stripping or injury, usually lead to delayed bone union or nonunion, which have challenged orthopedic surgeons. The periosteum, which provides essential blood supply and initial stem cells for bone tissue, plays an important role in the repair of bone defects. The reconstruction of the destroyed periosteum has attracted the attention of researchers exploring more satisfactory therapies to repair bone defects. However, periosteum-like biomaterials have yet to meet the clinical requirements and resolve this challenging problem. In this study, we manufactured a nanofiber periosteum replacement based on poly-ε-caprolactone (PCL), in which tantalum nanoparticles (TaNPs) and nanoscale magnesium oxide (MgO) were introduced to enhance its osteogenic and angiogenic ability. The results of in vitro experiments indicated that the PCL/Ta/MgO periosteum replacement, with excellent cytocompatibility, promoted the proliferation of both bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs). Furthermore, the incorporation of TaNPs and nano-MgO synergistically enhanced the osteogenic differentiation of BMSCs and the angiogenic properties of EPCs. Similarly, the results of in vivo experiments from subcutaneous implantation and critical-sized calvarial defect models showed that the PCL/Ta/MgO periosteum replacement combined the osteogenesis and angiogenesis abilities, promoting vascularized bone formation to repair critical-sized calvarial defects. The results of our study suggest that the strategy of stimulating repairing bone defects can be achieved with the periosteum repaired in situ and that the proposed periosteum replacement can act as a bioactive medium to accelerate bone healing.
Collapse
Affiliation(s)
- Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yan Sun
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Pengfei Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| |
Collapse
|
21
|
Cramer M, Pineda Molina C, Hussey G, Turnquist HR, Badylak SF. Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue Eng Part A 2022; 28:867-878. [PMID: 35770892 PMCID: PMC9634988 DOI: 10.1089/ten.tea.2022.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.
Collapse
Affiliation(s)
- Madeline Cramer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Davidian D, Levin M. Inducing Vertebrate Limb Regeneration: A Review of Past Advances and Future Outlook. Cold Spring Harb Perspect Biol 2022; 14:a040782. [PMID: 34400551 PMCID: PMC9121900 DOI: 10.1101/cshperspect.a040782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Limb loss due to traumatic injury or amputation is a major biomedical burden. Many vertebrates exhibit the ability to form and pattern normal limbs during embryogenesis from amorphous clusters of precursor cells, hinting that this process could perhaps be activated later in life to rebuild missing or damaged limbs. Indeed, some animals, such as salamanders, are proficient regenerators of limbs throughout their life span. Thus, research over the last century has sought to stimulate regeneration in species that do not normally regenerate their appendages. Importantly, these efforts are not only a vital aspect of regenerative medicine, but also have fundamental implications for understanding evolution and the cellular control of growth and form throughout the body. Here we review major recent advances in augmenting limb regeneration, summarizing the degree of success that has been achieved to date in frog and mammalian models using genetic, biochemical, and bioelectrical interventions. While the degree of whole limb repair in rodent models has been modest to date, a number of new technologies and approaches comprise an exciting near-term road map for basic and clinical progress in regeneration.
Collapse
Affiliation(s)
- Devon Davidian
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Seixas MLGA, Mitre LP, Shams S, Lanzuolo GB, Bartolomeo CS, Silva EA, Prado CM, Ureshino R, Stilhano RS. Unraveling Muscle Impairment Associated With COVID-19 and the Role of 3D Culture in Its Investigation. Front Nutr 2022; 9:825629. [PMID: 35223956 PMCID: PMC8867096 DOI: 10.3389/fnut.2022.825629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been considered a public health emergency, extensively investigated by researchers. Accordingly, the respiratory tract has been the main research focus, with some other studies outlining the effects on the neurological, cardiovascular, and renal systems. However, concerning SARS-CoV-2 outcomes on skeletal muscle, scientific evidence is still not sufficiently strong to trace, treat and prevent possible muscle impairment due to the COVID-19. Simultaneously, there has been a considerable amount of studies reporting skeletal muscle damage in the context of COVID-19. Among the detrimental musculoskeletal conditions associated with the viral infection, the most commonly described are sarcopenia, cachexia, myalgia, myositis, rhabdomyolysis, atrophy, peripheral neuropathy, and Guillain-Barré Syndrome. Of note, the risk of developing sarcopenia during or after COVID-19 is relatively high, which poses special importance to the condition amid the SARS-CoV-2 infection. The yet uncovered mechanisms by which musculoskeletal injury takes place in COVID-19 and the lack of published methods tailored to study the correlation between COVID-19 and skeletal muscle hinder the ability of healthcare professionals to provide SARS-CoV-2 infected patients with an adequate treatment plan. The present review aims to minimize this burden by both thoroughly exploring the interaction between COVID-19 and the musculoskeletal system and examining the cutting-edge 3D cell culture techniques capable of revolutionizing the study of muscle dynamics.
Collapse
Affiliation(s)
- Maria Luiza G. A. Seixas
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Lucas Pari Mitre
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gabriel Barbugian Lanzuolo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Eduardo A. Silva
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Carla Maximo Prado
- Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Ureshino
- Department of Biological Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
- *Correspondence: Roberta Sessa Stilhano
| |
Collapse
|
24
|
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials 2022; 283:121436. [DOI: 10.1016/j.biomaterials.2022.121436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
|
25
|
Sheng H, Guo Y, Zhang L, Zhang J, Miao M, Tan H, Hu D, Li X, Ding X, Li G, Guo H. Proteomic Studies on the Mechanism of Myostatin Regulating Cattle Skeletal Muscle Development. Front Genet 2021; 12:752129. [PMID: 34868225 PMCID: PMC8635237 DOI: 10.3389/fgene.2021.752129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN+/− Mongolian cattle (MG.MSTN+/−) and wild type Mongolian cattle (MG.WT) using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to investigate the regulation mechanism of MSTN on the growth and development of bovine skeletal muscle. A total of 1,950 proteins were identified in MG.MSTN+/− and MG.WT. Compared with MG.WT cattle, a total of 320 differentially expressed proteins were identified in MG.MSTN cattle, including 245 up-regulated differentially expressed proteins and 75 down-regulated differentially expressed proteins. Bioinformatics analysis showed that knockdown of the MSTN gene increased the expression of extracellular matrix and ribosome-related proteins, induced activation of focal adhesion, PI3K-AKT, and Ribosomal pathways. The results of proteomic analysis were verified by muscle tissue Western blot test and in vitro MSTN gene knockdown test, and it was found that knockdown MSTN gene expression could promote the proliferation and myogenic differentiation of bovine skeletal muscle satellite cells (BSMSCs). At the same time, Co-Immunoprecipitation (CO-IP) assay showed that MSTN gene interacted with extracellular matrix related protein type I collagen α 1 (COL1A1), and knocking down the expression of COL1A1 could inhibit the activity of adhesion, PI3K-AKT and ribosome pathway, thus inhibit BSMSCs proliferation. These results suggest that the MSTN gene regulates focal adhesion, PI3K-AKT, and Ribosomal pathway through the COL1A1 gene. In general, this study provides new insights into the regulatory mechanism of MSTN involved in muscle growth and development.
Collapse
Affiliation(s)
- Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Manning Miao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Haoyun Tan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Debao Hu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
26
|
Liu M, Wang R, Liu J, Zhang W, Liu Z, Lou X, Nie H, Wang H, Mo X, Abd-Elhamid AI, Zheng R, Wu J. Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112609. [DOI: 10.1016/j.msec.2021.112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
|
27
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Hu Q, Zhang R, Zhang H, Yang D, Liu S, Song Z, Gu Y, Ramalingam M. Topological Structure Design and Fabrication of Biocompatible PLA/TPU/ADM Mesh with Appropriate Elasticity for Hernia Repair. Macromol Biosci 2021; 21:e2000423. [PMID: 33870647 DOI: 10.1002/mabi.202000423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/21/2021] [Indexed: 11/06/2022]
Abstract
The meshes for hernia repair result in many problems that are related to complications including chronic pain and limited movement due to inadequate mechanical strength, non-absorbability, or low elasticity. In this study, degradable polylactic acid (PLA), synthetic thermoplastic polyurethane (TPU), and acellular dermal matrix (ADM) powders are combined to prepare a novel PLA/TPU/ADM mesh with three different topological structures (square, circular, and diamond) by 3D printing. The physicochemical properties and structural characteristics of mesh are studied, the results show that the diamond structure mesh with the pore size of 3 mm has sufficient elasticity and tensile strength, which provides the efficient mechanical strength required for hernia repair (16 N cm-1 ) and the value more than polypropylene(PP) mesh. Besides, in vitro and in vivo experiments demonstrate human umbilical vein endothelial cells could successfully proliferate on the PLA/TPU/ADM mesh whose biocompatibility with the host is shown using a rat model of abdominal wall defect. In conclusion, the results of this study demonstrate that the PLA/TPU/ADM mesh may be considered a good choice for hernia repair as its potential to overcome the elastic and strength challenges associated with a highly flexible abdominal wall, as well as its good biocompatibility.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China
| | - Rennan Zhang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, 200444, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China
| | - Dongchao Yang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, 200444, China
| | - Zhicheng Song
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
29
|
Human Bronchial Epithelial Cell Growth on Homologous Versus Heterologous Tissue Extracellular Matrix. J Surg Res 2021; 263:215-223. [PMID: 33691244 DOI: 10.1016/j.jss.2021.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular matrix (ECM) bioscaffolds produced by decellularization of source tissue have been effectively used for numerous clinical applications. However, decellularized tracheal constructs have been unsuccessful due to the immediate requirement of a functional airway epithelium on surgical implantation. ECM can be solubilized to form hydrogels that have been shown to support growth of many different cell types. The purpose of the present study is to compare the ability of airway epithelial cells to attach, form a confluent monolayer, and differentiate on homologous (trachea) and heterologous (urinary bladder) ECM substrates for potential application in full tracheal replacement. MATERIALS AND METHODS Porcine tracheas and urinary bladders were decellularized. Human bronchial epithelial cells (HBECs) were cultured under differentiation conditions on acellular tracheal ECM and urinary bladder matrix (UBM) bioscaffolds and hydrogels and were assessed by histology and immunolabeling for markers of ciliation, goblet cell formation, and basement membrane deposition. RESULTS Both trachea and urinary bladder tissues were successfully decellularized. HBEC formed a confluent layer on both trachea and UBM scaffolds and on hydrogels created from these bioscaffolds. Cells grown on tracheal and UBM hydrogels, but not on bioscaffolds, showed positive-acetylated tubulin staining and the presence of mucus-producing goblet cells. Collagen IV immunolabeling showed basement membrane deposition by these cells on the surface of the hydrogels. CONCLUSIONS ECM hydrogels supported growth and differentiation of HBEC better than decellularized ECM bioscaffolds and show potential utility as substrates for promotion of a mature respiratory epithelium for regenerative medicine applications in the trachea.
Collapse
|
30
|
Dienes J, Browne S, Farjun B, Amaral Passipieri J, Mintz EL, Killian G, Healy KE, Christ GJ. Semisynthetic Hyaluronic Acid-Based Hydrogel Promotes Recovery of the Injured Tibialis Anterior Skeletal Muscle Form and Function. ACS Biomater Sci Eng 2021; 7:1587-1599. [PMID: 33660968 DOI: 10.1021/acsbiomaterials.0c01751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Volumetric muscle loss (VML) injuries are characterized by a degree of tissue loss that exceeds the endogenous regenerative capacity of muscle, resulting in permanent structural and functional deficits. Such injuries are a consequence of trauma, as well as a host of congenital and acquired diseases and disorders. Despite significant preclinical research with diverse biomaterials, as well as early clinical studies with implantation of decellularized extracellular matrices, there are still significant barriers to more complete restoration of muscle form and function following repair of VML injuries. In fact, identification of novel biomaterials with more advantageous regenerative profiles is a critical limitation to the development of improved therapeutics. As a first step in this direction, we evaluated a novel semisynthetic hyaluronic acid-based (HyA) hydrogel that embodies material features more favorable for robust muscle regeneration. This HyA-based hydrogel is composed of an acrylate-modified HyA (AcHyA) macromer, an AcHyA macromer conjugated with the bsp-RGD(15) peptide sequence to enhance cell adhesion, a high-molecular-weight heparin to sequester growth factors, and a matrix metalloproteinase-cleavable cross-linker to allow for cell-dependent remodeling. In a well-established, clinically relevant rat tibialis anterior VML injury model, we report observations of robust functional recovery, accompanied by volume reconstitution, muscle regeneration, and native-like vascularization following implantation of the HyA-based hydrogel at the site of injury. These findings have important implications for the development and clinical application of the improved biomaterials that will be required for stable and complete functional recovery from diverse VML injuries.
Collapse
Affiliation(s)
- Jack Dienes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - Bruna Farjun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Juliana Amaral Passipieri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ellen L Mintz
- Pathology Department, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Grant Killian
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Material Science and Engineering, University of California, Berkeley, Berkeley 94720, United States
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
31
|
Awad K, Ahuja N, Fiedler M, Peper S, Wang Z, Aswath P, Brotto M, Varanasi V. Ionic Silicon Protects Oxidative Damage and Promotes Skeletal Muscle Cell Regeneration. Int J Mol Sci 2021; 22:E497. [PMID: 33419056 PMCID: PMC7825403 DOI: 10.3390/ijms22020497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Volumetric muscle loss injuries overwhelm the endogenous regenerative capacity of skeletal muscle, and the associated oxidative damage can delay regeneration and prolong recovery. This study aimed to investigate the effect of silicon-ions on C2C12 skeletal muscle cells under normal and excessive oxidative stress conditions to gain insights into its role on myogenesis during the early stages of muscle regeneration. In vitro studies indicated that 0.1 mM Si-ions into cell culture media significantly increased cell viability, proliferation, migration, and myotube formation compared to control. Additionally, MyoG, MyoD, Neurturin, and GABA expression were significantly increased with addition of 0.1, 0.5, and 1.0 mM of Si-ion for 1 and 5 days of C2C12 myoblast differentiation. Furthermore, 0.1-2.0 mM Si-ions attenuated the toxic effects of H2O2 within 24 h resulting in increased cell viability and differentiation. Addition of 1.0 mM of Si-ions significantly aid cell recovery and protected from the toxic effect of 0.4 mM H2O2 on cell migration. These results suggest that ionic silicon may have a potential effect in unfavorable situations where reactive oxygen species is predominant affecting cell viability, proliferation, migration, and differentiation. Furthermore, this study provides a guide for designing Si-containing biomaterials with desirable Si-ion release for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kamal Awad
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Matthew Fiedler
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Sara Peper
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
- Department of Bioengineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Venu Varanasi
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| |
Collapse
|
32
|
Premaratne ID, Toyoda Y, Celie KB, Brown KA, Spector JA. Tissue Engineering Models for the Study of Breast Neoplastic Disease and the Tumor Microenvironment. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:423-442. [DOI: 10.1089/ten.teb.2019.0347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ishani D. Premaratne
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Yoshiko Toyoda
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Karel-Bart Celie
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jason A. Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
V R, Kumar N, Saxena S, Shrivastava S, Sharma AK, Kutty M, Singh K, Maiti SK, Mondal DB, Singh KP. Mesenchymal stem cell tailored bioengineered scaffolds derived from bubaline diaphragm and aortic matrices for reconstruction of abdominal wall defects. J Tissue Eng Regen Med 2020; 14:1763-1778. [PMID: 32931632 DOI: 10.1002/term.3132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Bioengineered scaffolds derived from the decellularized extracellular matrix (ECM) obtained from discarded animal organs and tissues are attractive candidates for regenerative medicine applications. Tailoring these scaffolds with stem cells enhances their regeneration potential making them a suitable platform for regenerating damaged tissues. Thus, the study was designed to investigate the potential of mesenchymal stem cells tailored acellular bubaline diaphragm and aortic ECM for the repair of full-thickness abdominal wall defects in a rabbit model. Tissues obtained from bubaline diaphragm and aorta were decellularized and bioengineered by seeding with rabbit bone marrow derived mesenchymal stem cells (r-BMSC). Full-thickness abdominal wall defects of 3 cm × 4 cm size were created in a rabbit model and repaired using five different prostheses, namely, polypropylene sheet, nonseeded diaphragm ECM, nonseeded aorta ECM, r-BMSC bioengineered diaphragm ECM, and r-BMSC bioengineered aorta ECM. Results from the study revealed that biological scaffolds are superior in comparison to synthetic polymer mesh for regeneration in terms of collagen deposition, maturation, neovascularization, and lack of any significant (P > 0.05) adhesions with the abdominal viscera. Seeding with r-BMSC significantly increased (P < 0.05) the collagen deposition and biomechanical strength of the scaffolds. The bioengineered r-BMSC seeded acellular bubaline diaphragm showed even superior biomechanical strength as compared to synthetic polymer mesh. Tailoring of the scaffolds with the r-BMSC also resulted in significant reduction (P < 0.01) in antibody and cell mediated immune reactions to the xenogeneic scaffolds in rabbit model.
Collapse
Affiliation(s)
- Remya V
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - A K Sharma
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Muhammed Kutty
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Kiranjeet Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - S K Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - D B Mondal
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - K P Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
34
|
Decellularized Fetal Matrix Suppresses Fibrotic Gene Expression and Promotes Myogenesis in a Rat Model of Volumetric Muscle Loss. Plast Reconstr Surg 2020; 146:552-562. [PMID: 32459729 DOI: 10.1097/prs.0000000000007093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic muscle loss often results in poor functional restoration. Skeletal muscle injuries cannot be repaired without substantial fibrosis and loss of muscle function. Given its regenerative properties, the authors evaluated outcomes of fetal tissue-derived decellularized matrix for skeletal muscle regeneration. The authors hypothesized that fetal matrix would lead to enhanced myogenesis and suppress inflammation and fibrosis. METHODS Composite tissue composed of dermis, subcutaneous tissue, and panniculus carnosus was harvested from the trunk of New Zealand White rabbit fetuses on gestational day 24 and from Sprague-Dawley rats on gestational day 18 and neonatal day 3, and decellularized using a sodium dodecyl sulfate-based negative-pressure protocol. Six, 10-mm-diameter, full-thickness rat latissimus dorsi wounds were created for each treatment, matrix was implanted (excluding the defect groups), and the wounds were allowed to heal for 60 days. Analyses were performed to characterize myogenesis, neovascularization, inflammation, and fibrosis at harvest. RESULTS Significant myocyte ingrowth was visualized in both allogeneic and xenogeneic fetal matrix groups compared to neonatal and defect groups based on myosin heavy chain immunofluorescence staining. Microvascular networks were appreciated within all implanted matrices. At day 60, expression of Ccn2, Col1a1, and Ptgs2 were decreased in fetal matrix groups compared to defect. Neonatal matrix-implanted wounds failed to show decreased expression of Col1a1 or Ptgs2, and demonstrated increased expression of Tnf, but also demonstrated a significant reduction in Ccn2 expression. CONCLUSIONS Initial studies of fetal matrices demonstrate promise for muscle regeneration in a rat latissimus dorsi model. Further research is necessary to evaluate fetal matrix for future translational use and better understand its effects.
Collapse
|
35
|
Allogeneic Decellularized Muscle Scaffold Is Less Fibrogenic and Inflammatory than Acellular Dermal Matrices in a Rat Model of Skeletal Muscle Regeneration. Plast Reconstr Surg 2020; 146:43e-53e. [PMID: 32590650 DOI: 10.1097/prs.0000000000006922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Skeletal muscle trauma can produce grave functional deficits, but therapeutic options remain limited. The authors studied whether a decellularized skeletal muscle scaffold would provide benefits in inducing skeletal muscle regeneration over acellular dermal matrices. METHODS Eighty-two rat muscle defects were surgically created and assigned to no intervention or implantation of AlloDerm, Strattice, decellularized rat muscle, or decellularized rat dermis to 30 or 60 days. Decellularized rat muscle and dermis were prepared using a negative pressure-assisted protocol. Assessment for cellularity, neovascularization, myogenesis, inflammation and fibrosis were done histologically and by polymerase chain reaction. RESULTS Histology showed relative hypercellularity of AlloDerm (p < 0.003); Strattice appeared encapsulated. Immunofluorescence for CD31 and myosin heavy chain in decellularized rat muscle revealed dense microvasculature and peripheral islands of myogenesis. MyoD expression in muscle scaffolds was 23-fold higher than in controls (p < 0.01). Decellularized rat muscle showed no up-regulation of COX-2 (p < 0.05), with less expression than decellularized rat dermis and Strattice (p < 0.002). Decellularized rat muscle scaffolds expressed tumor necrosis factor-α less than Strattice, AlloDerm, and decellularized rat dermis (p < 0.01); collagen-1a less than decellularized rat dermis and Strattice (p < 0.04); α-smooth muscle actin 7-fold less than AlloDerm (p = 0.04); and connective tissue growth factor less than Strattice, AlloDerm, and decellularized rat dermis (p < 0.02). CONCLUSION Decellularized muscle matrix appears to reduce inflammation and fibrosis in an animal muscle defect as compared with dermal matrices and promotes greater expression of myocyte differentiation-inducing genes.
Collapse
|
36
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
37
|
Bi X, Li L, Mao Z, Liu B, Yang L, He W, Fan Y, Li X. The effects of silk layer-by-layer surface modification on the mechanical and structural retention of extracellular matrix scaffolds. Biomater Sci 2020; 8:4026-4038. [PMID: 32573617 DOI: 10.1039/d0bm00448k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Naturally derived extracellular matrix scaffolds can effectively promote tissue repair and regeneration due to their remarkable bioactivity. However, their rapid degradation leads to the decrease of mechanical retention and the failure of physical support in vivo which limit their applications. In this paper, we modified a classic extracellular matrix scaffold - small intestinal submucosa (SIS) - by a silk fibroin (SF) layer-by-layer (LbL) assembly to replace the existing chemical crosslinking methods for improving its mechanical and structural stability. Experimental results showed that the SF LbL surface functionalized SIS scaffold had tunable mechanical properties and degradation rate by adjusting the number of layers of the SF deposited on the surface. For biological responses, in vitro NIH3T3 fibroblast culture studies demonstrated that SF surface modification did not affect the excellent biocompatibility of the SIS. In vivo subcutaneous implantation results showed that the SF modification could effectively extend the residence time of the SIS in the body, and elicit a more moderate inflammatory response compared to the traditional glutaraldehyde chemical crosslinking. Furthermore, we found that SF modification could maintain the ability of bioactive components of the SIS to regulate the transformation of M1 into M2 in macrophages in vivo. This SF LbL modification strategy offers a green process for the development of high-performance extracellular matrix-based scaffolds with tunable biodegradability.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:60. [PMID: 32642974 DOI: 10.1007/s10856-020-06398-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Masoud Zhianmanesh
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Shabanloo Street, Tehran, 16788, Iran
| | - Hossein Montazerian
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
39
|
Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020; 48:2132-2153. [PMID: 31741227 PMCID: PMC7231673 DOI: 10.1007/s10439-019-02408-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
Collapse
Affiliation(s)
- Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Wu X, Jia Y, Sun X, Wang J. Tissue engineering in female pelvic floor reconstruction. Eng Life Sci 2020; 20:275-286. [PMID: 32647506 PMCID: PMC7336160 DOI: 10.1002/elsc.202000003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pelvic organ prolapse is a common and frequently occurring disease in middle-aged and elderly women. Mesh implantation is an ideal surgical treatment. The polypropylene mesh commonly used in clinical practice has good mechanical properties, but there are long-term complications. The application of tissue engineering technology in the treatment of pelvic organ prolapse disease can not only meet the mechanical requirements of pelvic floor support, but also be more biocompatible than traditional polypropylene mesh, and can promote tissue repair to a certain extent. In this paper, the progress of tissue engineering was summarized to understand the application of tissue engineering in the treatment of pelvic organ prolapse disease and will help in research.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - YuanYuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Xiuli Sun
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| |
Collapse
|
41
|
Vellachi R, Kumar N, Shrivastava S, Saxena S, Maiti SK, Kutty M, Singh K, Gopinathan A, Mondal DB, Singh KP. Selection of biological prosthesis for abdominal wall repair on the basis of in vitro biocompatibility determination. J Tissue Eng Regen Med 2020; 14:955-963. [PMID: 32392634 DOI: 10.1002/term.3055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/11/2022]
Abstract
Research on prostheses for repairing abdominal wall defects has progressed through past decades for developing an ideal prosthesis. The study was designed to compare different extracellular matrix (ECM) derived biological prostheses as alternate to conventional synthetic polymeric prostheses for the repair of full thickness abdominal wall defects. Five biological scaffolds derived from bovine diaphragm, bovine aorta, bovine gall bladder, porcine gall bladder, and rabbit skin were prepared and screened for their in vitro biocompatibility. Decellularized ECMs were subjected to various biocompatibility analyses, namely, water absorption potential, matrix degradation analysis, biomechanical testing, and cytocompatibility analysis. Though the rabbit skin displayed maximum biomechanical strength, due to its rapid degradation, it failed to fulfill the criteria of an ideal prosthesis. ECMs derived from bovine diaphragm and aorta were found to be superior than others based upon hydration and matrix degradation analysis, with best scores for bovine diaphragm followed by bovine aorta. The bovine diaphragm and aorta also displayed sufficient biomechanical strength, with diaphragm being the second highest (next to rabbit skin), in biomechanical strength followed by aorta. None of the biological prosthesis revealed any cytotoxicity. Thus, bovine diaphragm and aorta derived ECM fulfill the necessary criteria for their use as biological prosthesis. Because these prostheses are biocompatible, apart from their low cost, ease of availability, and simple preparation, they present a potential alternative to synthetic prosthesis for repair of abdominal wall defects, especially in veterinary patients.
Collapse
Affiliation(s)
- Remya Vellachi
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Muhammed Kutty
- Biochemistry Section, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Kiranjeet Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Aswathy Gopinathan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Deba Brata Mondal
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
42
|
The Antimicrobial Effectiveness and Cytotoxicity of the Antibiotic-Loaded Chitosan: ECM Scaffolds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The development of multifunctional wound dressings with the ability to control hemostasis, limit infection and promote rapid wound healing and constructive tissue remodeling has been a challenge for many years. In view of these challenges, a hybrid scaffold platform was developed that combined two different extracellular matrices (ECM): ECM from decellularized mammalian tissue and ECM (chitosan) from crustaceans. Both types of ECM have well established clinical benefits that support and promote wound healing and control hemostasis. This scaffold platform could also be augmented with antibiotics to provide bactericidal activity directly to the wound site. Methods: Four different scaffold formulations were developed containing chitosan supplemented with either 20% or 50% urinary bladder matrix (UBM) hydrogel or 1% (w/v) or 10% (w/v) UBM–ECM particulates. 100% chitosan scaffolds were used as controls. The scaffolds were augmented with either minocycline or rifampicin. Escherichia Coli and Staphylococcus Aureus were used to assesses antimicrobial efficacy and duration of activity, while neutral red uptake assays were performed to establish direct and indirect cytotoxicity. Results: Results showed that scaffold handling properties, scaffold integrity over time and the efficacy and release rate of loaded antibiotics could be modified by altering scaffold composition. Moreover, antibiotics were easily released from the scaffold and could remain effective for up to 24 h by modifying the scaffold composition. Variable results with cytotoxicity testing show that further work is required to optimize the scaffold formulations but these proof of principle experiments suggest that these scaffolds have potential as bioactive wound dressings.
Collapse
|
43
|
Xu C, Okpokwasili C, Huang Y, Shi X, Wu J, Liao J, Tang L, Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater Sci Eng 2020; 6:2757-2769. [PMID: 33313394 PMCID: PMC7725265 DOI: 10.1021/acsbiomaterials.9b01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable cardiac patch is desirable to possess mechanical properties mimicking native myocardium for heart infarction treatment. We fabricated a series of anisotropic and biodegradable polyurethane porous scaffolds via thermally induced phase separation (TIPS) and tailored their mechanical properties by using various polyurethanes with different soft segments and varying polymer concentrations. The uniaxial mechanical properties, suture retention strength, ball-burst strength, and biaxial mechanical properties of the anisotropic porous scaffolds were optimized to mechanically match native myocardium. The optimal anisotropic scaffold had a ball burst strength (20.7 ± 1.5 N) comparable to that of native porcine myocardium (20.4 ± 6.0 N) and showed anisotropic behavior close to biaxial stretching behavior of the native porcine myocardium. Furthermore, the optimized porous scaffold was combined with a porcine myocardium-derived hydrogel to form a biohybrid scaffold. The biohybrid scaffold showed morphologies similar to the decellularized porcine myocardial matrix. This combination did not affect the mechanical properties of the synthetic scaffold alone. After in vivo rat subcutaneous implantation, the biohybrid scaffolds showed minimal immune response and exhibited higher cell penetration than the polyurethane scaffold alone. This biohybrid scaffold with biomimetic mechanics and good tissue compatibility would have great potential to be applied as a biodegradable acellular cardiac patch for myocardial infarction treatment.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuka Okpokwasili
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Shi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
44
|
Cheng YW, Shiwarski DJ, Ball RL, Whitehead KA, Feinberg AW. Engineering Aligned Skeletal Muscle Tissue Using Decellularized Plant-Derived Scaffolds. ACS Biomater Sci Eng 2020; 6:3046-3054. [PMID: 33463300 DOI: 10.1021/acsbiomaterials.0c00058] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To achieve organization and function, engineered tissues require a scaffold that supports cell adhesion, alignment, growth, and differentiation. For skeletal muscle tissue engineering, decellularization has been an approach for fabricating 3D scaffolds that retain biological architecture. While many decellularization approaches are focused on utilizing animal muscle as the starting material, decellularized plants are a potential source of highly structured cellulose-rich scaffolds. Here, we assessed the potential for a variety of decellularized plant scaffolds to promote mouse and human muscle cell alignment and differentiation. After decellularizing a range of fruits and vegetables, we identified the green-onion scaffold to have appropriate surface topography for generating highly confluent and aligned C2C12 and human skeletal muscle cells (HSMCs). The topography of the green-onion cellulose scaffold contained a repeating pattern of grooves that are approximately 20 μm wide by 10 μm deep. The outer white section of the green onion had a microstructure that guided C2C12 cell differentiation into aligned myotubes. Quantitative analysis of C2C12 and HSMC alignment revealed an almost complete anisotropic organization compared to 2D isotropic controls. Our results demonstrate that the decellularized green onion cellulose scaffolds, particularly from the outer white bulb segment, provide a simple and low-cost substrate to engineer aligned human skeletal muscle.
Collapse
|
45
|
Cao G, Wang C, Fan Y, Li X. Biomimetic SIS-based biocomposites with improved biodegradability, antibacterial activity and angiogenesis for abdominal wall repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110538. [PMID: 32228945 DOI: 10.1016/j.msec.2019.110538] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/19/2022]
Abstract
Small intestinal submucosa (SIS) is a widely concerned acellular material for reconstructing tissue defects, but during the restoration of abdominal wall, it has been restricted due to the fast degradation causing poor long-term mechanical properties, the infection caused by bacteria contamination, and insufficient neovascularization post-operation. In this study, we developed a biomimetic SIS-based biocomposite (CS/ES-SIS) for abdominal wall repair, in which chitosan (CS) and elastin (ES) electrospun nanofibers were used to improve the biodegradability, antibacterial activity, and angiogenesis. The CS/ES-SIS composites were examined through a series of testing experiments, especially in vitro degradation was assessed by a constant deformation loading device and the micromechanical properties during enzymatic degradation under biomechanical environment were measured by nanoindentation. In vitro antibacterial test and cytocompatibility, and in vivo biocompatibility, neovascularisation and tissue regeneration were also investigated. The main research results as follows: (1) After 7 days enzymatic degradation under biomechanical environment, the degradation rate of CS/ES-SIS composites was slower than that of SIS by about 24.5%. Moreover, the CS/ES-SIS composites could better maintain the stability of microstructure and micromechanical properties compared with SIS. (2) The antibacterial rates of CS/ES-SIS composites against E. coli and S. aureus were respectively 98.87% and 98.26% while the SIS demonstrated no obvious antibacterial capacity. (3) The CS/ES-SIS composites supported the viability and proliferation of fibroblast cell L929. In vivo studies showed that the CS/ES-SIS composites could promote tissue regeneration upon implantation without serious inflammatory reaction. Additionally, the vascular number in the CS/ES-SIS composites was as 1.69 times as that in the SIS at 4 weeks. Collectively, all the findings suggested that the newly developed CS/ES-SIS composites might be promising and attractive candidates for applications of abdominal wall repair.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
46
|
Kim J, Kasukonis B, Roberts K, Dunlap G, Brown L, Washington T, Wolchok J. Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model. Acta Biomater 2020; 105:191-202. [PMID: 31978621 DOI: 10.1016/j.actbio.2020.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
A key event in the etiology of volumetric muscle loss (VML) injury is the bulk loss of structural cues provided by the underlying extracellular matrix (ECM). To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. However, while scaffold based regenerative medicine strategies have shown potential, there remains a significant amount of outcome variability observed across the field. We suggest that an overlooked source of outcome variability is differences in scaffolding architecture. The goal of this study was to test the hypothesis that implant alignment has a significant impact on genotypic and phenotypic outcomes following the repair of VML injuries. Using a rat VML model, outcomes across three autograft implant treatment groups (aligned implants, 45° misaligned, and 90° misaligned) and two recovery time points (2 weeks and 12 weeks) were examined (n = 6-8/group). At 2 weeks post-repair there were no significant differences in muscle mass and torque recovery between the treatment groups, however we did observe a significant upregulation of MyoD (2.5 fold increase) and Pax7 (2 fold increase) gene expression as well as the presence of immature myofibers at the implant site for those animals repaired with aligned autografts. By 12 weeks post-repair, functional and structural differences between the treatment groups could be detected. Aligned autografts had significantly greater mass and torque recovery (77 ± 10% of normal) when compared to 45° and 90° misaligned autografts (64 ± 10% and 61 ± 11%, respectively). Examination of tissue structure revealed extensive fibrosis and a significant increase in non-contractile tissue area fraction for only those animals treated using misaligned autografts. When taken together, the results suggest that implant graft orientation has a significant impact on in-vivo outcomes and indicate that the effect of graft alignment on muscle phenotype may be mediated through genotypic changes to myogenesis and fibrosis at the site of injury and repair. STATEMENT OF SIGNIFICANCE: A key event in the etiology of volumetric muscle loss injury is the bulk loss of architectural cues provided by the underlying extracellular matrix. To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. Yet, although native muscle is a highly organized tissue with network and cellular alignment in the direction of contraction, there is little evidence within the field concerning the importance of re-establishing native architectural alignment. The results of this study suggest that critical interactions exist between implant and native muscle alignment cues during healing, which influence the balance between myogenesis and fibrosis. Specifically, it appears that alignment of implant architectural cues with native muscle cues is necessary to create a pro-myogenic environment and contractile force recovery. The results also suggest that misaligned cues may be pathological, leading to fibrosis and poor contractile force recovery.
Collapse
Affiliation(s)
- John Kim
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Ben Kasukonis
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kevin Roberts
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States; Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Grady Dunlap
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Lemuel Brown
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Jeffrey Wolchok
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
47
|
Li J, Cai Z, Cheng J, Wang C, Fang Z, Xiao Y, Feng ZG, Gu Y. Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:999-1023. [PMID: 32138617 DOI: 10.1080/09205063.2020.1736741] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decellularization is a promising approach in tissue engineering to generate small-diameter blood vessels. However, some challenges still exist. We performed two decellularization phases to develop an optimal decellularized scaffold and analyze the relationship between the extracellular matrix (ECM) composition and mechanical properties. In decellularization phase I, we tested sodium dodecylsulfate (SDS), Triton X-100 (TX100) and trypsin at different concentrations and exposure times. In decellularization phase II, we systematically compared five combined decellularization protocols based on the results of phase I to identify the optimal method. These protocols tested cell removal, ECM preservation, mechanical properties, and residual cytotoxicity. We further immobilized heparin to optimal decellularized scaffolds and determined its anticoagulant activity and mechanical properties. The combined decellularization protocol comprising treatment with 0.5% SDS followed by 1% TX100 could completely remove the cellular contents and preserve the mechanical properties and ECM architecture better. In addition, the heparinized decellularized scaffolds not only had sustained anticoagulant activity, but also similar mechanical properties to native vessels. In conclusion, heparinized decellularized scaffolds represent a promising direction for small-diameter vascular grafts, although further in vivo studies are needed.
Collapse
Affiliation(s)
- Ji Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Bour RK, Sharma PR, Turner JS, Hess WE, Mintz EL, Latvis CR, Shepherd BR, Presnell SC, McConnell MJ, Highley C, Peirce SM, Christ GJ. Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: Tissue-Engineered Muscle Repair (TEMR) as a representative testbed. Connect Tissue Res 2020; 61:216-228. [PMID: 31899969 DOI: 10.1080/03008207.2019.1679800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: This report explores the overlooked potential of bioprinting to automate biomanufacturing of simple tissue structures, such as the uniform deposition of (mono)layers of progenitor cells on sheetlike decellularized extracellular matrices (dECM). In this scenario, dECM serves as a biodegradable celldelivery matrix to provide enhanced regenerative microenvironments for tissue repair. The Tissue-Engineered Muscle Repair (TEMR) technology-where muscle progenitor cells are seeded onto a porcine bladder acellular matrix (BAM), serves as a representative testbed for bioprinting applications. Previous work demonstrated that TEMR implantation improved functional outcomes following VML injury in biologically relevant rodent models.Materials and Methods: In the described bioprinting system, a cell-laden hydrogel bioink is used to deposit high cell densities (1.4 × 105-3.5 × 105 cells/cm2), onto both sides of the bladder acellular matrix as proof-of-concept.Results: These bioprinting methods achieve a reproducible and homogeneous distribution of cells, on both sides of the BAM scaffold, after just 24hrs, with cell viability as high as 98%. These preliminary results suggest bioprinting allows for improved dual-sided cell coverage compared to manual-seeding.Conclusions: Bioprinting can enable automated fabrication of TEMR constructs with high fidelity and scalability, while reducing biomanufacturing costs and timelines. Such bioprinting applications are underappreciated, yet critical, to expand the overall biomanufacturing paradigm for tissue engineered medical products. In addition, biofabrication of sheet-like implantable constructs, with cells deposited on both sides, is a process that is both scaffold and cell-type agnostic, and furthermore, is amenable to many geometries, and thus, additional tissue engineering applications beyond skeletal muscle.
Collapse
Affiliation(s)
- R K Bour
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - P R Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - J S Turner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - W E Hess
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - E L Mintz
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - C R Latvis
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | | - M J McConnell
- Departments of Biochemistry and Molecular Genetics, and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - C Highley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - S M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Plastic Surgery, University of Virginia, Charlottesville, VA, USA
| | - G J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
49
|
Kim JT, Kasukonis B, Dunlap G, Perry R, Washington T, Wolchok JC. Regenerative Repair of Volumetric Muscle Loss Injury is Sensitive to Age. Tissue Eng Part A 2020; 26:3-14. [PMID: 31064280 PMCID: PMC6983754 DOI: 10.1089/ten.tea.2019.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, the influence of age on effectiveness of regenerative repair for the treatment of volumetric muscle loss (VML) injury was explored. Tibialis anterior (TA) VML injuries were repaired in both 3- and 18-month-old animal models (Fischer 344 rat) using allogeneic decellularized skeletal muscle (DSM) scaffolds supplemented with autologous minced muscle (MM) paste. Within the 3-month animal group, TA peak contractile force was significantly improved (79% of normal) in response to DSM+MM repair. However, within the 18-month animal group, muscle force following repair (57% of normal) was not significantly different from unrepaired VML controls (59% of normal). Within the 3-month animal group, repair with DSM+MM generally reduced scarring at the site of VML repair, whereas scarring and a loss of contractile tissue was notable at the site of repair within the 18-month group. Within 3-month animals, expression of myogenic genes (MyoD, MyoG), extracellular matrix genes (Col I, Col III, TGF-β), and key wound healing genes (TNF-α and IL-1β) were increased. Alternatively, expression was unchanged across all genes examined within the 18-month animal group. The findings suggest that a decline in regenerative capacity and increased fibrosis with age may present an obstacle to regenerative medicine strategies targeting VML injury. Impact Statement This study compared the recovery following volumetric muscle loss (VML) injury repair using a combination of minced muscle paste and decellularized muscle extracellular matrix carrier in both a younger (3 months) and older (18 months) rat population. Currently, VML repair research is being conducted with the young patient population in mind, but our group is the first to look at the effects of age on the efficacy of VML repair. Our findings highlight the importance of considering age-related changes in response to VML when developing repair strategies targeting an elderly patient population.
Collapse
Affiliation(s)
- John T. Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Benjamin Kasukonis
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Richard Perry
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, Arkansas
| | - Jeffrey C. Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
50
|
Panayi AC, Smit L, Hays N, Udeh K, Endo Y, Li B, Sakthivel D, Tamayol A, Neppl RL, Orgill DP, Nuutila K, Sinha I. A porous collagen-GAG scaffold promotes muscle regeneration following volumetric muscle loss injury. Wound Repair Regen 2020; 28:61-74. [PMID: 31603580 DOI: 10.1111/wrr.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Volumetric muscle loss (VML) is a segmental loss of skeletal muscle which commonly heals with fibrosis, minimal muscle regeneration, and loss of muscle strength. Treatment options for these wounds which promote functional recovery are currently lacking. This study was designed to investigate whether the collagen-GAG scaffold (CGS) promotes functional muscle recovery following VML. A total of 66 C57/Bl6 mice were used in a three-stage experiment. First, 24 animals were split into three groups which underwent sham injury or unilateral quadriceps VML injury with or without CGS implantation. Two weeks post-surgery, muscle was harvested for histological and gene expression analysis. In the second stage, 18 mice underwent bilateral quadriceps VML injury, followed by weekly functional testing using a treadmill. In the third stage, 24 mice underwent sham or bilateral quadriceps VML injury with or without CGS implantation, with tissue harvested six weeks post-surgery for histological and gene expression analysis. VML mice treated with CGS demonstrated increased remnant fiber hypertrophy versus both the VML with no CGS and uninjured groups. Both VML groups showed greater muscle fiber hypertrophy than non-injured muscle. This phenomenon was still evident in the longer-term experiment. The gene array indicated that the CGS promoted upregulation of factors involved in promoting wound healing and regeneration. In terms of functional improvement, the VML mice treated with CGS ran at higher maximum speeds than VML without CGS. A CGS was shown to enhance muscle hypertrophy in response to VML injury with a resultant improvement in functional performance. A gene array highlighted increased gene expression of multiple growth factors following CGS implantation. This suggests that implantation of a CGS could be a promising treatment for VML wounds.
Collapse
Affiliation(s)
- Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lucindi Smit
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nicole Hays
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Kodi Udeh
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bin Li
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska
| | - Ronald L Neppl
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|