1
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Altinbasak I, Alp Y, Sanyal R, Sanyal A. Theranostic nanogels: multifunctional agents for simultaneous therapeutic delivery and diagnostic imaging. NANOSCALE 2024; 16:14033-14056. [PMID: 38990143 DOI: 10.1039/d4nr01423e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In recent years, there has been a growing interest in multifunctional theranostic agents capable of delivering therapeutic payloads while facilitating simultaneous diagnostic imaging of diseased sites. This approach offers a comprehensive strategy particularly valuable in dynamically evolving diseases like cancer, where combining therapy and diagnostics provides crucial insights for treatment planning. Nanoscale platforms, specifically nanogels, have emerged as promising candidates due to their stability, tunability, and multifunctionality as carriers. As a well-studied subgroup of soft polymeric nanoparticles, nanogels exhibit inherent advantages due to their size and chemical compositions, allowing for passive and active targeting of diseased tissues. Moreover, nanogels loaded with therapeutic and diagnostic agents can be designed to respond to specific stimuli at the disease site, enhancing their efficacy and specificity. This capability enables fine-tuning of theranostic platforms, garnering significant clinical interest as they can be tailored for personalized treatments. The ability to monitor tumor progression in response to treatment facilitates the adaptation of therapies according to individual patient responses, highlighting the importance of designing theranostic platforms to guide clinicians in making informed treatment decisions. Consequently, the integration of therapy and diagnostics using theranostic platforms continues to advance, offering intelligent solutions to address the challenges of complex diseases such as cancer. In this context, nanogels capable of delivering therapeutic payloads and simultaneously armed with diagnostic modalities have emerged as an attractive theranostic platform. This review focuses on advances made toward the fabrication and utilization of theranostic nanogels by highlighting examples from recent literature where their performances through a combination of therapeutic agents and imaging methods have been evaluated.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
4
|
Howaili F, Saadabadi A, Mäkilä E, Korotkova E, Eklund PC, Salo-Ahen OMH, Rosenholm JM. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics 2024; 16:276. [PMID: 38399330 PMCID: PMC10892027 DOI: 10.3390/pharmaceutics16020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pinosylvin monomethyl ether (PsMME) is a natural compound known for its valuable bioactive properties, including antioxidant and anti-inflammatory effects. However, PsMME's susceptibility to photodegradation upon exposure to ultraviolet (UV) radiation poses a significant limitation to its applications in the pharmaceutical field. This study, for the first time, introduces a strategy to enhance the photostability of PsMME by employing various nanoformulations. We utilized mesoporous silica nanoparticles (MSNs) coated with polydopamine via a poly(ethylene imine) layer (PDA-PEI-MSNs), thermally carbonized porous silicon nanoparticles (TCPSi), and pure mesoporous polydopamine nanoparticles (MPDA). All these nanocarriers exhibit unique characteristics, including the potential for shielding the drug from UV light, which makes them promising for enhancing the photostability of loaded drugs. Here, these three nanoparticles were synthesized and their morphological and physicochemical properties, including size and ζ-potential, were characterized. They were subsequently loaded with PsMME, and the release profiles and kinetics of all three nanoformulations were determined. To assess their photoprotection ability, we employed gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) to assess the recovery percentage of loaded PsMME before and after UV exposure for each nanoformulation. Our findings reveal that MPDA exhibits the highest protection ability, with a remarkable 90% protection against UV light on average. This positions MPDA as an ideal carrier for PsMME, and by extension, potentially for other photolabile drugs as well. As a final confirmation of its suitability as a drug nanocarrier, we conducted cytotoxicity evaluations of PsMME-loaded MPDA, demonstrating dose-dependent drug toxicity for this formulation.
Collapse
Affiliation(s)
- Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland;
| | - Ekaterina Korotkova
- Laboratory of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Patrik C. Eklund
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Outi M. H. Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| |
Collapse
|
5
|
Zhang Y, Li Z, Huang Y, Xu Y, Zou B. Nanotechnology and curcumin: a novel and promising approach in digestive cancer therapy. Nanomedicine (Lond) 2023; 18:2081-2099. [PMID: 38078442 DOI: 10.2217/nnm-2023-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zheng Li
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Xu
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Bingwen Zou
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
6
|
Shen J, Zhang J, Wu W, Banerjee P, Zhou S. Biocompatible Anisole-Nonlinear PEG Core-Shell Nanogels for High Loading Capacity, Excellent Stability, and Controlled Release of Curcumin. Gels 2023; 9:762. [PMID: 37754443 PMCID: PMC10529957 DOI: 10.3390/gels9090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Curcumin, a nontoxic and cheap natural medicine, has high therapeutic efficacy for many diseases, including diabetes and cancers. Unfortunately, its exceedingly low water-solubility and rapid degradation in the body severely limit its bioavailability. In this work, we prepare a series of biocompatible poly(vinyl anisole)@nonlinear poly(ethylene glycol) (PVAS@PEG) core-shell nanogels with different PEG gel shell thickness to provide high water solubility, good stability, and controllable sustained release of curcumin. The PVAS nanogel core is designed to attract and store curcumin molecules for high drug loading capacity and the hydrophilic nonlinear PEG gel shell is designed to offer water dispersibility and thermo-responsive drug release. The nanogels prepared are monodispersed in a spherical shape with clear core-shell morphology. The size and shell thickness of the nanogels can be easily controlled by changing the core-shell precursor feeding ratios. The optimized PVAS@PEG nanogels display a high curcumin loading capacity of 38.0 wt%. The nanogels can stabilize curcumin from degradation at pH = 7.4 and release it in response to heat within the physiological temperature range. The nanogels can enter cells effectively and exhibit negligible cytotoxicity to both the B16F10 and HL-7702 cells at a concentration up to 2.3 mg/mL. Such designed PVAS@PEG nanogels have great potential to be used for efficient drug delivery.
Collapse
Affiliation(s)
- Jing Shen
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
- Department of Chemistry, Yunnan Normal University, Kunming 650092, China
| | - Jiangtao Zhang
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| | - Weitai Wu
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Probal Banerjee
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and PhD Program in Chemistry of Graduate Center, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, USA; (J.S.); (J.Z.); (P.B.)
| |
Collapse
|
7
|
A tutorial review on bimetallic nanoparticles loaded in smart organic polymer microgels/hydrogels. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Mahmoudi A, Kesharwani P, Majeed M, Teng Y, Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces 2022; 215:112481. [PMID: 35453063 DOI: 10.1016/j.colsurfb.2022.112481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Curcumin is a natural polyphenolic compound that has promising therapeutic benefits. However, curcumin suffers from low aqueous solubility and poor bioavailability following oral administration, which are severe constraints to its full therapeutic potential. An exciting approach to resolving such challenges has been to incorporate curcumin into gold nanoparticles (AuNPs) to improve its unfavorable physicochemical and biopharmaceutical properties. Growing evidence shows that AuNPs increase cytotoxicity and apoptotic effect of curcumin on cancer cells. Moreover, AuNPs has the potential to enhance curcumin's cellular uptake and antioxidant properties. In addition, numerous benefits have been suggested for exploiting the curcumin's gold (Au) NPs as simple preparation and functionalization. Therefore, we can take advantage of the nanogold combination with curcumin in several therapeutic methods like photothermal therapy and theranostic nanocarrier. Here, we focus on the therapeutic properties of Au/curcumin NPs and the way to improve biocompatibility and bioavailability for curcumin encapsulation, intending to enhance their anticancer and antioxidant capacities. The present review also discusses the utilization and impact of Au NPs as a drug/gene delivery system/platform and various methods for the synthesis of Au/curcumin NPs.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | | | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
10
|
Mundel R, Thakur T, Chatterjee M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech 2022; 12:41. [PMID: 35070631 PMCID: PMC8748584 DOI: 10.1007/s13205-021-03105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Traditional therapies need high systematic dosages that not only destroys cancerous cells but also healthy cells. To overcome this problem recent advancement in nanotechnology specifically in nanomaterials has been extensively done for various biological applications, such as targeted drug delivery. Nanotechnology, as a frontier science, has the potential to break down all the obstacles to be more effective and secure drug delivery system. It is possible to develop nanopolymer based drug carrier that can target drugs with extreme accuracy. Polymers can advance drug delivery technologies by allowing controlled release of therapeutic drugs in stable amounts over long duration of time. For controlled drug delivery, biodegradable synthetic polymers have various benefits over non-biodegradable polymers. Biodegradable polymer either are less toxic or non-toxic. Polylactic Acid (PLA) is one of the most remarkable amphipathic polymers which make it one of the most suitable materials for polymeric micelles. Amphiphilic nanomaterial, such as Polyethylene Glycol (PEG), is one of the most promising carrier for tumor targeting. PLA-PEG as a copolymer has been generally utilized as drug delivery system for the various types of cancer. Chemotherapeutic drugs are stacked into PLA-PEG copolymer and as a result their duration time delays, hence medications arrive at specific tumor site.
Collapse
Affiliation(s)
- Rohit Mundel
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Tanya Thakur
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| |
Collapse
|
11
|
Tian Y, Jia D, Dirican M, Cui M, Fang D, Yan C, Xie J, Liu Y, Li C, Fu J, Liu H, Chen G, Zhang X, Tao J. Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy. Biomacromolecules 2022; 23:960-971. [PMID: 35029369 DOI: 10.1021/acs.biomac.1c01367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a natural antitumor drug, curcumin (CUR) has received increasing attention from researchers and patients due to its various medicinal properties. However, currently CUR is still restricted due to its low and stand-alone therapeutic effects that seriously limit its clinical application. Here, by using cellulose nanocrystals (CNCs) as a nanocarrier to load CUR and AuNPs simultaneously, we developed a hybrid nanoparticle as a codrug delivery system to enhance the low and stand-alone therapeutic effects of CUR. Aided with the encapsulation of β-cyclodextrin (βCD), both the solubility and the stability of CUR are greatly enhanced (solubility increased from 0.89 to 131.7 μg/mL). Owing to the unique rod-like morphology of CNCs, the system exhibits an outstanding loading capacity of 31.4 μg/mg. Under the heat effects of coloaded AuNPs, the system demonstrates a high release rate of 77.63%. Finally, with CNC as a bridge nanocarrier, all aforementioned functions were integrated into one hybrid nanoparticle. The all-in-one integration ensures CUR to have enhanced therapeutic effects and enables the delivery system to exhibit combined chemo-photothermal therapy outcomes. This work presents a significant step toward CUR's clinical application and provides a new strategy for effective and integrative treatment of tumor disease.
Collapse
Affiliation(s)
- Yan Tian
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongmei Jia
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahmut Dirican
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Meng Cui
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongjun Fang
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaoyi Yan
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jingyi Xie
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunxing Li
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junjun Fu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| | - Gang Chen
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| |
Collapse
|
12
|
Shen LM, Li MC, Wei WJ, Guan X, Liu J. In Vitro Neuroprotective Effects of Macrophage Membrane-Derived Curcumin-Loaded Carriers against 1-Methyl-4-phenylpyridinium-Induced Neuronal Damage. ACS OMEGA 2021; 6:32133-32141. [PMID: 34870034 PMCID: PMC8637945 DOI: 10.1021/acsomega.1c04894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Curcumin (CUR) possesses neuroprotective effects. However, its clinical therapeutic efficacy is limited because of its low systemic bioavailability due to poor water solubility and fast metabolism. Herein, we designed biomimetic therapeutic nanovesicles (NVs) with enhanced performance and biocompatibility for the intracellular delivery of hydrophobic CUR. Cell membrane NVs were constructed to function as drug carriers by the serial extrusion of macrophages using filters with decreasing pore sizes. Various CUR loading strategies were also evaluated. Furthermore, the neuroprotective effects of the CUR-loaded NVs (NVs-CUR) against 1-methyl-4-phenylpyridinium (MPP+)-induced neuronal degeneration were studied thoroughly. CUR-loaded NVs were readily taken up by neurons in vitro, and the survival rate of MPP+-induced primary neurons increased from 65.37 ± 6.37 to 90.91 ± 3.18% after pretreatment with NVs-CUR. Compared with traditional Parkinson's disease chemotherapeutic treatment, NV formulations can improve the bioavailability of this drug. NVs are expected to become a new and effective drug-delivery platform for further applications in the field of central nervous system therapy.
Collapse
Affiliation(s)
- Li-Ming Shen
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Meng-Chu Li
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Wen-Juan Wei
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Xin Guan
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
| | - Jing Liu
- Stem
Cell Clinical Research Center, The First
Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
- Dalian
Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, Dalian High-Tech
Park, Dalian 116023, China
| |
Collapse
|
13
|
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021; 7:228. [PMID: 34842728 PMCID: PMC8628665 DOI: 10.3390/gels7040228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, research in nanoparticles as a drug delivery system has broadened to include their use as a delivery system for bioactive substances and a diagnostic or theranostic system. Nanogels, nanoparticles containing a high amount of water, have gained attention due to their advantages of colloidal stability, core-shell structure, and adjustable structural components. These advantages provide the potential to design and fabricate multifunctional nanosystems for various biomedical applications. Modified or functionalized polymers and some metals are components that markedly enhance the features of the nanogels, such as tunable amphiphilicity, biocompatibility, stimuli-responsiveness, or sensing moieties, leading to specificity, stability, and tracking abilities. Here, we review the diverse designs of core-shell structure nanogels along with studies on the fabrication and demonstration of the responsiveness of nanogels to different stimuli, temperature, pH, reductive environment, or radiation. Furthermore, additional biomedical applications are presented to illustrate the versatility of the nanogels.
Collapse
Affiliation(s)
- Tisana Kaewruethai
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Maddiboyina B, Desu PK, Vasam M, Challa VT, Surendra AV, Rao RS, Alagarsamy S, Jhawat V. An insight of nanogels as novel drug delivery system with potential hybrid nanogel applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:262-278. [PMID: 34547214 DOI: 10.1080/09205063.2021.1982643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanogels are cross-linked, nano-sized hydrogels with dimensions ranging from 20 to 200 nm. Nanogel-based nanoplatforms have proven to be an excellent choice for pharmaceutical formulations. Nanosystems have properties that are very useful in polymeric drug delivery applications, and their particular strength is that they have these nanosystemic properties and can thus merge with polymeric materials. Drug-carrier size is designed to be nano-sized in order to maintain optimal stability, resulting in more surface area and interior space. This also allows for a prolonged period of time for loaded pharmaceuticals to circulate. They can be classified by stimuli responsive or non-responsive behavior and type of linkages present in the network chains of gel structure. Nanogel can be synthesized by Photolithographic, modified pullulan, emulsion polymerization reverse microemulsion polymerization inverse miniemulsion polymerization and free radical crosslinking polymerization technique. Hybrid nanogels are different from conventional polymer nanoparticles often employed for drug administration. They can encapsulate bioactive medicines and regulate the release of such medications over time and in particular areas. The hybrid nanogels used to create a specific form of the hybrid, especially one geared towards increasing targeted drug delivery, enhance the effectiveness of ailment treatments, but perhaps the introduction of a multifunctional nanogel-based drug delivery system.
Collapse
Affiliation(s)
- Balaji Maddiboyina
- Department of Pharmacy, NRK & KSR Gupta College of Pharmacy, Tenali Guntur, Andhra Pradesh, India
| | - Prasanna Kumar Desu
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Mallikarjun Vasam
- Department of Pharmacy, Chaitanya (Deemed to be University)-Pharmacy, Warangal, Telangana, India
| | - Veerendra Teja Challa
- School of Informatics and Computing, Indiana University-Purdue University (IUPUI), Indianapolis, USA
| | - Amareswarapu V Surendra
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Raja Sridhar Rao
- Department of Pharmacy, Pathfinder Institute of Pharmacy Educational and Research, Warangal, Telangana, India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Vikas Jhawat
- Department of Pharmacy, School of Medical & Allied Sciences, GD Goenka University, Gurgaon, India
| |
Collapse
|
15
|
Micale N, Molonia MS, Citarella A, Cimino F, Saija A, Cristani M, Speciale A. Natural Product-Based Hybrids as Potential Candidates for the Treatment of Cancer: Focus on Curcumin and Resveratrol. Molecules 2021; 26:4665. [PMID: 34361819 PMCID: PMC8348089 DOI: 10.3390/molecules26154665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (M.S.M.); (A.C.); (F.C.); (M.C.); (A.S.)
| | | | | |
Collapse
|
16
|
Meng Y, Shen J, Fu T, Feng X, Wang S, Wang T, Zhang X. Thermosensitive
PMMA
core/oligo(ethylene glycol)‐based shell microgels as drug carriers in detoxification treatment. J Appl Polym Sci 2021. [DOI: 10.1002/app.51454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuting Meng
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Jing Shen
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Ting Fu
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Siping Wang
- Institute of Education Sciences, Yunnan Long‐Spring International Academy Kunming China
| | - Tongwen Wang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming China
| |
Collapse
|
17
|
Effect of sophorolipid on the curcumin-loaded ternary composite nanoparticles self-assembled from zein and chondroitin sulfate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
The Issue of Tissue: Approaches and Challenges to the Light Control of Drug Activity. CHEMPHOTOCHEM 2021; 5:611-618. [DOI: 10.1002/cptc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
20
|
Howaili F, Özliseli E, Küçüktürkmen B, Razavi SM, Sadeghizadeh M, Rosenholm JM. Stimuli-Responsive, Plasmonic Nanogel for Dual Delivery of Curcumin and Photothermal Therapy for Cancer Treatment. Front Chem 2021; 8:602941. [PMID: 33585400 PMCID: PMC7873892 DOI: 10.3389/fchem.2020.602941] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Nanogels (Ng) are crosslinked polymer-based hydrogel nanoparticles considered to be next-generation drug delivery systems due to their superior properties, including high drug loading capacity, low toxicity, and stimuli responsiveness. In this study, dually thermo-pH-responsive plasmonic nanogel (AuNP@Ng) was synthesized by grafting poly (N-isopropyl acrylamide) (PNIPAM) to chitosan (CS) in the presence of a chemical crosslinker to serve as a drug carrier system. The nanogel was further incorporated with gold nanoparticles (AuNP) to provide simultaneous drug delivery and photothermal therapy (PTT). Curcumin's (Cur) low water solubility and low bioavailability are the biggest obstacles to effective use of curcumin for anticancer therapy, and these obstacles can be overcome by utilizing an efficient delivery system. Therefore, curcumin was chosen as a model drug to be loaded into the nanogel for enhancing the anticancer efficiency, and further, its therapeutic efficiency was enhanced by PTT of the formulated AuNP@Ng. Thorough characterization of Ng based on CS and PNIPAM was conducted to confirm successful synthesis. Furthermore, photothermal properties and swelling ratio of fabricated nanoparticles were evaluated. Morphology and size measurements of nanogel were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Nanogel was found to have a hydrodynamic size of ~167 nm and exhibited sustained release of curcumin up to 72 h with dual thermo-pH responsive drug release behavior, as examined under different temperature and pH conditions. Cytocompatibility of plasmonic nanogel was evaluated on MDA-MB-231 human breast cancer and non-tumorigenic MCF 10A cell lines, and the findings indicated the nanogel formulation to be cytocompatible. Nanoparticle uptake studies showed high internalization of nanoparticles in cancer cells when compared with non-tumorigenic cells and confocal microscopy further demonstrated that AuNP@Ng were internalized into the MDA-MB-231 cancer cells via endosomal route. In vitro cytotoxicity studies revealed dose-dependent and time-dependent drug delivery of curcumin loaded AuNP@Ng/Cur. Furthermore, the developed nanoparticles showed an improved chemotherapy efficacy when irradiated with near-infrared (NIR) laser (808 nm) in vitro. This work revealed that synthesized plasmonic nanogel loaded with curcumin (AuNP@Ng/Cur) can act as stimuli-responsive nanocarriers, having potential for dual therapy i.e., delivery of hydrophobic drug and photothermal therapy.
Collapse
Affiliation(s)
- Fadak Howaili
- NanoBiotechnology Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Department of Pharmaceutical Technology Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Seyyede Mahboubeh Razavi
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- NanoBiotechnology Department, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
21
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
22
|
Yu YB, Wu MY, Wang C, Wang ZW, Chen TT, Yan JK. Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Poudel K, Park S, Hwang J, Ku SK, Yong CS, Kim JO, Byeon JH. Photothermally Modulatable and Structurally Disintegratable Sub-8-nm Au 1Ag 9 Embedded Nanoblocks for Combination Cancer Therapy Produced by Plug-in Assembly. ACS NANO 2020; 14:11040-11054. [PMID: 32816451 DOI: 10.1021/acsnano.9b09731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As well as the exploration of translatable delivery nanosystems for cancer therapeutic agents, the development of automatable continuous-flow manufacturing technology comprising digitally controlled reactions for the on-demand production of pharmaceuticals is an important challenge in anticancer nanomedicine. Most attempts to resolve these issues have involved the development of alternative reactions, formulations, or constructs containing stimulus components aimed at producing multiple approaches for highly efficacious combination cancer therapies. However, there has been no report of a platform based on plug-in execution that enables continuous-flow manufacture in a compact, reconfigurable manner, although an optimal platform technology may be a prerequisite for the timely translation of recently developed nanomedicines. To this end, we describe the development of a platform toward digitizable, continuous manufacture by a serial combination of plug-in reactionwares (heating plates, a spraying cup, and a photochamber) for single-pass flow fabrication. Specifically, we fabricated three different composite nanoblocks consisting of Au1Ag9 (<8 nm; stimulus component), docetaxel (an anticancer drug), and bovine serum albumin (a protective and targeting agent) using our system, with the result of producing nanoblocks with photothermally modulatable and structurally disintegratable properties. These were examined for effectiveness in near-infrared-induced chemothermal cancer therapy and renal excretion of Au1Ag9 particles and exhibited high anticancer efficacy and warrantable biosafety.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sungjae Park
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hoon Byeon
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
24
|
Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E. Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels 2020; 6:E20. [PMID: 32635573 PMCID: PMC7559285 DOI: 10.3390/gels6030020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli. In this review, thermosensitive nanogels are discussed, with a focus on moieties in their chemical structure which are responsible for thermosensitivity. These thermosensitive moieties can be classified into four groups, namely, polymers bearing amide groups, ether groups, vinyl ether groups and hydrophilic polymers bearing hydrophobic groups. These novel thermoresponsive nanogels provide effective drug delivery systems and tissue regeneration constructs for treating patients in many clinical applications, such as targeted, sustained and controlled release.
Collapse
Affiliation(s)
- Sobhan Ghaeini-Hesaroeiye
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Hossein Razmi Bagtash
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Soheil Boddohi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
25
|
Chen Y, Lu Y, Lee RJ, Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int J Nanomedicine 2020; 15:3099-3120. [PMID: 32431504 PMCID: PMC7200256 DOI: 10.2147/ijn.s210320] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Curcumin, a yellow-colored polyphenol extracted from the rhizome of turmeric root, is commonly used as a spice and nutritional supplement. It exhibits many pharmacological activities such as anti-inflammatory, anti-bacterial, anti-cancer, anti-Alzheimer, and anti-fungal. However, the therapeutic application of curcumin is limited by its extremely low solubility in aqueous buffer, instability in body fluids, and rapid metabolism. Nano delivery system has shown excellent potential to improve the solubility, biocompatibility and therapeutic effect of curcumin. In this review, we focus on the recent development of nano encapsulated curcumin and its potential for biomedical applications.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
26
|
Manzanares-Guevara L, Licea-Claverie A, Oroz-Parra I, Bernaldez-Sarabia J, Diaz-Castillo F, Licea-Navarro AF. Smart Nanoformulation Based on Stimuli-Responsive Nanogels and Curcumin: Promising Therapy against Colon Cancer. ACS OMEGA 2020; 5:9171-9184. [PMID: 32363269 PMCID: PMC7191563 DOI: 10.1021/acsomega.9b04390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 05/02/2023]
Abstract
Curcumin (CUR) has gained much attention for its widely reported anticancer effect; however, its clinical use is restricted due to its low water solubility and, consequently, its poor bioavailability. Here, we report on the use of a nanoformulation of CUR with cationic nanogels for colon cancer therapy. Cationic stimuli-sensitive nanogels were prepared using a scale-up polymerization methodology based on surfactant-free emulsion polymerization of N,N'-diethylaminoethyl methacrylate (DEAEM) and poly(ethyleneglycol) methacrylate (PEGMA). The obtained nanogels showed a homogeneous size distribution (from 51 to 162 nm, polydispersity index (PDI) < 0.138) and exhibited a spherical form and core-shell morphology as confirmed by dynamic light scattering and electron microscopy, respectively. Nanogels were responsive to and degradable by variations of pH, temperature, or the redox environment, depending on the cross-linker used in the synthesis. Nanogels cross-linked with bis(acryloyl)cystamine incubated in a buffer (pH 7.4) containing 3 mM glutathione degraded in 60 min, while nanogels cross-linked with a divinylacetal cross-linker degraded in 10 min (pH ≤ 6). Nanoformulations of nanogels with CUR were stable as tested up to 30 days at physiological conditions. In vitro studies of the human colon cancer cell line (HCT-116) showed a synergistic effect of CUR and the degradable nanogels. Further, in vivo acute cytotoxicity tests of empty nanogels in mice demonstrate their potential as CUR nanocarriers for colon-anticancer therapies.
Collapse
Affiliation(s)
- Lizbeth
A. Manzanares-Guevara
- Centro
de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tijuana 22410, Baja California, México
| | - Angel Licea-Claverie
- Centro
de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tijuana 22410, Baja California, México
- . Phone/Fax: +52-664-6234043
| | - Irasema Oroz-Parra
- Facultad
de Ciencias Marinas, Universidad Autónoma
de Baja California, Ensenada 22860, Baja California, México
| | - Johanna Bernaldez-Sarabia
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación
Superior de Ensenada (CICESE), Ensenada 22860, Baja California, México
| | - Fernando Diaz-Castillo
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación
Superior de Ensenada (CICESE), Ensenada 22860, Baja California, México
| | - Alexei F. Licea-Navarro
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación
Superior de Ensenada (CICESE), Ensenada 22860, Baja California, México
| |
Collapse
|
27
|
Ha M, Kim JH, You M, Li Q, Fan C, Nam JM. Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. Chem Rev 2019; 119:12208-12278. [PMID: 31794202 DOI: 10.1021/acs.chemrev.9b00234] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmonic nanostructures possessing unique and versatile optoelectronic properties have been vastly investigated over the past decade. However, the full potential of plasmonic nanostructure has not yet been fully exploited, particularly with single-component homogeneous structures with monotonic properties, and the addition of new components for making multicomponent nanoparticles may lead to new-yet-unexpected or improved properties. Here we define the term "multi-component nanoparticles" as hybrid structures composed of two or more condensed nanoscale domains with distinctive material compositions, shapes, or sizes. We reviewed and discussed the designing principles and synthetic strategies to efficiently combine multiple components to form hybrid nanoparticles with a new or improved plasmonic functionality. In particular, it has been quite challenging to precisely synthesize widely diverse multicomponent plasmonic structures, limiting realization of the full potential of plasmonic heterostructures. To address this challenge, several synthetic approaches have been reported to form a variety of different multicomponent plasmonic nanoparticles, mainly based on heterogeneous nucleation, atomic replacements, adsorption on supports, and biomolecule-mediated assemblies. In addition, the unique and synergistic features of multicomponent plasmonic nanoparticles, such as combination of pristine material properties, finely tuned plasmon resonance and coupling, enhanced light-matter interactions, geometry-induced polarization, and plasmon-induced energy and charge transfer across the heterointerface, were reported. In this review, we comprehensively summarize the latest advances on state-of-art synthetic strategies, unique properties, and promising applications of multicomponent plasmonic nanoparticles. These plasmonic nanoparticles including heterostructured nanoparticles and composite nanostructures are prepared by direct synthesis and physical force- or biomolecule-mediated assembly, which hold tremendous potential for plasmon-mediated energy transfer, magnetic plasmonics, metamolecules, and nanobiotechnology.
Collapse
Affiliation(s)
- Minji Ha
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Jae-Ho Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Myunghwa You
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jwa-Min Nam
- Department of Chemistry , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
28
|
Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019; 11:E71. [PMID: 30736486 PMCID: PMC6409538 DOI: 10.3390/pharmaceutics11020071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Considering nanogels, we have focused our attention on hybrid nanosystems for drug delivery and biomedical purposes. The distinctive strength of these structures is the capability to join the properties of nanosystems with the polymeric structures, where versatility is strongly demanded for biomedical applications. Alongside with the therapeutic effect, a non-secondary requirement of the nanosystem is indeed its biocompatibility. The importance to fulfill this aim is not only driven by the priority to reduce, as much as possible, the inflammatory or the immune response of the organism, but also by the need to improve circulation lifetime, biodistribution, and bioavailability of the carried drugs. In this framework, we have therefore gathered the hybrid nanogels specifically designed to increase their biocompatibility, evade the recognition by the immune system, and overcome the self-defense mechanisms present in the bloodstream of the host organism. The works have been essentially organized according to the hybrid morphologies and to the strategies adopted to fulfill these aims: Nanogels combined with nanoparticles or with liposomes, and involving polyethylene glycol chains or zwitterionic polymers.
Collapse
Affiliation(s)
- Parisa Eslami
- Laboratory of Molecular Magnetism (LaMM), Department of Chemistry "Ugo Shiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Stefano Fedeli
- Colorobbia Research Center (CERICOL), via Pietramarina 53, 50053 Sovigliana Vinci, Italy.
| |
Collapse
|
29
|
Tran DHN, Nguyen TH, Vo TNN, Pham LPT, Vo DMH, Nguyen CK, Bach LG, Nguyen DH. Self-assembled poly(ethylene glycol) methyl ether-grafted gelatin nanogels for efficient delivery of curcumin in cancer treatment. J Appl Polym Sci 2019. [DOI: 10.1002/app.47544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Diem-Huong Nguyen Tran
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 01 TL29, District 12; Ho Chi Minh City 700000 Vietnam
| | - Thi Hiep Nguyen
- Tissue Engineering and Regenerative Medicine Group, Department of Biomedical Engineering; International University, Vietnam National University-HCMC (VNU-HCMC), 6 Linh Trung, Thu Duc District; Ho Chi Minh City 700000 Vietnam
| | - Thanh Nguyet Nguyen Vo
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 01 TL29, District 12; Ho Chi Minh City 700000 Vietnam
- Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4; Ho Chi Minh City 700000 Vietnam
| | - Linh Phuong Tran Pham
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 01 TL29, District 12; Ho Chi Minh City 700000 Vietnam
- Tissue Engineering and Regenerative Medicine Group, Department of Biomedical Engineering; International University, Vietnam National University-HCMC (VNU-HCMC), 6 Linh Trung, Thu Duc District; Ho Chi Minh City 700000 Vietnam
| | - Do Minh Hoang Vo
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 01 TL29, District 12; Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology; 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000 Vietnam
| | - Cuu Khoa Nguyen
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 01 TL29, District 12; Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology; 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000 Vietnam
| | - Long Giang Bach
- Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4; Ho Chi Minh City 700000 Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 01 TL29, District 12; Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology; 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000 Vietnam
| |
Collapse
|
30
|
Vines JB, Lim DJ, Park H. Contemporary Polymer-Based Nanoparticle Systems for Photothermal Therapy. Polymers (Basel) 2018; 10:E1357. [PMID: 30961282 PMCID: PMC6401975 DOI: 10.3390/polym10121357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Current approaches for the treatment of cancer, such as chemotherapy, radiotherapy, immunotherapy, and surgery, are limited by various factors, such as inadvertent necrosis of healthy cells, immunological destruction, or secondary cancer development. Hyperthermic therapy is a promising strategy intended to mitigate many of the shortcomings associated with traditional therapeutic approaches. However, to utilize this approach effectively, it must be targeted to specific tumor sites to prevent adverse side effects. In this regard, photothermal therapy, using intravenously-administered nanoparticle materials capable of eliciting hyperthermic effects in combination with the precise application of light in the near-infrared spectrum, has shown promise. Many different materials have been proposed, including various inorganic materials such as Au, Ag, and Germanium, and C-based materials. Unfortunately, these materials are limited by concerns about accumulation and potential cytotoxicity. Polymer-based nanoparticle systems have been investigated to overcome limitations associated with traditional inorganic nanoparticle systems. Some of the materials that have been investigated for this purpose include polypyrrole, poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), polydopamine, and polyaniline. The purpose of this review is to summarize these contemporary polymer-based nanoparticle technologies to acquire an understanding of their current applications and explore the potential for future improvements.
Collapse
Affiliation(s)
- Jeremy B Vines
- Organogenesis, Surgical and Sports Medicine, Birmingham, AL 35216, USA.
| | - Dong-Jin Lim
- Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
31
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
32
|
Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 2018; 47:4198-4232. [PMID: 29667656 DOI: 10.1039/c7cs00399d] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Collapse
Affiliation(s)
- Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, P. R. China.
| | | | | |
Collapse
|
33
|
Maiti P, Dunbar GL. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E1637. [PMID: 29857538 PMCID: PMC6032333 DOI: 10.3390/ijms19061637] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur) has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer's, Parkinson's, Huntington's, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
- Department of Biology, Saginaw Valley State University, Saginaw, MI 48610, USA.
- Brain Research Laboratory, Saginaw Valley State University, Saginaw, MI 48610, USA.
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
| |
Collapse
|
34
|
Rahimi-Moghaddam F, Azarpira N, Sattarahmady N. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation. Lasers Med Sci 2018; 33:1769-1779. [DOI: 10.1007/s10103-018-2538-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
|
35
|
Bellinger S, Hatamimoslehabadi M, Bag S, Mithila F, La J, Frenette M, Laoui S, Szalda DJ, Yelleswarapu C, Rochford J. Photophysical and Photoacoustic Properties of Quadrupolar Borondifluoride Curcuminoid Dyes. Chemistry 2018; 24:906-917. [PMID: 29149546 PMCID: PMC11528891 DOI: 10.1002/chem.201704423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/10/2022]
Abstract
The synthesis and characterization of a series of donor-π-acceptor-π-donor (D-A-D) curcuminoid molecules is presented herein that incorporates π-extended aryl and electron-donating amino terminal functionalization. Computational evaluation shows these molecules possess quadrupolar character with the lowest energy transitions displaying high molar extinction coefficients with broad tunability through manipulation of terminal donating groups. Consistent with their quadrupolar nature, these molecules show varying degrees of solvatochromic behavior in both their absorption and emission spectra, which has been analyzed by Lippert-Mataga and Kamlet-Taft analysis. Photophysical and photoacoustic (PA) properties of these molecules have been investigated by the optical photoacoustic z-scan (OPAZ) method. Selected curcuminoid molecules display nonlinear behavior at a high laser fluence through excited state absorption that translates to the production of an enhanced photoacoustic emission. A relative comparison of "molar PA emission" is also presented with the crystal violet linear optical absorbing/linear PA emitting system being utilized as a standard reference material for OPAZ experiments. Furthermore, PA tomography experiments are presented to illustrate the enhanced PA contrast obtainable via an excited state absorption.
Collapse
Affiliation(s)
- Stephanie Bellinger
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Maryam Hatamimoslehabadi
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Seema Bag
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Farha Mithila
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Mathieu Frenette
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Samir Laoui
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - David J Szalda
- Department of Natural Science, Baruch College, CUNY, New York, 1001, USA
| | - Chandra Yelleswarapu
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts, 02125, USA
| |
Collapse
|
36
|
Gupta S, Gupta MK. Possible role of nanocarriers in drug delivery against cervical cancer. NANO REVIEWS & EXPERIMENTS 2017; 8:1335567. [PMID: 30410707 PMCID: PMC6167030 DOI: 10.1080/20022727.2017.1335567] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 02/08/2023]
Abstract
Introduction: Cervical cancer is the second most common cancer and the largest cancer killer among women in most developing countries including India. Although, various drugs have been developed for cervical cancer, treatment with these drugs often results in a number of undesirable side effects, toxicity and multidrug resistance (MDR). Also, the outcomes for cervical cancer patients remain poor after surgery and chemo radiation. Methods: A literature search (for drugs and delivery systems against cervical cancer) was performed on PubMed and through Google. The present review discuss about various methods including its current conventional treatment with special reference to recent advances in delivery systems encapsulating various anticancer drugs and natural plant products for targeting towards cervical cancer. The role of photothermal therapy, gene therapy and radiation therapy against cervical cancer is also discussed. Results: Systemic/targeted drug delivery systems including liposomes, nanoparticles, hydrogels, dendrimers etc. and localized drug delivery systems like cervical patches, films, rings etc. are safer than the conventional chemotherapy which has further been proved by the several drug delivery systems undergoing clinical trials. Conclusion: Novel approaches for the aggressive treatment of cervical cancer will optimistically result in decreased side effects as well as toxicity, frequency of administration of existing drugs, to overcome MDR and to increase the survival rates.
Collapse
Affiliation(s)
- Swati Gupta
- B. S. Anangpuria Institute of Pharmacy, Pt B. D. Sharma University of Health Sciences, Faridabad, India
| | - Manish K. Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, India
| |
Collapse
|
37
|
Wang H, Mukherjee S, Yi J, Banerjee P, Chen Q, Zhou S. Biocompatible Chitosan-Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal-Chemo Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18639-18649. [PMID: 28485151 DOI: 10.1021/acsami.7b06062] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multifunctional nanocarriers with good biocompatibility, good imaging function, and smart drug delivery ability are crucial for realizing highly efficient imaging-guided chemotherapy in vivo. This paper reports a type of chitosan-carbon dot (CD) hybrid nanogels (CCHNs, ∼65 nm) by integrating pH-sensitive chitosan and fluorescent CDs into a single nanostructure for simultaneous near-infrared (NIR) imaging and NIR/pH dual-responsive drug release to improve therapeutic efficacy. Such CCHNs were synthesized via a nonsolvent-induced colloidal nanoparticle formation of chitosan-CD complexes assisted by ethylenediaminetetraacetic acid (EDTA) molecules in the aqueous phase. The selective cross-linking of chitosan chains in the nanoparticles can immobilize small CDs complexed in the chitosan networks. The resultant CCHNs display high colloidal stability, high loading capacity for doxorubicin (DOX), bright and stable fluorescence from UV to NIR wavelength range, efficient NIR photothermal conversion, and intelligent drug release in response to both NIR light and change in pH. The results from in vitro tests on cell model and in vivo tests on different tissues of animal model indicate that the CCHNs are nontoxic. The DOX-loaded CCHNs can permeate into the implanted tumor on mice and release drug molecules efficiently on site to inhibit tumor growth. The additional photothermal treatments from NIR irradiation can further inhibit the tumor growth, benefited from the effective NIR photothermal conversion of CCHNs. The demonstrated CCHNs manifest a great promise toward multifunctional intelligent nanoplatform for highly efficient imaging-guided cancer therapy with low side effects.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry of The College of Staten Island, The City University of New York , Staten Island, New York 10314, United States
- Ph.D. Program in Biochemistry and Chemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei 230031, China
| | - Sumit Mukherjee
- Department of Chemistry of The College of Staten Island, The City University of New York , Staten Island, New York 10314, United States
- Ph.D. Program in Biochemistry and Chemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| | - Jinhui Yi
- Department of Chemistry of The College of Staten Island, The City University of New York , Staten Island, New York 10314, United States
- Ph.D. Program in Biochemistry and Chemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| | - Probal Banerjee
- Department of Chemistry of The College of Staten Island, The City University of New York , Staten Island, New York 10314, United States
- Ph.D. Program in Biochemistry and Chemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| | - Qianwang Chen
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei 230031, China
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island, The City University of New York , Staten Island, New York 10314, United States
- Ph.D. Program in Biochemistry and Chemistry, The Graduate Center, The City University of New York , New York, New York 10016, United States
| |
Collapse
|
38
|
Affiliation(s)
- Vineeth M. Vijayan
- Polymer Science Division, BMT Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram 695012 Kerala India
| | - Jayabalalan Muthu
- Polymer Science Division, BMT Wing; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram 695012 Kerala India
| |
Collapse
|
39
|
Xie J, Yong Y, Dong X, Du J, Guo Z, Gong L, Zhu S, Tian G, Yu S, Gu Z, Zhao Y. Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14281-14291. [PMID: 28381089 DOI: 10.1021/acsami.7b02622] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Low water solubility, extensive metabolism, and drug resistance are the existing unavoidable disadvantages of the insoluble drug curcumin in biomedical applications. Herein, we employed d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-functionalized near-infrared (NIR)-triggered photothermal mesoporous nanocarriers with bamboo charcoal nanoparticles (TPGS-BCNPs) to load and deliver curcumin for improving its bioavailability. This system could considerably increase the accumulation of curcumin in cancer cells for enhanced curcumin bioavailability via simultaneously promoting the cellular internalization of the as-synthesized composite (TPGS-BCNPs@curcumin) by the size effect of NPs and considerably triggering controlled curcumin release from TPGS-BCNPs@curcumin by NIR stimulation and reducing efflux of curcumin by the P-glycoprotein (P-gp) inhibition of TPGS, so as to enhance the therapeutic effect of curcumin and realize a better chemo-photothermal synergetic therapy in vitro and in vivo. Besides cancer therapy, studies indicated that curcumin and some carbon materials could be used as radical scavengers that play an important role in the radioprotection of normal cells. Hence, we also investigated the free-radical-scavenging ability of the TPGS-BCNPs@curcumin composite in vitro to preliminarily evaluate its radioprotection ability for healthy tissues. Therefore, our work provides a multifunctional delivery system for curcumin bioavailability enhancement, chemo-photothermal synergetic therapy of cancer, and radioprotection of healthy tissues.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Yuan Yong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Jiangfeng Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
| | - Zhao Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Linji Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University , Gaotanyan 30, Chongqing 400038, China
| | - Shicang Yu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University , Gaotanyan 30, Chongqing 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences , Beijing 100049, China
- University of Chinese Academy of Science , Beijing 100049, China
| |
Collapse
|
40
|
Ma Y, Ge Y, Li L. Advancement of multifunctional hybrid nanogel systems: Construction and application in drug co-delivery and imaging technique. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1281-1292. [DOI: 10.1016/j.msec.2016.11.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
|
41
|
Yuan A, Huan W, Liu X, Zhang Z, Zhang Y, Wu J, Hu Y. NIR Light-Activated Drug Release for Synergetic Chemo–Photothermal Therapy. Mol Pharm 2016; 14:242-251. [DOI: 10.1021/acs.molpharmaceut.6b00820] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University, Nanjing 210093, China
| | - Wei Huan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhicheng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Yifan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Qiao L, Wang X, Gao Y, Wei Q, Hu W, Wu L, Li P, Zhu R, Wang Q. Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent. NANOSCALE 2016; 8:17241-17249. [PMID: 27722385 DOI: 10.1039/c6nr05943k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we designed a new hybrid nanogel with redox responsive polymer gel shells and mesoporous silica nanoparticles (MSNs) cores via laccase-mediated radical polymerization. The successful coating of the responsive gel shells on the MSNs was confirmed by the morphology and increased diameters of the particles as determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). As observed by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS), the presence of the element S around the MSNs further confirmed the formation of the gel shell. When loaded with doxorubicin (DOX), these hybrid nanogels had a significantly higher cumulative DOX release in a reductive environment than that found under physiological conditions. The MSNs with mesoporous channels were loaded with perfluorohexane (PFH) for ultrasound imaging, which was enhanced by the presence of the elastic gel shells.
Collapse
Affiliation(s)
- Li Qiao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xia Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yawei Gao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Qingcong Wei
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Wen Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lei Wu
- Department of Ultrasound in Medicine Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Pei Li
- Department of Medical Ultrasound Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Rongrong Zhu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
43
|
Sierra-Martin B, Fernandez-Barbero A. Inorganic/polymer hybrid nanoparticles for sensing applications. Adv Colloid Interface Sci 2016; 233:25-37. [PMID: 26782148 DOI: 10.1016/j.cis.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
This paper reviews a wide set of sensing applications based on the special properties associated with inorganic/polymer composite nanoparticles. We first describe optical sensing applications performed with hybrid nanoparticles and hybrid microgels with special emphasis on photoluminescence detection and imaging. Analyte detection with molecularly imprinted polymers and HPLC-based sensing using hybrid nanoparticles as stationary phase is also summarized. The final part is devoted to the study of ultra-sensitive molecule detection by surface-enhanced Raman spectroscopy using core-shell hybrid materials composed of noble metal nanoparticles and cross-linked polymers.
Collapse
|
44
|
Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 2016; 44:6161-86. [PMID: 26505057 DOI: 10.1039/c5cs00199d] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanogels are nanosized crosslinked polymer networks capable of absorbing large quantities of water. Specifically, smart nanogels are interesting because of their ability to respond to biomedically relevant changes like pH, temperature, etc. In the last few decades, hybrid nanogels or composites have been developed to overcome the ever increasing demand for new materials in this field. In this context, a hybrid refers to nanogels combined with different polymers and/or with nanoparticles such as plasmonic, magnetic, and carbonaceous nanoparticles, among others. Research activities are focused nowadays on using multifunctional hybrid nanogels in nanomedicine, not only as drug carriers but also as imaging and theranostic agents. In this review, we will describe nanogels, particularly in the form of composites or hybrids applied in nanomedicine.
Collapse
|
45
|
|
46
|
Tan KW, Tang SY, Thomas R, Vasanthakumari N, Manickam S. Curcumin-loaded sterically stabilized nanodispersion based on non-ionic colloidal system induced by ultrasound and solvent diffusion-evaporation. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2015-0601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCurcumin has been found to possess significant pharmaceutical activities. However, owing to its low bioavailability, there is a limitation of employing it towards clinical application. In an attempt to surmount this implication, often the choice is designing novel drug delivery systems. Herein, sterically stabilized nanoscale dispersion loaded with curcumin (nanodispersion) based on non-ionic colloidal system has been proposed. In this study, the process conditions were effectively optimized using response surface methodology (RSM) with Box–Behnken design (BBD). The suggested optimum formulation proved to be an excellent fit to the actual experimental output. STEM images illustrate that the optimal curcumin-loaded nanodispersion has spherical morphology with narrow particle size distribution. Particle size distribution study confirms that the solution pH does not affect the nanodispersion, and physical stability study shows that the colloidal system is stable over 90 days of storage at ambient conditions. More importantly, controlled release profile was achieved over 72 h and the in vitro drug release data fit well to Higuchi model (R2=0.9654).
Collapse
Affiliation(s)
| | | | - Renjan Thomas
- 4Faculty of Medical and Health Sciences, Department of Medical Microbiology and Parasitology, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Neela Vasanthakumari
- 4Faculty of Medical and Health Sciences, Department of Medical Microbiology and Parasitology, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sivakumar Manickam
- 2Manufacturing and Industrial Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
47
|
Chan M, Almutairi A. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum. MATERIALS HORIZONS 2016; 3:21-40. [PMID: 27398218 PMCID: PMC4906372 DOI: 10.1039/c5mh00161g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/25/2015] [Indexed: 05/05/2023]
Abstract
In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.
Collapse
Affiliation(s)
- Minnie Chan
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0600 , USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences , KACST-UCSD Center of Excellence in Nanomedicine , Laboratory of Bioresponsive Materials , University of California , 9500 Gilman Dr., 0600 , PSB 2270 , La Jolla , San Diego , CA 92093-0600 , USA . ; Tel: +1 (858) 246 0871
| |
Collapse
|
48
|
Liu W, Zhang W, Yu X, Zhang G, Su Z. Synthesis and biomedical applications of fluorescent nanogels. Polym Chem 2016. [DOI: 10.1039/c6py01021k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nanogel is an innovative biomedical material with hydroscopicity, degradability, and responsiveness.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Wensi Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Guanghua Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
49
|
Paşcalău V, Soritau O, Popa F, Pavel C, Coman V, Perhaita I, Borodi G, Dirzu N, Tabaran F, Popa C. Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules. J Biomater Appl 2016; 30:857-872. [PMID: 26350520 DOI: 10.1177/0885328215603797] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The aim of the paper is to obtain and characterize k-carrageenan-chitosan dual hydrogel multilayers shell BSA gel microcapsules, as a carrier for curcumin, and as a possible antitumoral agent in biological studies. We used the CaCO3 template to synthesize non-toxic CaCO3/BSA particles as microtemplates by coprecipitating a CaCl2 solution that contains dissolved BSA, with an equimolar Na2CO3 solution. The microcapsules shell is assembled through a layer-by-layer deposition technique of calcium cross-linked k-carrageenan hydrogel alternating with polyelectrolite complex hydrogel formed via electrostatic interactions between k-carrageenan and chitosan. After the removal of CaCO3 through Ca(2+) complexation with EDTA, and by a slightly treatment with HCl diluted solution, the BSA core is turned into a BSA gel through a thermal treatment. The BSA gel microcapsules were then loaded with curcumin, through a diffusion process from curcumin ethanolic solution. All the synthesized particles and microcapsules were stucturally characterized by: Fourier Transform Infrared Spectroscopy, UV-Vis Spectrometry, X-ray diffraction, thermal analysis, fluorescence spectroscopy, fluorescence optical microscopy, confocal laser scanning microscopy and scanning electron microscopy. The behavior of curcumin loaded microcapsules in media of different pH (SGF, SIF and PBS) was studied in order to reveal the kinetics and the release profile of curcumin. The in vitro evaluation of the antitumoral activity of encapsulated curcumin microcapsules on HeLa cell line and the primary culture of mesenchymal stem cells is the main reason of the microcapsules synthesis as BSA-based vehicle meant to enhance the biodisponibility of curcumin, whose anti-tumor, anti-oxidant and anti-inflammatory properties are well known.
Collapse
Affiliation(s)
- V Paşcalău
- Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - O Soritau
- The Oncology Institute Prof. Dr. I. Chiricuta, Cluj-Napoca, Romania
| | - F Popa
- Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - C Pavel
- Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - V Coman
- "Raluca Ripan" Institute for Research in Chemistry, Cluj-Napoca, Romania
| | - I Perhaita
- "Raluca Ripan" Institute for Research in Chemistry, Cluj-Napoca, Romania
| | - G Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - N Dirzu
- The Oncology Institute Prof. Dr. I. Chiricuta, Cluj-Napoca, Romania
| | - F Tabaran
- University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - C Popa
- Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
50
|
Sierra-Martin B, Fernandez-Barbero A. Multifunctional hybrid nanogels for theranostic applications. SOFT MATTER 2015; 11:8205-8216. [PMID: 26371991 DOI: 10.1039/c5sm01789k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper reviews a wide set of theranostic applications based on the special properties associated with composite nanogels. The nanogels presented here are mostly hybridized with quantum dots, magnetic nanoparticles, and plasmonic metal noble nanoparticles. These inorganic components confer nanogels multifunctional properties that extend their applications from drug delivery systems to diagnosis and therapy. Nanogels can also be surface functionalized with specific ligands to achieve targeted therapy and reduce toxicity. This versatility makes hybrid nanogels very promising agents for imaging, diagnosis and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- B Sierra-Martin
- Applied Physics Section, University of Almeria, 04120 Almeria, Spain.
| | | |
Collapse
|