1
|
Keshtmand Z, Eftekhari S, Khodadadi B, Farzollahi B, Khosravimelal S, Shandiz SA, Tavakkoli Yaraki M. Engineering of gelatin scaffold by extracellular matrix of Sertoli cells for embryonic stem cell proliferation. Toxicol In Vitro 2024; 100:105900. [PMID: 39029600 DOI: 10.1016/j.tiv.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Mimicking the microenvironment of seminiferous tubules plays an indispensable role in directing differentiation of stem cells toward germ cells in vitro. In this work, we fabricated electrospun gelatin (EG) mats (i.e., with diameter <500 nm) conditioned with Sertoli cells' extracellular matrix (ECM) to simulate both 3D structures and composition of normal testis tissue. Sertoli cells were isolated from mice testis and represented through immunocytochemistry (ICC) staining for expression of vimentin, a specific marker of Sertoli cells. The morphological characteristics of ECM-coated scaffold were investigated under scanning electron microscope (SEM). The efficient elimination of cells was confirmed by MTT assay. Furthermore, the cyto/biocompatibility of ECM-conditioned EG scaffold was determined for Sertoli cells and embryonic stem cells (ESCs), alone and as in co-culture. According to the results, the designed scaffold provided a mat for cell proliferation with negligible toxicity (almost 100% cell viability). SEM micrographs displayed cells with elongated shape and complete stretching morphology when compared with those cultured on scaffold without ECM. Moreover, an enhanced differentiation of ESCs toward sperm-generating cells was obtained through co-culturing of Sertoli cells and ESCs, where cell viability was found almost 100%. Our findings introduce the ECM-conditioned EG scaffold as a potentially influential engineered substrate for in vitro guidance of stem cells differentiation by mimicking the native microenvironment.
Collapse
Affiliation(s)
- Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Bahare Farzollahi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
2
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
3
|
Shah S, Ghosh D, Otsuka T, Laurencin CT. Classes of Stem Cells: From Biology to Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:309-322. [PMID: 39387056 PMCID: PMC11463971 DOI: 10.1007/s40883-023-00317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2024]
Abstract
Purpose The majority of adult tissues are limited in self-repair and regeneration due to their poor intrinsic regenerative capacity. It is widely recognized that stem cells are present in almost all adult tissues, but the natural regeneration in adult mammals is not sufficient to recover function after injury or disease. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth fully engineered class: the synthetic artificial stem cell (SASC). This review aims to discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results In this review, we discuss the different classes of stem cells that are biologically derived (ESCs and MSCs) or semi-engineered/engineered (iPSCs, SASC). We also discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of the classes and how they impact the clinical translation of these therapies. Conclusion Each class of stem cells has advantages and disadvantages in preclinical and clinical settings. We also propose the engineered SASC class as a potentially disease-modifying therapy that harnesses the paracrine action of biologically derived stem cells to mimic regenerative potential. Lay Summary The majority of adult tissues are limited in self-repair and regeneration, even though stem cells are present in almost all adult tissues. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth, fully engineered class: the synthetic artificial stem cell (SASC). In this review, we discuss the applications of each of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of these classes and how they impact the clinical translation of these therapies.
Collapse
Affiliation(s)
- Shiv Shah
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Qian E, Kang Y. Branched Channels in Porous β-Tricalcium Phosphate Scaffold Promote Vascularization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19081-19093. [PMID: 38442339 DOI: 10.1021/acsami.3c17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Rapid and efficient vascularization is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, branched channels were created in the porous β-TCP scaffold by using 3D printing and a template-casting method to facilitate the instant flow of blood supply. Human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were seeded in the channeled porous scaffolds and characterized through a double-stranded DNA (dsDNA) assay, alkaline phosphatase (ALP) assay, and cell migration. Channeled porous β-TCP scaffolds were then implanted in the subcutaneous pockets of mice. Histological staining and immunohistochemical staining on vascularization and bone-related markers were carried out on the embedded paraffin sections. Results from in vitro experiments showed that branched channels significantly promoted HUVECs' infiltration, migration, proliferation, and angiogenesis, and also promoted the proliferation and osteogenesis differentiation of hBMSCs. In vivo implantation results showed that, in the early stage after implantation, cells significantly migrated into branched channeled scaffolds. More matured blood vessels formed in the branched channeled scaffolds compared to that in nonchanneled and straight channeled scaffolds. Beside promoting vascularization, the branched channels also stimulated the infiltration of bone-related cells into the scaffolds. These results suggested that the geometric design of branched channels in the porous β-TCP scaffold promoted rapid vascularization and potentially stimulated bone cells recruitment.
Collapse
Affiliation(s)
- Enze Qian
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Faculty of Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
5
|
Stolarov P, de Vries J, Stapleton S, Morris L, Martyniak K, Kean TJ. Suitability of Gelatin Methacrylate and Hydroxyapatite Hydrogels for 3D-Bioprinted Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1218. [PMID: 38473692 DOI: 10.3390/ma17051218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Complex bone defects are challenging to treat. Autografting is the gold standard for regenerating bone defects; however, its limitations include donor-site morbidity and increased surgical complexity. Advancements in 3D bioprinting (3DBP) offer a promising alternative for viable bone grafts. In this experiment, gels composed of varying levels of gelatin methacrylate (GelMA) and hydroxyapatite (HA) and gelatin concentrations are explored. The objective was to increase the hydroxyapatite content and find the upper limit before the printability was compromised and determine its effect on the mechanical properties and cell viability. METHODS Design of Experiments (DoE) was used to design 13 hydrogel bioinks of various GelMA/HA concentrations. These bioinks were assessed in terms of their pipettability and equilibrium modulus. An optimal bioink was designed using the DoE data to produce the greatest stiffness while still being pipettable. Three bioinks, one with the DoE-designed maximal stiffness, one with the experimentally defined maximal stiffness, and a literature-based control, were then printed using a 3D bioprinter and assessed for print fidelity. The resulting hydrogels were combined with human bone-marrow-derived mesenchymal stromal cells (hMSCs) and evaluated for cell viability. RESULTS The DoE ANOVA analysis indicated that the augmented three-level factorial design model used was a good fit (p < 0.0001). Using the model, DoE correctly predicted that a composite hydrogel consisting of 12.3% GelMA, 15.7% HA, and 2% gelatin would produce the maximum equilibrium modulus while still being pipettable. The hydrogel with the most optimal print fidelity was 10% GelMA, 2% HA, and 5% gelatin. There were no significant differences in the cell viability within the hydrogels from day 2 to day 7 (p > 0.05). There was, however, a significantly lower cell viability in the gel composed of 12.3% GelMA, 15.7% HA, and 2% gelatin compared to the other gels with a lower HA concentration (p < 0.05), showing that a higher HA content or print pressure may be cytotoxic within hydrogels. CONCLUSIONS Extrusion-based 3DBP offers significant advantages for bone-tissue implants due to its high customizability. This study demonstrates that it is possible to create printable bone-like grafts from GelMA and HA with an increased HA content, favorable mechanical properties (145 kPa), and a greater than 80% cell viability.
Collapse
Affiliation(s)
- Paul Stolarov
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jonathan de Vries
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sean Stapleton
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Lauren Morris
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kari Martyniak
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Thomas J Kean
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
6
|
Wang J, Yang Q, Saiding Q, Chen L, Liu M, Wang Z, Xiang L, Deng L, Chen Y, Cui W. Geometric Angles and Gene Expression in Cells for Structural Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304111. [PMID: 37775309 PMCID: PMC10646237 DOI: 10.1002/advs.202304111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Geometry and angles play crucial roles in cellular processes; however, its mechanisms of regulation remain unclear. In this study, a series of three dimensional (3D)-printed microfibers with different geometries is constructed using a near-field electrostatic printing technique to investigate the regulatory mechanisms of geometry on stem cell function and bone regeneration. The scaffolds precisely mimicked cell dimensions with high porosity and interoperability. Compared with other spatial topography angles, microfibers with a 90° topology can significantly promote the expression of osteogenic gene proteins in bone marrow-derived mesenchymal stem cells (BMSCs). The effects of different spatial structures on the expression profiles of BMSCs differentiation genes are correlated and validated using microRNA sequencing. Enrichment analysis shows that the 90° microfibers promoted osteogenesis in BMSCs by significantly upregulating miR-222-5p/cbfb/Runx2 expression. The ability of the geometric architecture to promote bone regeneration, as assessed using the cranial defect model, demonstrates that the 90° fiber scaffolds significantly promote new bone regeneration and neovascular neural network formation. This study is the first to elucidate the relationship between angular geometry and cellular gene expression, contributing significantly to the understanding of how geometric architecture can promote stem cell differentiation, proliferation, and function for structural bone regeneration.
Collapse
Affiliation(s)
- Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Qianhao Yang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Mingyue Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhen Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Xiang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yixuan Chen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
7
|
Zhai Y, Yang L, Zheng W, Wang Q, Zhu Z, Han F, Hao Y, Ma S, Cheng G. A precise design strategy for a cell-derived extracellular matrix based on CRISPR/Cas9 for regulating neural stem cell function. Biomater Sci 2023; 11:6537-6544. [PMID: 37593879 DOI: 10.1039/d2bm01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The extracellular matrix (ECM) is a natural microenvironment pivotal for stem cell survival, as well as proliferation, differentiation and metastasis, composed of a variety of biological molecular complexes secreted by resident cells in tissues and organs. Heparan sulfate proteoglycan (HSPG) is a type of ECM protein that contains one or more covalently attached heparan sulfate chains. Heparan sulphate chains have high affinity with growth factors, chemokines and morphogens, acting as cytokine-binding domains of great importance in development and normal physiology. Herein, we constructed endogenous HSPG2 overexpression in mouse embryonic fibroblasts based on the CRISPR/Cas9 synergistic activation mediator system and then fabricated a cell-derived HSPG2 functional ECM (ECMHSPG2). The ECMHSPG2 is capable of enriching basic fibroblast growth factor (bFGF), which binds more strongly than the negative control ECM. With a growing bFGF concentration, ECMHSPG2 could better maintain neural stem cell (NSCs) stemness and promote NSC proliferation and differentiation in culture. These findings provide a precise design strategy for producing a specific cell-derived ECM for biomaterials in research and regenerative medicine.
Collapse
Affiliation(s)
- Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Lingyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Zhanchi Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Fang Han
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| |
Collapse
|
8
|
Bahir MM, Rajendran A, Pattanayak D, Lenka N. Fabrication and characterization of ceramic-polymer composite 3D scaffolds and demonstration of osteoinductive propensity with gingival mesenchymal stem cells. RSC Adv 2023; 13:26967-26982. [PMID: 37692357 PMCID: PMC10485657 DOI: 10.1039/d3ra04360f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
The fabrication of biomaterial 3D scaffolds for bone tissue engineering applications involves the usage of metals, polymers, and ceramics as the base constituents. Notwithstanding, the composite materials facilitating enhanced osteogenic differentiation/regeneration are endorsed as the ideally suited bone grafts for addressing critical-sized bone defects. Here, we report the successful fabrication of 3D composite scaffolds mimicking the ECM of bone tissue by using ∼30 wt% of collagen type I (Col-I) and ∼70 wt% of different crystalline phases of calcium phosphate (CP) nanomaterials [hydroxyapatite (HAp), beta-tricalcium phosphate (βTCP), biphasic hydroxyapatite (βTCP-HAp or BCP)], where pH served as the sole variable for obtaining these CP phases. The different Ca/P ratio and CP nanomaterials orientation in these CP/Col-I composite scaffolds not only altered the microstructure, surface area, porosity with randomly oriented interconnected pores (80-450 μm) and mechanical strength similar to trabecular bone but also consecutively influenced the bioactivity, biocompatibility, and osteogenic differentiation potential of gingival-derived mesenchymal stem cells (gMSCs). In fact, BCP/Col-I, as determined from micro-CT analysis, achieved the highest surface area (∼42.6 m2 g-1) and porosity (∼85%), demonstrated improved bioactivity and biocompatibility and promoted maximum osteogenic differentiation of gMSCs among the three. Interestingly, the released Ca2+ ions, as low as 3 mM, from these scaffolds could also facilitate the osteogenic differentiation of gMSCs without even subjecting them to osteoinduction, thereby attesting these CP/Col-I 3D scaffolds as ideally suited bone graft materials.
Collapse
Affiliation(s)
- Manjushree M Bahir
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| | - Archana Rajendran
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| | - Deepak Pattanayak
- CSIR-Central Electrochemical Research Institute Karaikudi 630003 Tamilnadu India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind Pune 411007 Maharashtra India +91-20-25708112
| |
Collapse
|
9
|
Sadeghian A, Kharaziha M, Khoroushi M. Dentin extracellular matrix loaded bioactive glass/GelMA support rapid bone mineralization for potential pulp regeneration. Int J Biol Macromol 2023; 234:123771. [PMID: 36812970 DOI: 10.1016/j.ijbiomac.2023.123771] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The study aims to develop a novel dentin extracellular matrix (dECM) loaded gelatin methacrylate (GelMA)-5 wt% bioactive glass (BG) (Gel-BG) hydrogel for dental pulp regeneration. We investigate the role of dECM content (2.5, 5, and 10 wt%) on the physicochemical characteristics and biological responses of Gel-BG hydrogel in contact with stem cells isolated from human exfoliated deciduous teeth (SHED). Results showed that the compressive strength of Gel-BG/dECM hydrogel significantly enhanced from 18.9 ± 0.5 kPa (at Gel-BG) to 79.8 ± 3.0 kPa after incorporation of 10 wt% dECM. Moreover, we found that in vitro bioactivity of Gel-BG improved and the degradation rate and swelling ratio reduced with increasing dECM content. The hybrid hydrogels also revealed effectual biocompatibility, >138 % cell viability after 7 days of culture; where Gel-BG/5%dECM was most suitable. In addition, the incorporation of 5 wt% dECM within Gel-BG considerably improved alkaline phosphatase (ALP) activity and osteogenic differentiation of SHED cells. Taken together, the novel bioengineered Gel-BG/dECM hydrogels having appropriate bioactivity, degradation rate, osteoconductive and mechanical properties represent the potential applications for clinical practice in the future.
Collapse
Affiliation(s)
- Aida Sadeghian
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Maryam Khoroushi
- Torabinejad Dental Research Institute, Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
10
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Carvalho MS, Nogueira DE, Cabral JM, Rodrigues CA. Neural progenitor cell-derived extracellular matrix as a new platform for neural differentiation of human induced pluripotent stem cells. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100070. [PMID: 36824374 PMCID: PMC9934470 DOI: 10.1016/j.bbiosy.2022.100070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
The culture microenvironment has been demonstrated to regulate stem cell fate and to be a crucial aspect for quality-controlled stem cell maintenance and differentiation to a specific lineage. In this context, extracellular matrix (ECM) proteins are particularly important to mediate the interactions between the cells and the culture substrate. Human induced pluripotent stem cells (hiPSCs) are usually cultured as anchorage-dependent cells and require adhesion to an ECM substrate to support their survival and proliferation in vitro. Matrigel, a common substrate for hiPSC culture is a complex and undefined mixture of ECM proteins which are expensive and not well suited to clinical application. Decellularized cell-derived ECM has been shown to be a promising alternative to the common protein coatings used in stem cell culture. However, very few studies have used this approach as a niche for neural differentiation of hiPSCs. Here, we developed a new stem cell culture system based on decellularized cell-derived ECM from neural progenitor cells (NPCs) for expansion and neural differentiation of hiPSCs, as an alternative to Matrigel and poly-l-ornithine/laminin-coated well plates. Interestingly, hiPSCs were able to grow and maintain their pluripotency when cultured on decellularized ECM from NPCs (NPC ECM). Furthermore, NPC ECM enhanced the neural differentiation of hiPSCs compared to poly-l-ornithine/laminin-coated wells, which are used in most neural differentiation protocols, presenting a statistically significant enhancement of neural gene expression markers, such as βIII-Tubulin and MAP2. Taken together, our results demonstrate that NPC ECM provides a functional microenvironment, mimicking the neural niche, which may have interesting future applications for the development of new strategies in neural stem cell research.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Corresponding author.
| | - Diogo E.S. Nogueira
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
12
|
Contact osteogenesis by biodegradable 3D-printed poly(lactide-co-trimethylene carbonate). Biomater Res 2022; 26:55. [PMID: 36217173 PMCID: PMC9552430 DOI: 10.1186/s40824-022-00299-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background To support bone regeneration, 3D-printed templates function as temporary guides. The preferred materials are synthetic polymers, due to their ease of processing and biological inertness. Poly(lactide-co-trimethylene carbonate) (PLATMC) has good biological compatibility and currently used in soft tissue regeneration. The aim of this study was to evaluate the osteoconductivity of 3D-printed PLATMC templates for bone tissue engineering, in comparison with the widely used 3D-printed polycaprolactone (PCL) templates. Methods The printability and physical properties of 3D-printed templates were assessed, including wettability, tensile properties and the degradation profile. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were used to evaluate osteoconductivity and extracellular matrix secretion in vitro. In addition, 3D-printed templates were implanted in subcutaneous and calvarial bone defect models in rabbits. Results Compared to PCL, PLATMC exhibited greater wettability, strength, degradation, and promoted osteogenic differentiation of hBMSCs, with superior osteoconductivity. However, the higher ALP activity disclosed by PCL group at 7 and 21 days did not dictate better osteoconductivity. This was confirmed in vivo in the calvarial defect model, where PCL disclosed distant osteogenesis, while PLATMC disclosed greater areas of new bone and obvious contact osteogenesis on surface. Conclusions This study shows for the first time the contact osteogenesis formed on a degradable synthetic co-polymer. 3D-printed PLATMC templates disclosed unique contact osteogenesis and significant higher amount of new bone regeneration, thus could be used to advantage in bone tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00299-x.
Collapse
|
13
|
Tan G, Chen R, Tu X, Guo L, Guo L, Xu J, Zhang C, Zou T, Sun S, Jiang Q. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds. Front Bioeng Biotechnol 2022; 10:973886. [PMID: 36061449 PMCID: PMC9438739 DOI: 10.3389/fbioe.2022.973886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Employing scaffolds containing cell–derived extracellular matrix (ECM) as an alternative strategy for the regeneration of bone defects has shown prominent advantages. Here, gelatin (Gel), sodium alginate (SA) and 58s bioactive glass (58sBG) were incorporated into deionized water to form ink, which was further fabricated into composite scaffolds by the 3D printing technique. Then, rat aortic endothelial cells (RAOECs) or rat bone mesenchymal stem cells (RBMSCs) were seeded on the scaffolds. After decellularization, two kinds of ECM–loaded scaffolds (RAOECs–ECM scaffold and RBMSCs–ECM scaffold) were obtained. The morphological characteristics of the scaffolds were assessed meticulously by scanning electron microscopy (SEM). In addition, the effects of scaffolds on the proliferation, adhesion, and osteogenic and angiogenic differentiation of RBMSCs were evaluated by Calcein AM staining and reverse transcription polymerase chain reaction (RT–PCR). In vivo, full–thickness bone defects with a diameter of 5 mm were made in the mandibles of Sprague–Dawley (SD) rats to assess the bone regeneration ability and biosafety of the scaffolds at 4, 8 and 16 weeks. The osteogenic and angiogenic potential of the scaffolds were investigated by microcomputed tomography (Micro–CT) and histological analysis. The biosafety of the scaffolds was evaluated by blood biochemical indices and histological staining of the liver, kidney and cerebrum. The results showed that the ECM–loaded scaffolds were successfully prepared, exhibiting interconnected pores and a gel–like ECM distributed on their surfaces. Consistently, in vitro experiments demonstrated that the scaffolds displayed favourable cytocompatibility. In vitro osteogenic differentiation studies showed that scaffolds coated with ECM could significantly increase the expression of osteogenic and angiogenic genes. In addition, the results from mandibular defect repair in vivo revealed that the ECM–loaded scaffolds effectively promoted the healing of bone defects when compared to the pure scaffold. Overall, these findings demonstrate that both RAOECs–ECM scaffold and RBMSCs–ECM scaffold can greatly enhance bone formation with good biocompatibility and thus have potential for clinical application in bone regeneration.
Collapse
Affiliation(s)
- Guozhong Tan
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Rongfeng Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinran Tu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liyang Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lvhua Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jingyi Xu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Chengfei Zhang
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Endodontology, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shuyu Sun
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- *Correspondence: Shuyu Sun, ; Qianzhou Jiang,
| |
Collapse
|
14
|
Zhang Z, Liu D, Chen Z, He X, Li X, Sun X. Fabrication, in vitro and in vivo properties of β-TCP/Zn composites. JOURNAL OF ALLOYS AND COMPOUNDS 2022; 913:165223. [DOI: 10.1016/j.jallcom.2022.165223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
15
|
Xu Q, Bai Y, Misra RDK, Hou W, Wang Q, Zhang Z, Li S, Hao Y, Yang R, Li X, Zhang X. Improving Biological Functions of Three-Dimensional Printed Ti2448 Scaffolds by Decoration with Polydopamine and Extracellular Matrices. ACS APPLIED BIO MATERIALS 2022; 5:3982-3990. [PMID: 35822695 DOI: 10.1021/acsabm.2c00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular matrices (ECMs) provide important cues for cell proliferation and differentiation in the complex environment, which show a significant influence on cell functions. Herein, cell-derived ECMs were deposited on the polydopamine (PDA)-decorated porous Ti-24Nb-4Zr-8Sn (Ti2448) scaffolds fabricated by the electron beam melting method in order to improve biological functions. The influence of PDA-ECM coatings on cell functions was further investigated. The results demonstrated that the PDA-ECM coating facilitated adhesion, proliferation, and migration of MC3T3-E1 cells on Ti2448 scaffolds. Moreover, Ti2448-PDA-ECM scaffolds promoted osteogenesis differentiation of cells indicated by greater alkaline phosphatase activity and further mineralization, compared to the plain Ti2448 group. Meanwhile, Ti2448-PDA-ECM scaffolds enhanced bone growth after implantation for one month in rabbit femoral bone defects. Our findings suggest that the bioinspired PDA-ECM coating can be implemented on the porous Ti2448 scaffolds, which significantly improve the biological functions of orthopedic implants.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning 110819, China.,Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yun Bai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - R Devesh Kumar Misra
- Department of Metallurgical, Materials, and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, Texas 79968, United States
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Zhuoqing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Gao M, Zhu X, Peng W, He Y, Li Y, Wu Q, Zhou Y, Liao G, Yang G, Bao J, Bu H. Kidney ECM Pregel Nanoarchitectonics for Microarrays to Accelerate Harvesting Gene-Edited Porcine Primary Monoclonal Spheres. ACS OMEGA 2022; 7:23156-23169. [PMID: 35847249 PMCID: PMC9280780 DOI: 10.1021/acsomega.2c01074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
One of the key steps
of using CRISPR/Cas9 to obtain gene-edited
cells used in generating gene-edited animals combined with somatic
cell nuclear transplantation (SCNT) is to harvest monoclonal cells
with genetic modifications. However, primary cells used as nuclear
donors always grow slowly and fragile after a series of gene-editing
operations. The extracellular matrix (ECM) formulated directly from
different organs comprises complex proteins and growth factors that
can improve and regulate the cellular functions of primary cells.
Herein, sodium lauryl ether sulfate (SLES) detergent was first used
to perfuse porcine kidney ECM, and the biological properties of the
kidney ECM were optimized. Then, we used a porcine kidney ECM pregel
to pattern the microarray and developed a novel strategy to shorten
the time of obtaining gene-edited monoclonal cell spheroids with low
damage in batches. Our results showed that the SLES-perfused porcine
kidney ECM pregel displayed superior biological activities in releasing
growth factors and promoting cell proliferation. Finally, combined
with microarray technology, we quickly obtained monoclonal cells in
good condition, and the cells used as nuclear donors to construct
recombinant embryos showed a significantly higher success rate than
those of the traditional method. We further successfully produced
genetically edited pigs.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yi Li
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Yanyan Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
17
|
Jiang Z, He J, Wang X, Zhu D, Li N, Ren L, Yang G. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids Surf B Biointerfaces 2022; 217:112661. [PMID: 35777168 DOI: 10.1016/j.colsurfb.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Nanomaterial-based cell sheet technology has been reported to be an effective method in regenerative medicine and tissue engineering. Here, we summarized several types of nanomaterials used to harvest cell sheets. Currently, the technology is divided into four categories according to the mechanisms: light-induced cell sheet technology, thermo-responsive cell sheet technology, magnetic-controlled cell sheet technology, and reactive oxygen species (ROS)-induced cell sheet technology. Furthermore, some studies have been conducted to show that nanomaterial-based cell sheets produce satisfying outcomes in the regeneration of bone, skeletal muscle, cardiac tissue, and tendon, as well as angiogenesis and osseointegration. Nevertheless, some shortcomings still exist, such as comprehensive preparation, unclear safety, and cell quality. Thus, future studies should aim to produce more types of nanomaterials to solve this problem.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
18
|
Alidadi Shamsabadi Z, Mahdavi H, Shojaei S, Salehi H, Valiani A. Physicomechanical and cellular behavior of
3D
printed polycaprolactone/poly(lactic‐co‐glycolic acid) scaffold containing polyhedral oligomeric silsesquioxane and extracellular matrix nanoparticles for cartilage tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hamid Mahdavi
- Department of Novel Drug Delivery Systems Iran Polymer and Petrochemical Institute Tehran Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering Islamic Azad University Tehran Iran
| | - Hossien Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Ali Valiani
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
19
|
Bagal R, Bahir M, Lenka N, Patro TU. Polymer derived porous carbon foam and its application in bone tissue engineering: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rohit Bagal
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, India
| | | | | | - T. Umasankar Patro
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, India
| |
Collapse
|
20
|
He Y, Wang W, Lin S, Yang Y, Song L, Jing Y, Chen L, He Z, Li W, Xiong A, Yeung KW, Zhao Q, Jiang Y, Li Z, Pei G, Zhang ZY. Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater 2022; 9:491-507. [PMID: 34820585 PMCID: PMC8586756 DOI: 10.1016/j.bioactmat.2021.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) - osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a rat femoral bone defect, the PFE scaffold demonstrated early vascular infiltration and enhanced bone regeneration by microangiography (μ-AG) and micro-computational tomography (μ-CT). Based on the immunofluorescence studies, PFE mediated the endogenous angiogenesis and osteogenesis with a substantial number of type H vessels and osteoprogenitors. In addition, superior osseointegration was observed by a direct host bone-PCL interface, which was likely attributed to the formation of type H vessels. The bio-instructive microenvironment created by our innovative PFE scaffold made possible superior osseointegration and type H vessel-related bone regeneration. It could become an alternative solution of improving the osseointegration of bone substitutes with the help of induced type H vessels, which could compensate for the inherent biological inertness of synthetic polymers.
Collapse
Affiliation(s)
- Yijun He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Lizhi Song
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yihan Jing
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Lihao Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zaopeng He
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, 528315, PR China
| | - Wei Li
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, 528315, PR China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Yuan Jiang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Zijie Li
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Guoxian Pei
- The Third Affiliated Hospital of Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| |
Collapse
|
21
|
Salamanca E, Pan YH, Sun YS, Hsueh HW, Dorj O, Yao WL, Lin JCY, Teng NC, Watanabe I, Abe S, Wu YF, Chang WJ. Magnesium Modified β-Tricalcium Phosphate Induces Cell Osteogenic Differentiation In Vitro and Bone Regeneration In Vivo. Int J Mol Sci 2022; 23:ijms23031717. [PMID: 35163639 PMCID: PMC8836187 DOI: 10.3390/ijms23031717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
In vitro, in vivo, and clinical studies have shown how the physicochemical and biological properties of β-tricalcium phosphate (β-TCP) work in bone regeneration. This study aimed to improve the properties of β-TCP by achieving optimum surface and bulk β-TCP chemical/physical properties through the hydrothermal addition of magnesium (Mg) and to later establish the biocompatibility of β-TCP/Mg for bone grafting and tissue engineering treatments. Multiple in vitro and in vivo analyses were used to complete β-TCP/Mg physicochemical and biological characterization. The addition of MgO brought about a modest rise in the number of β-TCP surface particles, indicating improvements in alkaline phosphatase (ALP) activity on day 21 (p < 0.05) and in the WST-1assay on all days (p < 0.05), with a corresponding increase in the upregulation of ALP and bone sialoprotein. SEM analyses stated that the surfaces of the β-TCP particles were not altered after the addition of Mg. Micro-CT and histomorphometric analysis from rabbit calvaria critical defects resulted in β-TCP/Mg managing to reform more new bone than the control defects and β-TCP control at 2, 6, and 8 weeks (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001). The hydrothermal addition of MgO to the β-TCP surfaces ameliorated its biocompatibility without altering its surface roughness resulting from the elemental composition while enhancing cell viability and proliferation, inducing more bone regeneration by osteoconduction in vivo and osteoblastic differentiation in vitro.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
| | - Yu-Hwa Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
- Department of General Dentistry, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Graduate Institute of Dental & Craniofacial Science, Chang Gung University, Taoyuan 33305, Taiwan
- School of Dentistry, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hao-Wen Hsueh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
| | - Odontuya Dorj
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
- Department of Dental Technology and Hygiene, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Wan-Ling Yao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
| | - Jerry Chin-Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental, Medicine, Boston, MA 02115, USA
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
- Dental Department, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ikki Watanabe
- Department of Gerontology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo 101-0061, Japan;
| | - Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
- Correspondence: (Y.-F.W.); (W.-J.C.); Tel.: +886-2-2736-1661 (ext. 5148) (Y.-F.W.); +886-2-2736-1661 (ext. 5150) (W.-J.C.)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (E.S.); (Y.-H.P.); (H.-W.H.); (O.D.); (W.-L.Y.); (J.C.-Y.L.); (N.-C.T.)
- Dental Department, Shuang-ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (Y.-F.W.); (W.-J.C.); Tel.: +886-2-2736-1661 (ext. 5148) (Y.-F.W.); +886-2-2736-1661 (ext. 5150) (W.-J.C.)
| |
Collapse
|
22
|
Wang X, Nie Z, Chang J, Lu ML, Kang Y. Multiple channels with interconnected pores in a bioceramic scaffold promote bone tissue formation. Sci Rep 2021; 11:20447. [PMID: 34650074 PMCID: PMC8516977 DOI: 10.1038/s41598-021-00024-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Insufficient nutrition exchange and limited transportation of blood supply in a porous only scaffold often hinder bone formation, even though the porous scaffold is loaded with cells or growth factors. To overcome these issues, we developed a cell- and growth factor-free approach to induce bone formation in a critical-size bone defect by using an interconnected porous beta-tricalcium phosphate (β-TCP) scaffold with multiple channels. In vitro cell experimental results showed that multiple channels significantly promoted cell attachment and proliferation of human bone marrow mesenchymal stem cells, stimulated their alkaline phosphatase activity, and up-regulated the osteogenic gene expression. Multiple channels also considerably stimulated the expression of various mechanosensing markers of the cells, such as focal adhesion kinase, filamentous actin, and Yes-associated protein-1 at both static and dynamic culturing conditions. The in vivo bone defect implantation results demonstrated more bone formation inside multiple-channeled scaffolds compared to non-channeled scaffolds. Multiple channels prominently accelerated collagen type I, bone sialoprotein and osteocalcin protein expression. Fluorochrome images and angiogenic marker CD31 staining exhibited more mineral deposition and longer vasculature structures in multiple-channeled scaffolds, compared to non-channeled scaffolds. All the findings suggested that the creation of interconnected multiple channels in the porous β-TCP scaffold is a very promising approach to promote bone tissue regeneration.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ziyan Nie
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Jia Chang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Michael L Lu
- Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA.,Department of Biological Science, Faculty of Integrative Biology Program, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Yunqing Kang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA. .,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA. .,Department of Biological Science, Faculty of Integrative Biology Program, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
23
|
Jamalpoor Z, Taromi N. Pre-vascularization of biomimetic 3-D scaffolds via direct co-culture of human umbilical cord derived osteogenic and angiogenic progenitor cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Safdari M, Bibak B, Soltani H, Hashemi J. Recent advancements in decellularized matrix technology for bone tissue engineering. Differentiation 2021; 121:25-34. [PMID: 34454348 DOI: 10.1016/j.diff.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo- or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo-like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.
Collapse
Affiliation(s)
- Mohammadreza Safdari
- Department of Surgery, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hoseinali Soltani
- Department of General Surgery, Imam Ali Hospital, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
25
|
Vascularization Strategies in Bone Tissue Engineering. Cells 2021; 10:cells10071749. [PMID: 34359919 PMCID: PMC8306064 DOI: 10.3390/cells10071749] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.
Collapse
|
26
|
Wang Q, Ye W, Ma Z, Xie W, Zhong L, Wang Y, Rong Q. 3D printed PCL/β-TCP cross-scale scaffold with high-precision fiber for providing cell growth and forming bones in the pores. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112197. [PMID: 34225850 DOI: 10.1016/j.msec.2021.112197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Scaffolds prepared by 3D printing are increasingly used in the field of bone tissue repair. However, on traditional 3D printed bone tissue engineering scaffolds, cells can only grow on the fiber surface and form bone. We designed a scaffold with a cross-scale structure of PCL/β-TCP, which contains thick fibers with a diameter of 500 μm printed by FDM. And in the pores of the coarse fiber, the ultra-high precision fine fiber grid with a diameter of about 10 μm is filled by MEW mode. In cell experiments, cells can not only grow on the thick fiber surface of the cross-scale scaffold. At the same time, the mesh structure of fine fibers provides a bridge for cell growth, allowing cells to pass through the pores of thick fibers and grow in the pores and gradually cover the pores of the scaffold. In the osteoinduction experiment, β-TCP in the PCL/β-TCP composite provides Ca2+ and PO43- to the scaffold, which effectively promotes the osteogenic differentiation of cells on the scaffold. Compared with traditional scaffolds, the osteogenic performance of cross-scale scaffolds is greatly improved. Not only did bone form on the surface of the scaffold, but also obvious ALP expression and effective calcium precipitation appeared in the pores of the scaffold. This can effectively speed up the repair of bone defects. We believe that the 3D printed PCL/β-TCP cross-scale scaffold with high-precision fibers has great application prospects in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Qifan Wang
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Wenjie Ye
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, PR China
| | - Zhiyong Ma
- School of Engineering, Huzhou University, Huzhou, Zhejiang 313000, PR China.
| | - Wenjia Xie
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Linna Zhong
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610000, PR China
| | - Ying Wang
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Qiong Rong
- Department of Stomatology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
27
|
Dong H, Li X, Chen K, Li N, Kagami H. Cryopreserved Spontaneous Spheroids from Compact Bone-Derived Mesenchymal Stromal Cells for Bone Tissue Engineering. Tissue Eng Part C Methods 2021; 27:253-263. [PMID: 33798009 PMCID: PMC8064946 DOI: 10.1089/ten.tec.2021.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneously formed spheroids from mouse compact bone-derived mesenchymal stromal cells (CB-MSCs) possess enhanced stemness and superior plasticity. In this study, the effect of cryopreservation on viability, stemness, and osteogenic differentiation capability of spontaneous CB-MSC spheroids were investigated. CB-MSCs were isolated from mouse femur and tibia. Spheroids were cryopreserved with various concentrations of dimethyl sulfoxide (DMSO). After thawing, the number of living and dead cells was measured. The expression levels of stem cell markers and osteogenic marker genes were analyzed. The cryopreserved and noncryopreserved spheroids were transplanted in mice with a beta-tricalcium phosphate as a scaffold to evaluate the in vivo bone-forming capability. The percentage of living cells was highest when 5% DMSO was used as a cryoprotectant, confirmed by the number of dead cells. The expression of stem cell marker genes and osteogenic differentiation capability were maintained after cryopreservation with 5% DMSO. The cryopreserved spontaneous CB-MSC spheroids showed remarkable new bone formation in vivo, identical to that of the noncryopreserved spheroids even without osteogenic induction. The cryopreserved spontaneous CB-MSC spheroids retained stemness and osteogenic differentiation capability and highlight the utility of spontaneous CB-MSC spheroids as ready-to-use tissue-engineered products for bone tissue engineering.
Collapse
Affiliation(s)
- Hongwei Dong
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Wang Y, Song X, Lei R, Zhang N, Zhang L, Xiao W, Xu J, Lin J. Adipose-derived stem cell sheets combined with β-tricalcium phosphate/collagen-I fiber scaffold improve cell osteogenesis. Exp Ther Med 2021; 21:452. [PMID: 33747187 PMCID: PMC7967868 DOI: 10.3892/etm.2021.9882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of cell-based material is a promising approach for the treatment of critical bone defects. However, it is still limited by the lack of suitable scaffold material or abundant seeding cell sources. The present study aimed to establish a novel composite of an adipose-derived stem cell (ADSC) sheet and a synthetic porous β-tricalcium phosphate/collagen-I fiber (β-TCP/COL-I) scaffold to enhance osteogenic activity. ADSCs were isolated from 3-week-old female Sprague Dawley rats and the ADSC sheets were prepared in an osteoinductive medium. The study groups included the ADSC sheets/scaffold, scattered ADSCs/scaffold, ADSC sheet alone and scaffold alone. Scanning electron microscopy and energy-dispersive spectrometry were used to observe cell-scaffold interactions and analyze the relative calcium content on the composites' surface. Alizarin red S staining was used to examine the calcium deposition. ELISA and reverse transcription-quantitative PCR were used to detect the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The results revealed that ADSCs were able to tightly adhere to the β-TCP/COL-I scaffold with no cytotoxicity. The calcifying nodules reaction was positive on ADSC sheets and gradually increased after osteogenic induction. In addition, the β-TCP/COL-I scaffold combined with ADSC sheets was able to significantly enhance the expression levels of ALP, OCN and OPN and increase the superficial relative calcium content compared to scattered ADSCs/scaffold or the ADSC sheet alone (P<0.05). The results indicated that ADSCs possess a strong osteogenic potential, particularly in the cell-sheet form and when compounded with the β-TCP/COL-I scaffold, compared to scattered ADSCs with a β-TCP/COL-I scaffold or an ADSC sheet alone. This novel composite may be a promising candidate for bone engineering.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaojia Song
- Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ning Zhang
- Dental Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liangping Zhang
- Department of Plastic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei Xiao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
29
|
Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, Rezai Rad M, Fahimipour F, Ardeshirylajimi A, Dashtimoghadam E, Salehi M, Soleimani M, Dehghan MM, Tayebi L, Khojasteh A. Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res 2021; 384:403-421. [PMID: 33433691 DOI: 10.1007/s00441-020-03374-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Production of a 3D bone construct with high-yield differentiated cells using an appropriate cell source provides a reliable strategy for different purposes such as therapeutic screening of the drugs. Although adult stem cells can be a good source, their application is limited due to invasive procedure of their isolation and low yield of differentiation. Patient-specific human-induced pluripotent stem cells (hiPSCs) can be an alternative due to their long-term self-renewal capacity and pluripotency after several passages, resolving the requirement of a large number of progenitor cells. In this study, a new biphasic 3D-printed collagen-coated HA/β-TCP scaffold was fabricated to provide a 3D environment for the cells. The fabricated scaffolds were characterized by the 3D laser scanning digital microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and mechanical test. Then, the osteogenesis potential of the hiPSC-seeded scaffolds was investigated compared to the buccal fat pad stem cell (BFPSC)-seeded scaffolds through in vitro and in vivo studies. In vitro results demonstrated up-regulated expressions of osteogenesis-related genes of RUNX2, ALP, BMP2, and COL1 compared to the BFPSC-seeded scaffolds. In vivo results on calvarial defects in the rats confirmed a higher bone formation in the hiPSC-seeded scaffolds compared to the BFPSC-seeded groups. The immunofluorescence assay also showed higher expression levels of collagen I and osteocalcin proteins in the hiPSC-seeded scaffolds. It can be concluded that using the hiPSC-seeded scaffolds can lead to a high yield of osteogenesis, and the hiPSCs can be used as a superior stem cell source compared to BFPSCs for bone-like construct bioengineering.
Collapse
Affiliation(s)
- Sheida Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Rezai Rad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Azam Bozorgi Zarrini, Bozorgi M, Khazaei M, Soleimani M. Decellularized Extracellular Matrices in Bone Tissue Engineering: From Cells to Tissues. Mini-Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x20060127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:602009. [PMID: 33344434 PMCID: PMC7744374 DOI: 10.3389/fbioe.2020.602009] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.
Collapse
Affiliation(s)
- Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dorsa Dehghan-Baniani
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, University of Saarland, Saarbrücken, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
32
|
Ryan DA, Cheng J, Masuda K, Cashman JR. Role of Curcuminoids and Tricalcium Phosphate Ceramic in Rat Spinal Fusion. Tissue Eng Part C Methods 2020; 26:577-589. [PMID: 33086948 DOI: 10.1089/ten.tec.2020.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Despite considerable research effort, there is a significant need for safe agents that stimulate bone formation. Treatment of large or complex bone defects remains a challenge. Implantation of small molecule-induced human bone marrow-derived mesenchymal stromal cells (hBMSCs) on an appropriate tricalcium phosphate (TCP) scaffold offers a robust system for noninvasive therapy for spinal fusion. To show the efficacy of this approach, we identified a small molecule curcuminoid that when combined with TCP ceramic in the presence of hBMSCs selectively induced growth of bone cells: after 8- or 25-day incubations, alkaline phosphatase was elevated. Treatment of hBMSCs with curcuminoid 1 and TCP ceramic increased osteogenic target gene expression (i.e., Runx2, BMP2, Osteopontin, and Osteocalcin) over time. In the presence of curcuminoid 1 and TCP ceramic, osteogenesis of hBMSCs, including proliferation, differentiation, and mineralization, was observed. No evidence of chondrogenic or adipogenic potential using this protocol was observed. Transplantation of curcuminoid 1-treated hBMSC/TCP mixtures into the spine of immunodeficient rats showed that it achieved spinal fusion and provided greater stability of the spinal column than untreated hBMSC-TCP implants or TCP alone implants. On the basis of histological analysis, greater bone formation was associated with curcuminoid 1-treated hBMSC implants manifested as contiguous growth plates with extensive hematopoietic territories. Stimulation of hBMSCs by administration of small molecule curcuminoid 1 in the presence of TCP ceramic afforded an effective noninvasive strategy that increased spinal fusion repair and provided greater stability of the spinal column after 8 weeks in immunodeficient rats. Impact statement Bone defects only slowly regenerate themselves in humans. Current procedures to restore spinal defects are not always effective. Some have side effects. In this article, a new method to produce bone growth within 8 weeks in rats is presented. In the presence of tricalcium phosphate ceramic, curcuminoid-1 small molecule-stimulated human bone marrow-derived mesenchymal stromal cells showed robust bone cell growth in vitro. Transplantation of this mixture into the spine showed efficient spinal fusion in rats. The approach presented herein provides an efficient biocompatible scaffold for delivery of a potentially clinically useful system that could be applicable in patients.
Collapse
Affiliation(s)
- Daniel A Ryan
- Human BioMolecular Research Institute, San Diego, California, USA
| | - Jiongjia Cheng
- Human BioMolecular Research Institute, San Diego, California, USA
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, California, USA
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, California, USA
| |
Collapse
|
33
|
Uchikawa E, Yoshizawa M, Li X, Matsumura N, Li N, Chen K, Kagami H. Tooth transplantation with a β-tricalcium phosphate scaffold accelerates bone formation and periodontal tissue regeneration. Oral Dis 2020; 27:1226-1237. [PMID: 32881188 DOI: 10.1111/odi.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although tooth transplantation is a useful treatment option as a substitute for a missing tooth, transplantation to a narrow alveolar ridge is not feasible. In this study, we tested a tissue engineering approach simultaneously with tooth transplantation using a scaffold or a combination with cells to accelerate bone formation and periodontal tissue regeneration. MATERIALS AND METHODS Bone marrow mononuclear cells (BM-MNCs) were harvested from C57BL/6J mice. The upper first or the second molar of 3-week-old C57BL/6J mice and a β-tricalcium phosphate (β-TCP) scaffold were transplanted with BM-MNCs (MNC group) or without BM-MNCs (β-TCP group) into the thigh muscle of syngeneic mice. The tooth alone was also transplanted (control group). After 4 weeks, the transplants were harvested and analyzed. RESULTS Bone volume was significantly larger in the MNC and the β-TCP groups than that in the control group, and the newly formed bone was observed on the lateral wall of the root. Compared with the control group, the MNC group showed a larger trabecular thickness and fractal dimension. CONCLUSION This study showed accelerated bone formation and periodontal tissue regeneration when tooth transplantation was performed with a β-TCP scaffold. BM-MNCs may accelerate bone maturation, while the effect on bone formation was limited.
Collapse
Affiliation(s)
- Eri Uchikawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Michiko Yoshizawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Nahomi Matsumura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Faruq O, Sayed S, Kim B, Im S, Lee B. A biphasic calcium phosphate ceramic scaffold loaded with oxidized cellulose nanofiber–gelatin hydrogel with immobilized simvastatin drug for osteogenic differentiation. J Biomed Mater Res B Appl Biomater 2020; 108:1229-1238. [DOI: 10.1002/jbm.b.34471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Omar Faruq
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Shithima Sayed
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Boram Kim
- Institute of Tissue Regeneration, College of MedicineSoonchunhyang University Cheonan South Korea
| | - Soo‐Bin Im
- Department of Neurosurgery, College of MedicineSoonchunhyang University, Bucheon Hospital Bucheon South Korea
| | - Byong‐Taek Lee
- Department of Regenerative Medicine, College of MedicineSoonchunhyang University Cheonan South Korea
- Institute of Tissue Regeneration, College of MedicineSoonchunhyang University Cheonan South Korea
| |
Collapse
|
35
|
Ventura RD, Padalhin AR, Kim B, Park M, Lee BT. Evaluation of bone regeneration potential of injectable extracellular matrix (ECM) from porcine dermis loaded with biphasic calcium phosphate (BCP) powder. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110663. [DOI: 10.1016/j.msec.2020.110663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
|
36
|
Hierarchical porosity inherited by natural sources affects the mechanical and biological behaviour of bone scaffolds. Ann Ital Chir 2020. [DOI: 10.1016/j.jeurceramsoc.2019.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Nie Z, Wang X, Ren L, Kang Y. Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regen Med 2020; 15:1519-1534. [DOI: 10.2217/rme-2019-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: The objectives of this study were to develop a new decellularized bone matrix (DBM) and to investigate its effect on the in vitro cell behavior of human bone marrow-derived mesenchymal stem cells (hMSCs), compared with porous β-tricalcium phosphate (β-TCP) scaffolds. Materials & methods: Triton X-100 and deoxycholate sodium solution, combining DNase I and RNase, were used to decellularize porcine bones. The DBM were then characterized by DNA contents and matrix components. hMSCs were then seeded on the DBM and β-TCP scaffolds to study cell behavior. Results: Results showed that most porcine cells were removed and the matrix components of the DBM were maintained. Cell culture results showed that DBM promoted cell attachment and proliferation of hMSCs but did not significantly promote the gene expression of osteogenic genes, compared with β-TCP scaffolds. Conclusion: DBM has similar function on cell behavior to β-TCP scaffolds that have promising potential in bone tissue regeneration.
Collapse
Affiliation(s)
- Ziyan Nie
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuesong Wang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Integrative Biology Program, Department of Biological Science, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
38
|
Chen L, Yan D, Wu N, Zhang W, Yan C, Yao Q, Zouboulis CC, Sun H, Fu Y. 3D-Printed Poly-Caprolactone Scaffolds Modified With Biomimetic Extracellular Matrices for Tarsal Plate Tissue Engineering. Front Bioeng Biotechnol 2020; 8:219. [PMID: 32269990 PMCID: PMC7109479 DOI: 10.3389/fbioe.2020.00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Tarsal plate regeneration has always been a challenge in the treatment of eyelid defects. The commonly used clinical treatments such as hard palate mucosa grafts cannot achieve satisfactory repair effects. Tissue engineering has been considered as a promising technology. However, tarsal plate tissue engineering is difficult to achieve due to its complex structure and lipid secretion function. Three-dimensional (3D) printing technology has played a revolutionary role in tissue engineering because it can fabricate complex scaffolds through computer aided design (CAD). In this study, it was novel in applying 3D printing technology to the fabrication of tarsal plate scaffolds using poly-caprolactone (PCL). The decellularized matrix of adipose-derived mesenchymal stromal cells (DMA) was coated on the surface of the scaffold, and its biofunction was further studied. Immortalized human SZ95 sebocytes were seeded on the scaffolds so that neutral lipids were secreted for replacing meibocytes. In vitro experiments revealed excellent biocompatibility of DMA-PCL scaffolds with sebocytes. In vivo experiments revealed excellent sebocytes proliferation on the DMA-PCL scaffolds. Meanwhile, sebocytes seeded on the scaffolds secreted abundant neutral lipid in vitro and in vivo. In conclusion, a 3D-printed PCL scaffold modified with DMA was found to be a promising substitute for tarsal plate tissue engineering.
Collapse
Affiliation(s)
- Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Nianxuan Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
39
|
Silva JC, Carvalho MS, Udangawa RN, Moura CS, Cabral JMS, L da Silva C, Ferreira FC, Vashishth D, Linhardt RJ. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. J Biomed Mater Res B Appl Biomater 2020; 108:2153-2166. [PMID: 31916699 DOI: 10.1002/jbm.b.34554] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023]
Abstract
The clinical demand for tissue-engineered bone is growing due to the increase of non-union fractures and delayed healing in an aging population. Herein, we present a method combining additive manufacturing (AM) techniques with cell-derived extracellular matrix (ECM) to generate structurally well-defined bioactive scaffolds for bone tissue engineering (BTE). In this work, highly porous three-dimensional polycaprolactone (PCL) scaffolds with desired size and architecture were fabricated by fused deposition modeling and subsequently decorated with human mesenchymal stem/stromal cell (MSC)-derived ECM produced in situ. The successful deposition of MSC-derived ECM onto PCL scaffolds (PCL-MSC ECM) was confirmed after decellularization using scanning electron microscopy, elemental analysis, and immunofluorescence. The presence of cell-derived ECM within the PCL scaffolds significantly enhanced MSC attachment and proliferation, with and without osteogenic supplementation. Additionally, under osteogenic induction, PCL-MSC ECM scaffolds promoted significantly higher calcium deposition and elevated relative expression of bone-specific genes, particularly the gene encoding osteopontin, when compared to pristine scaffolds. Overall, our results demonstrated the favorable effects of combining MSC-derived ECM and AM-based scaffolds on the osteogenic differentiation of MSC, resulting from a closer mimicry of the native bone niche. This strategy is highly promising for the development of novel personalized BTE approaches enabling the fabrication of patient defect-tailored scaffolds with enhanced biological performance and osteoinductive properties.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Marta S Carvalho
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Ranodhi N Udangawa
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Carla S Moura
- CDRSP-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
40
|
Influence of Laminin Coating on the Autologous In Vivo Recellularization of Decellularized Vascular Protheses. MATERIALS 2019; 12:ma12203351. [PMID: 31618810 PMCID: PMC6829566 DOI: 10.3390/ma12203351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Decellularization of non-autologous biological implants reduces the immune response against foreign tissue. Striving for in vivo repopulation of aortic prostheses with autologous cells, thereby improving the graft biocompatibility, we examined surface coating with laminin in a standardized rat implantation model. Detergent-decellularized aortic grafts from donor rats (n = 37) were coated with laminin and systemically implanted into Wistar rats. Uncoated implants served as controls. Implant re-colonization and remodeling were examined by scanning electron microscopy (n = 10), histology and immunohistology (n = 18). Laminin coating persisted over eight weeks. Two weeks after implantation, no relevant neoendothelium formation was observed, whereas it was covering the whole grafts after eight weeks, with a significant acceleration in the laminin group (p = 0.0048). Remarkably, the intima-to-media ratio, indicating adverse hyperplasia, was significantly diminished in the laminin group (p = 0.0149). No intergroup difference was detected in terms of medial recellularization (p = 0.2577). Alpha-smooth muscle actin-positive cells originating from the adventitial surface invaded the media in both groups to a similar extent. The amount of calcifying hydroxyapatite deposition in the intima and the media did not differ between the groups. Inflammatory cell markers (CD3 and CD68) proved negative in coated as well as uncoated decellularized implants. The coating of decellularized aortic implants with bioactive laminin caused an acceleration of the autologous recellularization and a reduction of the intima hyperplasia. Thereby, laminin coating seems to be a promising strategy to enhance the biocompatibility of tissue-engineered vascular implants.
Collapse
|
41
|
Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts. J Clin Med 2019; 8:jcm8101602. [PMID: 31623330 PMCID: PMC6832897 DOI: 10.3390/jcm8101602] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The repair of bone defects caused by trauma, infection or tumor resection is a major clinical orthopedic challenge. The application of bone grafts in orthopedic procedures is associated with a problem of inadequate vascularization in the initial phase after implantation. Meanwhile, the survival of cells within the implanted graft and its integration with the host tissue is strongly dependent on nutrient and gaseous exchange, as well as waste product removal, which are effectuated by blood microcirculation. In the bone tissue, the vasculature also delivers the calcium and phosphate indispensable for the mineralization process. The critical role of vascularization for bone healing and function, led the researchers to the idea of generating a capillary-like network within the bone graft in vitro, which could allow increasing the cell survival and graft integration with a host tissue. New strategies for engineering pre-vascularized bone grafts, that apply the co-culture of endothelial and bone-forming cells, have recently gained interest. However, engineering of metabolically active graft, containing two types of cells requires deep understanding of the underlying mechanisms of interaction between these cells. The present review focuses on the best-characterized endothelial cells-human umbilical vein endothelial cells (HUVECs)-attempting to estimate whether the co-culture approach, using these cells, could bring us closer to development and possible clinical application of prevascularized bone grafts.
Collapse
|
42
|
Tang KC, Yang KC, Lin CW, Chen YK, Lu TY, Chen HY, Cheng NC, Yu J. Human Adipose-Derived Stem Cell Secreted Extracellular Matrix Incorporated into Electrospun Poly(Lactic- co-Glycolic Acid) Nanofibrous Dressing for Enhancing Wound Healing. Polymers (Basel) 2019; 11:E1609. [PMID: 31623334 PMCID: PMC6835469 DOI: 10.3390/polym11101609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/23/2022] Open
Abstract
Wound dressing, which prevents dehydration and provides a physical barrier against infection to wound beds, can improve wound healing. The interactions between extracellular matrix (ECM) and growth factors is critical to the healing process. Electrospun nanofibers are promising templates for wound dressings due to the structure similarity to ECM of skin. Otherwise, the ECM secreted by human adipose-derived stem cells (hASCs) is rich in growth factors known to enhance wound healing. Accordingly, we propose that the PLGA nanofibrous template incorporated with hASCs-secreted ECM may enhance wound healing. In this study, PLGA nanofibrous matrixes with an aligned or a random structure were prepared by electrospinning. Human ASCs cultured on the aligned matrix had a better viability and produced a larger amount of ECM relative to that of random one. After 7 days' cultivation, the hASCs on aligned PLGA substrates underwent decellularization to fabricate cECM/PLGA dressings. By using immunohistochemical staining against F-actin and cell nucleus, the removal of cellular components was verified. However, the type I collagen and laminin were well preserved on the cECM/PLGA nanofibrous matrixes. In addition, this substrate was hydrophilic, with appropriate mechanical strength to act as a wound dressing. The L929 fibroblasts had good activity, survival and proliferation on the cECM/PLGA meshes. In addition, the cECM/PLGA nanofibrous dressings improved the wound healing of surgically created full-thickness skin excision in a mouse model. This hASCs-secreted ECM incorporated into electrospun PLGA nanofibrous could be a promising dressing for enhancing wound healing.
Collapse
Affiliation(s)
- Kao-Chun Tang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Kai-Chiang Yang
- School of Dental Technology, Taipei Medical University, Taipei 106, Taiwan.
| | - Che-Wei Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Kai Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Ting-Yu Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
43
|
Chi H, Song X, Song C, Zhao W, Chen G, Jiang A, Wang X, Yu T, Zheng L, Yan J. Chitosan-Gelatin Scaffolds Incorporating Decellularized Platelet-Rich Fibrin Promote Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5305-5315. [DOI: 10.1021/acsbiomaterials.9b00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hui Chi
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | - Chengchao Song
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | - Guanghua Chen
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Anlong Jiang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Xiaoyan Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Tailong Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | | | | |
Collapse
|
44
|
Zhang S, Xiao T, Yu Y, Qiao Y, Xu Z, Geng J, Liang Y, Mei Y, Dong Q, Wang B, Wei J, Suo G. The extracellular matrix enriched with membrane metalloendopeptidase and insulin‐degrading enzyme suppresses the deposition of amyloid‐beta peptide in Alzheimer's disease cell models. J Tissue Eng Regen Med 2019; 13:1759-1769. [DOI: 10.1002/term.2906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Shumang Zhang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Life SciencesShanghai University Shanghai China
| | - Tongqian Xiao
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- University of Chinese Academy of Sciences Beijing China
| | - Yanzhen Yu
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of China Hefei China
| | - Yong Qiao
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
| | - Zhongjuan Xu
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of China Hefei China
| | - Junsa Geng
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of China Hefei China
| | - Yu Liang
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
- School of Life SciencesShanghai University Shanghai China
| | - Yan Mei
- Greepharma Inc. Nanjing China
| | - Qun Dong
- Department of PathologyTaikang Xianlin Drum Tower Hospital Nanjing China
| | - Bin Wang
- Center for Clinic Stem Cell ResearchThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Jiali Wei
- School of Life SciencesShanghai University Shanghai China
| | - Guangli Suo
- CAS Key Laboratory of Nano‐Bio InterfaceSuzhou Institute of Nano‐Tech and Nano‐Bionics, Chinese Academy of Sciences Jiangsu China
| |
Collapse
|
45
|
Carvalho MS, Silva JC, Cabral JMS, da Silva CL, Vashishth D. Cultured cell-derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2019; 13:1544-1558. [PMID: 31151132 DOI: 10.1002/term.2907] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/02/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Cell-derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro-environment. Therefore, cultured cell-derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro-environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell-derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)-derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João C Silva
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
46
|
Carvalho MS, Silva JC, Udangawa RN, Cabral JMS, Ferreira FC, da Silva CL, Linhardt RJ, Vashishth D. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:479-490. [PMID: 30889723 PMCID: PMC6452855 DOI: 10.1016/j.msec.2019.01.127] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/02/2023]
Abstract
Cell-derived extracellular matrix (ECM) has been employed as scaffolds for tissue engineering, creating a biomimetic microenvironment that provides physical, chemical and mechanical cues for cells and supports cell adhesion, proliferation, migration and differentiation by mimicking their in vivo microenvironment. Despite the enhanced bioactivity of cell-derived ECM, its application as a scaffold to regenerate hard tissues such as bone is still hampered by its insufficient mechanical properties. The combination of cell-derived ECM with synthetic biomaterials might result in an effective strategy to enhance scaffold mechanical properties and structural support. Electrospinning has been used in bone tissue engineering to fabricate fibrous and porous scaffolds, mimicking the hierarchical organized fibrillar structure and architecture found in the ECM. Although the structure of the scaffold might be similar to ECM architecture, most of these electrospun scaffolds have failed to achieve functionality due to a lack of bioactivity and osteoinductive factors. In this study, we developed bioactive cell-derived ECM electrospun polycaprolactone (PCL) scaffolds produced from ECM derived from human mesenchymal stem/stromal cells (MSC), human umbilical vein endothelial cells (HUVEC) and their combination based on the hypothesis that the cell-derived ECM incorporated into the PCL fibers would enhance the biofunctionality of the scaffold. The aims of this study were to fabricate and characterize cell-derived ECM electrospun PCL scaffolds and assess their ability to enhance osteogenic differentiation of MSCs, envisaging bone tissue engineering applications. Our findings demonstrate that all cell-derived ECM electrospun scaffolds promoted significant cell proliferation compared to PCL alone, while presenting similar physical/mechanical properties. Additionally, MSC:HUVEC-ECM electrospun scaffolds significantly enhanced osteogenic differentiation of MSCs as verified by increased ALP activity and osteogenic gene expression levels. To our knowledge, these results describe the first study suggesting that MSC:HUVEC-ECM might be developed as a biomimetic electrospun scaffold for bone tissue engineering applications.
Collapse
Affiliation(s)
- Marta S Carvalho
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - João C Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ranodhi N Udangawa
- Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Robert J Linhardt
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; Department of Chemistry and Chemical Biology, Biological Sciences and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| |
Collapse
|
47
|
Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices. Glycoconj J 2019; 36:141-154. [PMID: 30637588 DOI: 10.1007/s10719-019-09858-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic and complex meshwork of proteins and glycosaminoglycans (GAGs) with a crucial role in tissue homeostasis and organization not only by defining tissue architecture and mechanical properties, but also by providing chemical cues that regulate major biological processes. GAGs are associated with important physiological functions, acting as modulators of signaling pathways regulating several cellular processes such as cell growth and differentiation. Recently, in vitro fabricated cell-derived ECM have emerged as promising materials for regenerative medicine due to their ability of better recapitulate the native ECM-like composition and structure, without the limitations of availability and pathogen transfer risks of tissue-derived ECM scaffolds. However, little is known about the molecular and more specifically, GAG composition of these cell-derived ECM. In this study, three different cell-derived ECM were produced in vitro and characterized in terms of their GAG content, composition and sulfation patterns using a highly sensitive liquid chromatography-tandem mass spectrometry technique. Distinct GAG compositions and disaccharide sulfation patterns were verified for the different cell-derived ECM. Additionally, the effect of decellularization method on the GAG and disaccharide relative composition was also assessed. In summary, the method presented here offers a novel approach to determine the GAG composition of cell-derived ECM, which we believe is critical for a better understanding of ECM role in directing cellular responses and has the potential for generating important knowledge to use in the development of novel ECM-like biomaterials for tissue engineering applications.
Collapse
|
48
|
Wang J, Chen X, Guo B, Yang X, Zhou Y, Zhu X, Zhang K, Fan Y, Tu C, Zhang X. A serum protein adsorption profile on BCP ceramics and influence of the elevated adsorption of adhesive proteins on the behaviour of MSCs. J Mater Chem B 2018; 6:7383-7395. [PMID: 32254739 DOI: 10.1039/c8tb02283f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein adsorption plays a key role in bone repair and regeneration by affecting cell behavior. In this study, a biphasic calcium phosphate (BCP) ceramic, with excellent osteoinductivity, was chosen to investigate its serum protein adsorption profile using isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology. 281 differentially adsorbed serum proteins and the involved biological processes were confirmed by the combination of Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The differentially adsorbed adhesive proteins in the extracellular matrix (ECM)-receptor interaction pathway were further selected to investigate their roles in the behavior of mesenchymal stem cells (MSCs). Pre-coating and blockage experiments revealed that both adsorbed vitronectin (VN) and laminin (LN) could promote the attachment, proliferation and osteogenic differentiation of MSCs on the BCP ceramic by interacting with different integrin subunits. It is revealed that the up-regulated expressions of integrin α2, αv and β3, β5 could contribute to VN-mediated MSC functions, and the elevated gene expressions of α6 and β1, β4 could be related to the LN-participated process. The above results proved that the preferential protein adsorption on a biomaterial should be vital for modulating MSC functions in the course of material-mediated osteoinductivity.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep 2018; 13:741-756. [PMID: 28812219 DOI: 10.1007/s12015-017-9759-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the recent times, stem cell biology has garnered the attention of the scientific fraternity and the general public alike due to the immense therapeutic potential that it holds in the field of regenerative medicine. A breakthrough in this direction came with the isolation of stem cells from human embryo and their differentiation into cell types of all three germ layers. However, the isolation of mesenchymal stem cells from adult tissues proved to be advantageous over embryonic stem cells due to the ethical and immunological naivety. Mesenchymal Stem Cells (MSCs) isolated from the bone marrow were found to differentiate into multiple cell lineages with the help of appropriate differentiation factors. Furthermore, other sources of stem cells including adipose tissue, dental pulp, and breast milk have been identified. Newer sources of stem cells have been emerging recently and their clinical applications are also being studied. In this review, we examine the eminent sources of Mesenchymal Stem Cells (MSCs), their immunophenotypes, and therapeutic imminence.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
50
|
Wang X, Chen Z, Zhou B, Duan X, Weng W, Cheng K, Wang H, Lin J. Cell-Sheet-Derived ECM Coatings and Their Effects on BMSCs Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11508-11518. [PMID: 29564888 DOI: 10.1021/acsami.7b19718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular matrix (ECM) provides a dynamic and complex environment to determine the fate of stem cells. In this work, light harvested cell sheets were treated with paraformaldehyde or ethanol, which eventually become ECM. Such ECM was then immobilized on titanium substrates via polydopamine chemistry. Their effects on bone marrow mesenchymal stromal cells (BMSCs) behaviors were investigated. It was found that paraformaldehyde-treated ECM coating (PT-ECM) showed a well-maintained microstructure, whereas that of ethanol-treated (ET-ECM) was completely changed. As a result, different amide structures and distributions of ECM components, such as laminin and collagen I, were exhibited. Alkaline phosphatase activity, osteocalcin secretion, related gene expression, and mineral deposition were evaluated for BMSCs cultured on both ECM coatings. PT-ECM was demonstrated to promote osteogenic differentiation much more efficiently than that of ET-ECM. That is ascribed to the preservation of native ECM milieu of PT-ECM. Such ECM acquirement and immobilization method could establish surfaces being able to direct stem cell responses on various materials. That shows promising potential in bone tissue engineering and other related biomedical applications.
Collapse
Affiliation(s)
- Xiaozhao Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Zun Chen
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
- School of Medicine , Zhejiang University , Hangzhou 3100058 , China
| | - Beibei Zhou
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Xiyue Duan
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications , Zhejiang University , Hangzhou 310027 , China
| | | | | |
Collapse
|