1
|
Wu S, Su F, Magee HY, Meldrum DR, Tian Y. cRGD functionalized 2,1,3-benzothiadiazole (BTD)-containing two-photon absorbing red-emitter-conjugated amphiphilic poly(ethylene glycol)-block-poly( ε-caprolactone) for targeted bioimaging. RSC Adv 2019; 9:34235-34243. [PMID: 31798837 PMCID: PMC6886675 DOI: 10.1039/c9ra06694b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1. Micelle 1 with cRGD targeting groups were used for targeted bioimaging. For comparison, micelle 2 without the cRGD targeting groups were also prepared and investigated. The micelles were characterized using dynamic light scattering (DLS), showing average diameters of around 77 nm. The cRGD targeting group is known to bind specifically with αvβ3 integrin in cancer cells. In this study, αvβ3 integrin overexpressed human glioblastoma U87MG cell line and αvβ3 integrin deficient human cervical cancer HeLa cell line were chosen. Results showed that the cRGD targeting group enhanced the cellular uptake efficiency of the micelles significantly in αvβ3 integrin rich U87MG cells. Higher temperature (37 °C versus 4 °C) and calcium ions (with 3 M calcium chloride in the cell culture medium versus no addition of calcium ions) enhanced the cellular uptake efficiency, suggesting that the uptake of the micelles is through the endocytosis pathway in cells. A 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the micelles and no significant cytotoxicity was observed. The BTD-containing two-photon absorbing emitter in the micelles showed a two-photon absorbing cross-section of 236 GM (1 GM = 1 × 10−50 cm4 s per photonper molecule) at 820 nm, which is among the highest values reported for red 2PA emitters. Because of the two-photon absorbing characteristics, micelle 1 was successfully used for two-photon fluorescence imaging targeted to U87MG cells under a two-photon fluorescence microscope. This study is the first report regarding the targeted imaging of a specific cancer cell line (herein, U87MG) using the BTD-conjugated-fluorophore-containing block copolymers. A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1.![]()
Collapse
Affiliation(s)
- Shanshan Wu
- Guangdong Industry Polytechnic, Foshan Municipality Anti-counterfeiting Engineering Research Center, Guangzhou, Guangdong 510300, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hansa Y Magee
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Wang L, Gao X, Wei Y, Liu K, Huang J, Wang J, Yan Y. Coordinating Self-Assembly of Copper Perylenetetracarboxylate Nanorods: Selectively Lighting up Normal Cells around Cancerous Ones for Better Cancer Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17630-17638. [PMID: 29733187 DOI: 10.1021/acsami.8b03211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Specific imaging of cancer cells has been well-accepted in cancer diagnosis although it cannot precisely mark the boundary between the normal and cancerous cells and report their mutual influence. We report a nanorod fluorescent probe of copper perylenetetracarbonate (PTC-Cu) that can specifically light up normal cells. In combination with cancer cell imaging, the cocultured normal and cancer cells can be lit up with different colors, offering a clear contrast between the normal and cancer cells when they coexist. Because cancerous cells are only 20-30% in cancer area, this provides a possibility to visibly detect the mutual influence between the cancer and normal cells during therapy. We expect this method is beneficial to better cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lizhi Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , People's Republic of China
| | - Xuedong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Ying Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Kaerdun Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , People's Republic of China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| |
Collapse
|
3
|
Xie N, Feng K, Shao J, Chen B, Tung CH, Wu LZ. Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules 2018; 19:2750-2758. [DOI: 10.1021/acs.biomac.8b00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nan Xie
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianqun Shao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & School of Future Technology, University of CAS, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Tang S, Ghazvini Zadeh EH, Kim B, Toomey NT, Bondar MV, Belfield KD. Protein-induced fluorescence enhancement of two-photon excitable water-soluble diketopyrrolopyrroles. Org Biomol Chem 2018; 15:6511-6519. [PMID: 28745371 DOI: 10.1039/c7ob01397c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent contrast agents are important tools in cell biology and medical imaging due to their high sensitivity and relative availability. Diketopyrrolopyrrole (DPP) derivatives have been recently studied for applications in bioimaging, but certain drawbacks due to their inherent structure have stifled progress towards their widespread implementation. Aggregation caused quenching (ACQ) associated with π-π stacking in relatively rigid extended conjugation systems as well as hydrophobicity of previously reported DPPs make most unsuitable for biological imaging applications. Addressing these deficiencies, we report the synthesis and photophysical characterization of two new water-soluble diketopyrrolopyrole (DPP) probes that exhibit pronounced protein-induced fluorescence enhancement (PIFE) upon binding serum albumin protein. In vitro studies were also performed showing low cytotoxicity for the new DPP probes. Two-photon fluorescence microscopy (2PFM) images were obtained via excitation at 810 nm and emission in the NIR window of biological transparency, illustrating the potential of these compounds as nonlinear optical bioimaging probes.
Collapse
Affiliation(s)
- Simon Tang
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
5
|
Xie N, Feng K, Shao J, Chen B, Tung CH, Wu LZ. A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. Polym Chem 2018. [DOI: 10.1039/c7py01730h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bifunctional peptide-polynorbornenes were designed and fabricated via modular ROMP for mitochondrial-dependent apoptosis induction and fluorescence imaging of cancer cells.
Collapse
Affiliation(s)
- Nan Xie
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jianqun Shao
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry & School of Future Technology
- University of CAS
- the Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
6
|
Wang W, Zhao Z, Zhang Z, Zhang C, Xiao S, Ye X, Zhang L, Xia Q, Zhou D. Redirecting Killer T Cells through Incorporation of Azido Sugars for Tethering Ligands. Chembiochem 2017; 18:2082-2086. [PMID: 28862366 DOI: 10.1002/cbic.201700340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 01/23/2023]
Abstract
The genetic expression of chimeric antigen receptors (CARs) on the surfaces of T cells enables the redirection of T cell specificity. To enhance the versatility of T cells as tumor-specific killers, we developed a nongenetic approach by which azide-containing sialic acids were metabolically incorporated into T cells to modify cellular sialyl glycans. After successful display of these moieties on the T cells, small-molecule ligands such as RGD and folate (as proof-of-concept, rather than supersized antibodies) were clicked orthogonally, leading to highly selective time- and dose-dependent cytotoxicity to integrin αv β3 - and folate-receptor-positive cells, respectively. This chemical approach provides a facile platform for rational design of tumor-specific cytotoxic T cells for targeted immunotherapy.
Collapse
Affiliation(s)
- Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Zhiying Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Ziwei Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| |
Collapse
|
7
|
Development of a two-photon fluorescent turn-on probe with far-red emission for thiophenols and its bioimaging application in living tissues. Biosens Bioelectron 2017; 95:81-86. [DOI: 10.1016/j.bios.2017.04.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 02/05/2023]
|
8
|
Wang C, Song X, Xiao Y. SNAP-Tag-Based Subcellular Protein Labeling and Fluorescent Imaging with Naphthalimides. Chembiochem 2017. [DOI: 10.1002/cbic.201700161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao Wang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Linggong Road 2 Dalian 116024 China
| | - Xinbo Song
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Linggong Road 2 Dalian 116024 China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Linggong Road 2 Dalian 116024 China
| |
Collapse
|
9
|
Lv L, Jiang Y, Liu X, Wang B, Lv W, Zhao Y, Shi H, Hu Q, Xin H, Xu Q, Gu Z. Enhanced Antiglioblastoma Efficacy of Neovasculature and Glioma Cells Dual Targeted Nanoparticles. Mol Pharm 2016; 13:3506-3517. [DOI: 10.1021/acs.molpharmaceut.6b00523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingyan Lv
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Department
of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yan Jiang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin Liu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Baoyan Wang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Lv
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yue Zhao
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huihui Shi
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Quanyin Hu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division
of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery,
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hongliang Xin
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qunwei Xu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division
of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery,
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Łukasiewicz ŁG, Deperasińska I, Poronik YM, Jun YW, Banasiewicz M, Kozankiewicz B, Ahn KH, Gryko DT. Dipolar Dyes with a Pyrrolo[2,3-b]quinoxaline Skeleton Containing a Cyano Group and a Bridged Tertiary Amino Group: Synthesis, Solvatofluorochromism, and Bioimaging. Chem Asian J 2016; 11:1718-24. [PMID: 27027726 DOI: 10.1002/asia.201600257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/18/2016] [Indexed: 11/07/2022]
Abstract
Two strongly polarized dipolar chromophores possessing a cyclic tertiary amino group at one terminus of the molecule and a CN group at the opposite terminus were designed and synthesized. Their rigid skeleton contains the rarely studied pyrrolo[2,3-b]quinoxaline ring system. The photophysical properties of these regioisomeric dyes were different owing to differing π conjugation between the CN group and the electron-donor moiety. These dipolar molecules showed very intense emission, strong solvatofluorochromism, and sufficient two-photon brightness for bioimaging. One of these regioisomeric dyes, namely, 11-carbonitrile-2,3,4,5,6,7-hexahydro-1H-3a,8,13,13b-tetraazabenzo[b]cyclohepta[1,2,3-jk]fluorene, was successfully utilized in two-photon imaging of mouse organ tissues and showed distinct tissue morphology with high resolution.
Collapse
Affiliation(s)
- Łukasz G Łukasiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Irena Deperasińska
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Yong Woong Jun
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland
| | - Bolesław Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668, Warsaw, Poland.
| | - Kyo Han Ahn
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
11
|
Feng K, Xie N, Chen B, Tung CH, Wu LZ. Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells. Biomacromolecules 2016; 17:538-45. [PMID: 26762279 DOI: 10.1021/acs.biomac.5b01450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through modular ROMP (ring-opening metathesis polymerization) directly from monomeric norbornenes of bioactive peptides, rhodamine B chromophore, and PEG solubilizer, we designed and synthesized a series of water-soluble poly(norbornenes) with organelle-specific imaging capability in tumor cells. For the selection of FxrFxK, TAT, and SV40 peptide sequences, these fluorescence probes exhibited different targeting specificity toward mitochondria, lysosome, and nucleolus, respectively, based on the same poly(norbornene) backbonds. More importantly, the ROMP strategy enables selective combination from various monomers and allows programmable biofunctionalization via peptide sequence permutations, which would greatly extend the biomedical applications such as imaging, diagnosis, and therapy for these synthetic polymers.
Collapse
Affiliation(s)
- Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Nan Xie
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University , Beijing 100069, People's Republic of China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|
12
|
Liu L, Lin G, Yin F, Law WC, Yong KT. Near-infrared fluorescent peptide probes for imaging of tumorin vivoand their biotoxicity evaluation. J Biomed Mater Res A 2016; 104:910-6. [DOI: 10.1002/jbm.a.35628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/06/2015] [Accepted: 12/17/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Liwei Liu
- School of Science; Changchun University of Science and Technology; Changchun 130022 China
| | - Guimiao Lin
- Shenzhen Key Laboratory of Translational Medicine of Tumor and the Key Lab of Biomedical Engineering, School of Medicine; Shenzhen University; Shenzhen 518060 China
| | - Feng Yin
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798 Singapore
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering; The Hong Kong Polytechnic University; Hung Hom Kowloon Hong Kong, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering; Nanyang Technological University; Singapore 639798 Singapore
| |
Collapse
|
13
|
Xie N, Feng K, Chen B, Tung CH, Wu LZ. Switchable two-photon imaging of RGD-functionalized polynorbornenes with enhanced cellular uptake in living cells. NEW J CHEM 2016. [DOI: 10.1039/c6nj00029k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two-photon imaging polynorbornenes were fabricated directly from photochromic spiropyran, RGD peptides and hydrophilic PEG monomers via modular ROMP.
Collapse
Affiliation(s)
- Nan Xie
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
14
|
Li R, Horgan CC, Long B, Rodriguez AL, Mather L, Barrow CJ, Nisbet DR, Williams RJ. Tuning the mechanical and morphological properties of self-assembled peptide hydrogels via control over the gelation mechanism through regulation of ionic strength and the rate of pH change. RSC Adv 2015. [DOI: 10.1039/c4ra13266a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrogels formed by the self-assembly of peptides are promising biomaterials. Here we demonstrate that the final material properties of a bioactive self assembled peptide system can be determined via control over the assembly conditions.
Collapse
Affiliation(s)
- Rui Li
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | - Conor C. Horgan
- Research School of Engineering
- The Australian National University
- Canberra
- Australia
| | - Benjamin Long
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | | | - Lauren Mather
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | - David R. Nisbet
- Research School of Engineering
- The Australian National University
- Canberra
- Australia
| | - Richard J. Williams
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| |
Collapse
|
15
|
Liu T, Luo S, Wang Y, Tan X, Qi Q, Shi C. Synthesis and characterization of a glycine-modified heptamethine indocyanine dye for in vivo cancer-targeted near-infrared imaging. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1287-97. [PMID: 25246770 PMCID: PMC4166911 DOI: 10.2147/dddt.s65696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Near-infrared (NIR) fluorescent sensors have emerged as promising molecular tools for cancer imaging and detection in living systems. However, cancer NIR fluorescent sensors are very challenging to develop because they are required to exhibit good specificity and low toxicity as an eligible contrast agent. Here, we describe the synthesis of a new heptamethine indocyanine dye (NIR-27) modified with a glycine at the end of each N-alkyl side chain, and its biological characterization for in vivo cancer-targeted NIR imaging. In addition to its high specificity, NIR-27 also shows lower cytotoxicity than indocyanine green, a nonspecific NIR probe widely used in clinic. These characteristics suggest that NIR-27 is a promising prospect as a new NIR fluorescent sensor for sensitive cancer detection.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Yang Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Guo L, Wong MS. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5400-5428. [PMID: 24981591 DOI: 10.1002/adma.201400084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Recent progress in developing various strategies for exploiting efficient MPA fluorophores for two emerging technological MPA applications including frequency upconversion photoluminescence and lasing as well as 2PA fluorescence bioimaging and biosensing are presented. An intriguing application of MPA frequency-upconverted lasing offers opportunity for the fabrication of high-energy coherent light sources in the blue region which could create new advantages and breakthroughs in various laser-based applications. In addition, multiphoton excitation has led to considerable progress in the development of advanced diagnostic and therapeutic treatments; further advancement is anticipated with the emergence of various versatile 2PA fluorescence probes. It is widely appreciated that the two-photon excitation offers significant advantages for the biological fluorescence imaging and sensing which includes higher spatial resolution, less photobleaching and photodamage as well as deeper tissue penetration as compared to the one-photon excited microscopy. To be practically useful, the 2PA fluorescent probes for biological applications are required to have a site-specificity, a high fluorescence quantum yield, proper two-photon excitation and subsequent emission wavelengths, good photodecomposition stability, water solubility, and biocompatibility besides large 2PA action cross-sections.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Molecular Functional Materials+, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | |
Collapse
|
17
|
Gu G, Hu Q, Feng X, Gao X, Menglin J, Kang T, Jiang D, Song Q, Chen H, Chen J. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials 2014; 35:8215-26. [PMID: 24974009 DOI: 10.1016/j.biomaterials.2014.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Tumor neovasculature and tumor cells dual-targeting chemotherapy can not only destroy the tumor neovasculature, cut off the supply of nutrition and starve the tumor cells, but also directly kill tumor cells, holding great potential in overcoming the drawbacks of anti-angiogenic therapy only and improving the anti-glioma efficacy. In the present study, by taking advantage of the specific expression of fibronectin extra domain B (EDB) on both glioma neovasculature endothelial cells and glioma cells, we constructed EDB-targeted peptide APTEDB-modified PEG-PLA nanoparticles (APT-NP) for paclitaxel (PTX) loading to enable tumor neovasculature and tumor cells dual-targeting chemotherapy. PTX-loaded APT-NP showed satisfactory encapsulated efficiency, loading capacity and size distribution. In human umbilical vein endothelial cells, APT-NP exhibited significantly elevated cellular accumulation via energy-dependent, caveolae and lipid raft-involved endocytosis, and improved PTX-induced apoptosis therein. Both in vitro tube formation assay and in vivo matrigel angiogenesis analysis confirmed that APT-NP significantly improved the antiangiogenic ability of PTX. In U87MG cells, APT-NP showed elevated cellular internalization and also enhanced the cytotoxicity of the loaded PTX. Following intravenous administration, as shown by both in vivo live animal imaging and tissue distribution analysis, APT-NP achieved a much higher and specific accumulation within the glioma. As a result, APT-NP-PTX exhibited improved anti-glioma efficacy over unmodified nanoparticles and Taxol(®) in both subcutaneous and intracranial U87MG xenograft models. These findings collectively indicated that APTEDB-modified nanoparticles might serve as a promising nanocarrier for tumor cells and neovasculature dual-targeting chemotherapy and hold great potential in improving the efficacy anti-glioma therapy.
Collapse
Affiliation(s)
- Guangzhi Gu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China; Shanghai Institute for Food and Drug Control (SIFDC), 479 Futexi First Road, Shanghai 200131, PR China
| | - Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Xingye Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Jiang Menglin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Di Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe. Biosens Bioelectron 2013; 50:42-9. [DOI: 10.1016/j.bios.2013.05.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
|
19
|
Poronik YM, Clermont G, Blanchard-Desce M, Gryko DT. Nonlinear Optical Chemosensor for Sodium Ion Based on Rhodol Chromophore. J Org Chem 2013; 78:11721-32. [DOI: 10.1021/jo401653t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yevgen M. Poronik
- Institute of Organic Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | | - Daniel T. Gryko
- Institute of Organic Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
20
|
Guo F, Tian M, Miao F, Zhang W, Song G, Liu Y, Yu X, Sun JZ, Wong WY. Lighting up cysteine and homocysteine in sequence based on the kinetic difference of the cyclization/addition reaction. Org Biomol Chem 2013; 11:7721-8. [PMID: 24113875 DOI: 10.1039/c3ob41414k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel one- and two-photon fluorescent probe CB1 has been developed for discriminating Cys and Hcy in a successive manner with high selectivity. The discrete time-dependent fluorescent responses enable us to sequentially detect Cys and Hcy in different time windows. Two-step reaction and kinetic modes were used to explain the sensing mechanism. As a promising biosensor for cell imaging, CB1 has been confirmed to exhibit membrane permeability to intact cells, low cytotoxicity to viable cells and photostability to ultraviolet light excitation. Furthermore, the results from the control assay have shown that the one- and two-photon fluorescence of CB1 within cells is associated with intracellular mercapto biomolecules but yet there is little interference with physiological pH value, viscosity and common bioanalytes. Finally one- and two-photon fluorescent images of CB1 within living SiHa cells have been presented.
Collapse
Affiliation(s)
- Fuqiang Guo
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dumat B, Bordeau G, Faurel-Paul E, Mahuteau-Betzer F, Saettel N, Metge G, Fiorini-Debuisschert C, Charra F, Teulade-Fichou MP. DNA Switches on the Two-Photon Efficiency of an Ultrabright Triphenylamine Fluorescent Probe Specific of AT Regions. J Am Chem Soc 2013; 135:12697-706. [DOI: 10.1021/ja404422z] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Blaise Dumat
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | - Guillaume Bordeau
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | - Elodie Faurel-Paul
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | | | - Nicolas Saettel
- Institut Curie, CNRS UMR-176, Centre Universitaire d’Orsay, Paris-Sud 91405
Orsay Cedex France
| | - Germain Metge
- CEA-
Saclay, DSM-IRAMIS/SPCSI/Laboratoire NanoPhotonique, 91191 Gif-sur-Yvette, France
| | | | - Fabrice Charra
- CEA-
Saclay, DSM-IRAMIS/SPCSI/Laboratoire NanoPhotonique, 91191 Gif-sur-Yvette, France
| | | |
Collapse
|
22
|
Shen JM, Gao FY, Yin T, Zhang HX, Ma M, Yang YJ, Yue F. cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res 2013; 70:102-15. [DOI: 10.1016/j.phrs.2013.01.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022]
|