1
|
Geng S, Lei Y, Snead ML. Minimal amelogenin domain for enamel formation. JOM (WARRENDALE, PA. : 1989) 2021; 73:1696-1704. [PMID: 34456537 PMCID: PMC8386916 DOI: 10.1007/s11837-021-04687-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Amelogenin is the most abundant matrix protein guiding hydroxyapatite formation in enamel, the durable bioceramic tissue that covers vertebrate teeth. Here, we sought to refine structure-function for an amelogenin domain based on in vitro data showing a 42 amino acid amelogenin-derived peptide (ADP7) mimicked formation of hydroxyapatite similar to that observed for the full-length mouse 180 amino acid protein. In mice, we used CRISPR-Cas9 to express only ADP7 by the native amelogenin promoter. Analysis revealed ADP7 messenger RNA expression in developing mouse teeth with the formation of a thin layer of enamel. In vivo, ADP7 peptide partially replaced the function of the full-length amelogenin protein and its several protein isoforms. Protein structure-function relationships identified through in vitro assays can be deployed in whole model animals using CRISPR-Cas9 to validate function of a minimal protein domain to be translated for clinical use as an enamel biomimetic.
Collapse
Affiliation(s)
- Shuhui Geng
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Yaping Lei
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
- Biology and Biologic Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Malcolm L Snead
- The University of Southern California, Herman Ostrow School of Dentistry of USC, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033
| |
Collapse
|
2
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
3
|
Gan L, Liu Y, Cui DX, Pan Y, Wan M. New insight into dental epithelial stem cells: Identification, regulation, and function in tooth homeostasis and repair. World J Stem Cells 2020; 12:1327-1340. [PMID: 33312401 PMCID: PMC7705464 DOI: 10.4252/wjsc.v12.i11.1327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tooth enamel, a highly mineralized tissue covering the outermost area of teeth, is always damaged by dental caries or trauma. Tooth enamel rarely repairs or renews itself, due to the loss of ameloblasts and dental epithelial stem cells (DESCs) once the tooth erupts. Unlike human teeth, mouse incisors grow continuously due to the presence of DESCs that generate enamel-producing ameloblasts and other supporting dental epithelial lineages. The ready accessibility of mouse DESCs and wide availability of related transgenic mouse lines make mouse incisors an excellent model to examine the identity and heterogeneity of dental epithelial stem/progenitor cells; explore the regulatory mechanisms underlying enamel formation; and help answer the open question regarding the therapeutic development of enamel engineering. In the present review, we update the current understanding about the identification of DESCs in mouse incisors and summarize the regulatory mechanisms of enamel formation driven by DESCs. The roles of DESCs during homeostasis and repair are also discussed, which should improve our knowledge regarding enamel tissue engineering.
Collapse
Affiliation(s)
- Lu Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
4
|
Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Adv Drug Deliv Rev 2020; 160:78-104. [PMID: 33091503 DOI: 10.1016/j.addr.2020.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
The regeneration of tissues and organs poses an immense challenge due to the extreme complexity in the research work involved. Despite the tissue engineering approach being considered as a promising strategy for more than two decades, a key issue impeding its progress is the lack of ideal scaffold materials. Nature-inspired synthetic peptide hydrogels are inherently biocompatible, and its high resemblance to extracellular matrix makes peptide hydrogels suitable 3D scaffold materials. This review covers the important aspects of peptide hydrogels as 3D scaffolds, including mechanical properties, biodegradability and bioactivity, and the current approaches in creating matrices with optimized features. Many of these scaffolds contain peptide sequences that are widely reported for tissue repair and regeneration and these peptide sequences will also be discussed. Furthermore, 3D biofabrication strategies of synthetic peptide hydrogels and the recent advances of peptide hydrogels in tissue engineering will also be described to reflect the current trend in the field. In the final section, we will present the future outlook in the design and development of peptide-based hydrogels for translational tissue engineering applications.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Huimin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ashlynn Lingzhi Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zongshao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengjing Fu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Chengnan Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Pandya M, Diekwisch TGH. Enamel biomimetics-fiction or future of dentistry. Int J Oral Sci 2019. [PMID: 30610185 DOI: 10.1038/s41368-018-0038-6,1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues.
Collapse
Affiliation(s)
- Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Thomas G H Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
6
|
Abstract
Tooth enamel is a complex mineralized tissue consisting of long and parallel apatite crystals configured into decussating enamel rods. In recent years, multiple approaches have been introduced to generate or regenerate this highly attractive biomaterial characterized by great mechanical strength paired with relative resilience and tissue compatibility. In the present review, we discuss five pathways toward enamel tissue engineering, (i) enamel synthesis using physico-chemical means, (ii) protein matrix-guided enamel crystal growth, (iii) enamel surface remineralization, (iv) cell-based enamel engineering, and (v) biological enamel regeneration based on de novo induction of tooth morphogenesis. So far, physical synthesis approaches using extreme environmental conditions such as pH, heat and pressure have resulted in the formation of enamel-like crystal assemblies. Biochemical methods relying on enamel proteins as templating matrices have aided the growth of elongated calcium phosphate crystals. To illustrate the validity of this biochemical approach we have successfully grown enamel-like apatite crystals organized into decussating enamel rods using an organic enamel protein matrix. Other studies reviewed here have employed amelogenin-derived peptides or self-assembling dendrimers to re-mineralize mineral-depleted white lesions on tooth surfaces. So far, cell-based enamel tissue engineering has been hampered by the limitations of presently existing ameloblast cell lines. Going forward, these limitations may be overcome by new cell culture technologies. Finally, whole-tooth regeneration through reactivation of the signaling pathways triggered during natural enamel development represents a biological avenue toward faithful enamel regeneration. In the present review we have summarized the state of the art in enamel tissue engineering and provided novel insights into future opportunities to regenerate this arguably most fascinating of all dental tissues. Five pathways for tooth enamel engineering hold great promise for developing new technologies, leading to novel biomaterials and biotechnologies to regenerate enamel tissue. Tooth enamel is a unique tissue-specific biomaterial with exceptional structural and mechanical properties. In recent years, many approaches have been adopted to generate or regenerate this complex tissue; Mirali Pandya and Thomas Diekwisch of Texas A&M College of Dentistry, USA conducted a review of the current state and future directions of enamel tissue engineering. In their review, the authors focused on five pathways for enamel tissue engineering: (1) physical synthesis of enamel; (2) biochemical enamel engineering; (3) in situ enamel engineering; (4) cell-based enamel engineering; and (5) whole tooth regeneration. The authors conclude that those five approaches will help identify the biological mechanisms that lead to the generation of tooth enamel.
Collapse
|
7
|
Zhou J, Li J, Du X, Xu B. Supramolecular biofunctional materials. Biomaterials 2017; 129:1-27. [PMID: 28319779 PMCID: PMC5470592 DOI: 10.1016/j.biomaterials.2017.03.014] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
8
|
Zhao L, Li J, Su J, Snead ML, Ruan J. LS8 cell apoptosis induced by NaF through p-ERK and p-JNK - a mechanism study of dental fluorosis. Acta Odontol Scand 2016; 74:539-549. [PMID: 27624793 DOI: 10.1080/00016357.2016.1214980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the possible biological mechanism of dental fluorosis at a molecular level. MATERIAL AND METHODS Cultured LS8 were incubated with serum-free medium containing selected concentrations of NaF (0 ∼ 2 mM) for either 24 or 48 h. Subcellular microanatomy was characterized using TEM; meanwhile, selected biomolecules were analysed using various biochemistry techniques. Transient transfection was used to modulate a molecular pathway for apoptosis. RESULTS Apoptosis of LS8 was induced by NaF treatment that showed both time and concentration dependency. The activity of caspase-3, -8, -9 was found to be increased with NaF in a dose-dependent manner. Western blot revealed that the protein expression of p-ERK and p-JNK were decreased, while the expression of p-P38 was increased. Inhibition of the p-ERK and p-JNK pathways resulted in a similar decrease for caspase-3. CONCLUSION During NaF-induced apoptosis of LS8, p-ERK and p-JNK were closely associated with induction of apoptosis, which might be a mechanism of dental fluorosis.
Collapse
|
9
|
Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S. Nanomaterials for Tissue Engineering In Dentistry. NANOMATERIALS 2016; 6:nano6070134. [PMID: 28335262 PMCID: PMC5224610 DOI: 10.3390/nano6070134] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The tissue engineering (TE) of dental oral tissue is facing significant changes in clinical treatments in dentistry. TE is based on a stem cell, signaling molecule, and scaffold triad that must be known and calibrated with attention to specific sectors in dentistry. This review article shows a summary of micro- and nanomorphological characteristics of dental tissues, of stem cells available in the oral region, of signaling molecules usable in TE, and of scaffolds available to guide partial or total reconstruction of hard, soft, periodontal, and bone tissues. Some scaffoldless techniques used in TE are also presented. Then actual and future roles of nanotechnologies about TE in dentistry are presented.
Collapse
Affiliation(s)
- Manila Chieruzzi
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Pagano
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Silvia Moretti
- Department of Experimental Medicine-University of Perugia Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| | - Roberto Pinna
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Egle Milia
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Luigi Torre
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Eramo
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
10
|
Newcomb C, Sur S, Lee SS, Yu JM, Zhou Y, Snead ML, Stupp SI. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility. NANO LETTERS 2016; 16:3042-3050. [PMID: 27070195 PMCID: PMC4948975 DOI: 10.1021/acs.nanolett.6b00054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/23/2016] [Indexed: 05/30/2023]
Abstract
The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.
Collapse
Affiliation(s)
- Christina
J. Newcomb
- Department of Materials Science and Engineering Northwestern University, Evanston, Illinois 60208, United States
| | - Shantanu Sur
- Department of Materials Science and Engineering Northwestern University, Evanston, Illinois 60208, United States
| | - Sungsoo S. Lee
- Department of Materials Science and Engineering Northwestern University, Evanston, Illinois 60208, United States
| | - Jeong Min Yu
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Yan Zhou
- Center for Craniofacial Molecular Biology,
Herman Ostrow School of Dentistry of USC, The University of Southern California, Los Angeles, California 90033, United States
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology,
Herman Ostrow School of Dentistry of USC, The University of Southern California, Los Angeles, California 90033, United States
| | - Samuel I. Stupp
- Department of Materials Science and Engineering Northwestern University, Evanston, Illinois 60208, United States
- Simpson
Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United
States
- Department of Chemistry, Northwestern
University, Evanston, Illinois 60208, United
States
- Department of Medicine, Northwestern
University, Chicago, Illinois 60611, United
States
| |
Collapse
|
11
|
Green DW, Goto TK, Kim KS, Jung HS. Calcifying tissue regeneration via biomimetic materials chemistry. J R Soc Interface 2015; 11:20140537. [PMID: 25320063 DOI: 10.1098/rsif.2014.0537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction-diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in 'morphosynthesis' of complex inorganic constructs. In the future, cellular construction is probably key to instruct building of ultimate biomimetic hierarchies with a totality of functions.
Collapse
Affiliation(s)
- David W Green
- Department of Oral Biosciences, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, People's Republic of China
| | - Tazuko K Goto
- Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, People's Republic of China
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea
| | - Han-Sung Jung
- Department of Oral Biosciences, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR, People's Republic of China Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
12
|
Bioactive nanofibers enable the identification of thrombospondin 2 as a key player in enamel regeneration. Biomaterials 2015; 61:216-28. [PMID: 26004236 DOI: 10.1016/j.biomaterials.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022]
Abstract
Tissue regeneration and development involves highly synchronized signals both between cells and with the extracellular environment. Biomaterials can be tuned to mimic specific biological signals and control cell response(s). As a result, these materials can be used as tools to elucidate cell signaling pathways and candidate molecules involved with cellular processes. In this work, we explore enamel-forming cells, ameloblasts, which have a limited regenerative capacity. By exposing undifferentiated cells to a self-assembling matrix bearing RGDS epitopes, we elicited a regenerative signal at will that subsequently led to the identification of thrombospondin 2 (TSP2), an extracellular matrix protein that has not been previously recognized as a key player in enamel development and regeneration. Targeted disruption of the thrombospondin 2 gene (Thbs2) resulted in enamel formation with a disordered architecture that was highly susceptible to wear compared to their wild-type counterparts. To test the regenerative capacity, we injected the bioactive matrix into the enamel organ and discovered that the enamel organic epithelial cells in TSP-null mice failed to polarize on the surface of the artificial matrix, greatly reducing integrin β1 and Notch1 expression levels, which represent signaling pathways known to be associated with TSP2. These results suggest TSP2 plays an important role in regulating cell-matrix interactions during enamel formation. Exploiting the signaling pathways activated by biomaterials can provide insight into native signaling mechanisms crucial for tooth development and cell-based strategies for enamel regeneration.
Collapse
|
13
|
In vivo biodistribution and clearance of peptide amphiphile micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:479-87. [DOI: 10.1016/j.nano.2014.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
|
14
|
Lokappa SB, Chandrababu KB, Dutta K, Perovic I, Evans JS, Moradian-Oldak J. Interactions of amelogenin with phospholipids. Biopolymers 2015; 103:96-108. [PMID: 25298002 PMCID: PMC4415992 DOI: 10.1002/bip.22573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 11/08/2022]
Abstract
Amelogenin protein has the potential to interact with other enamel matrix proteins, mineral, and cell surfaces. We investigated the interactions of recombinant amelogenin rP172 with small unilamellar vesicles as model membranes, toward the goal of understanding the mechanisms of amelogenin-cell interactions during amelogenesis. Dynamic light scattering (DLS), fluorescence spectroscopy, circular dichroism (CD), and nuclear magnetic resonance (NMR) were used. In the presence of phospholipid vesicles, a blue shift in the Trp fluorescence emission maxima of rP172 was observed (∼334 nm) and the Trp residues of rP172 were inaccessible to the aqueous quencher acrylamide. DLS studies indicated complexation of rP172 and phospholipids, although the possibility of fusion of phospholipids following amelogenin addition cannot be ruled out. NMR and CD studies revealed a disorder-order transition of rP172 in a model membrane environment. Strong fluorescence resonance energy transfer from Trp in rP172 to DNS-bound-phospholipid was observed, and fluorescence polarization studies indicated that rP172 interacted with the hydrophobic core region of model membranes. Our data suggest that amelogenin has ability to interact with phospholipids and that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities.
Collapse
Affiliation(s)
- Sowmya Bekshe Lokappa
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033
| | - Karthik Balakrishna Chandrababu
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033
| | - Kaushik Dutta
- Laboratory for Chemical Physics, Division of Basic Sciences and Craniofacial Biology, New York University, New York, New York 10010
| | - Iva Perovic
- Laboratory for Chemical Physics, Division of Basic Sciences and Craniofacial Biology, New York University, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, Division of Basic Sciences and Craniofacial Biology, New York University, New York, New York 10010
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, University of Southern California, School of Dentistry, Los Angeles, California 90033
| |
Collapse
|
15
|
Supramolecular Hydrogels for Regenerative Medicine. ADVANCES IN POLYMER SCIENCE 2015. [DOI: 10.1007/978-3-319-15404-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
16
|
Jayasudha, Baswaraj, H K N, K B P. Enamel regeneration - current progress and challenges. J Clin Diagn Res 2014; 8:ZE06-9. [PMID: 25386548 DOI: 10.7860/jcdr/2014/10231.4883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/05/2014] [Indexed: 01/07/2023]
Abstract
Dental Enamel is the outermost covering of teeth. It is hardest mineralized tissue present in the human body. Enamel faces the challenge of maintaining its integrity in a constant demineralization and remineralization within the oral environment and it is vulnerable to wear, damage, and decay. It cannot regenerate itself, because it is formed by a layer of cells that are lost after the tooth eruption. Conventional treatment relies on synthetic materials to restore lost enamel that cannot mimic natural enamel. With advances in material science and understanding of basic principles of organic matrix mediated mineralization paves a way for formation of synthetic enamel. The knowledge of enamel formation and understanding of protein interactions and their gene products function along with the isolation of postnatal stem cells from various sources in the oral cavity, and the development of smart materials for cell and growth factor delivery, makes possibility for biological based enamel regeneration. This article will review the recent endeavor on biomimetic synthesis and cell based strategies for enamel regeneration.
Collapse
Affiliation(s)
- Jayasudha
- Reader, Department of Pedodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| | - Baswaraj
- Reader, Department of Orthodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| | - Navin H K
- Reader, Department of Pedodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| | - Prasanna K B
- Senior Lecturer, Department of Pedodontics, Dayanand Sagar College of Dental Sciences , Bangalore, India
| |
Collapse
|
17
|
Arslan E, Garip IC, Gulseren G, Tekinay AB, Guler MO. Bioactive supramolecular peptide nanofibers for regenerative medicine. Adv Healthc Mater 2014; 3:1357-76. [PMID: 24574311 DOI: 10.1002/adhm.201300491] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Indexed: 11/09/2022]
Abstract
Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors. The present Review covers structural and biochemical properties of the self-assembled peptide nanofibers for tissue regeneration, and highlights studies that investigate the ability of ECM mimetic peptides to alter cellular behavior including cell adhesion, proliferation, and/or differentiation.
Collapse
Affiliation(s)
- Elif Arslan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - I. Ceren Garip
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Gulcihan Gulseren
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
18
|
Wang W, Liu Q, Zhang Y, Zhao L. Involvement of ILK/ERK1/2 and ILK/p38 pathways in mediating the enhanced osteoblast differentiation by micro/nanotopography. Acta Biomater 2014; 10:3705-15. [PMID: 24769109 DOI: 10.1016/j.actbio.2014.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
The hierarchical micro/nanotextured topography (MNT) on titanium (Ti) implant surface significantly enhances osteoblast differentiation. We have demonstrated that integrin-linked kinase (ILK) is a key underlying signal molecule and β-catenin is one of its downstream mediators in MNT-regulated osteoblast behavior. Here we propose that mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun NH2-terminal kinase (JNK), are other mediators downstream of ILK, and this study aims to confirm this. Firstly, the levels of ILK and MAPK activity in MG63 cells on MNT are examined by Western blot analysis. The ILK, ERK1/2 and p38 signals are significantly up-regulated by MNT, whereas the JNK activity is undetectable by Western blot. The MG63 cell morphology, proliferation and differentiation are studied in the absence and presence of the MAPK subgroup inhibitors to confirm their roles in cell functions on the Ti surface. The MAPK subgroup inhibitors obviously change the cell shape and depress cell proliferation. Blocking the ERK1/2 or p38 signaling, but not the JNK signaling, significantly down-regulates the cell osteogenesis-related gene expression, ALP production, collagen secretion and matrix mineralization. Afterwards, the ILK expression is down-regulated using ILK-specific siRNA (ILKsi) and then the MAPK activity is determined. ILKsi significantly attenuates the phosphorylated ERK1/2 and p38 levels on MNT, explicitly demonstrating that the ERK1/2 and p38 signalings are downstream effectors of ILK. In conclusion, these data demonstrate that both ILK/ERK1/2 and ILK/p38 pathways are involved in the mechanisms mediating the enhanced osteoblast differentiation by biomaterial surface topography, hopefully directing the biomaterial modification and biofunctionalization.
Collapse
|
19
|
Liu Y, Zhang X, Liu Y, Jin X, Fan C, Ye H, Ou M, Lv L, Wu G, Zhou Y. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities. PLoS One 2014; 9:e97741. [PMID: 24844416 PMCID: PMC4028224 DOI: 10.1371/journal.pone.0097741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/24/2014] [Indexed: 12/23/2022] Open
Abstract
Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P) crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however, it can serve as a carrier for biological agents which could improve the performance of implants and bone substitutes. Here, we constructed a novel, bi-functional Ca-P coating with combined pro-osteodifferentiation and antibacterial capabilities. Different concentrations of metronidazole (MNZ) and simvastatin (SIM) were integrated into biomimetic Ca-P coatings on the surface of titanium disks. The biological effects of this bi-functional biomimetic coating on human bone marrow mesenchymal stem cells (hBMMSCs), human adipose derived stromal cells (hASCs), and Porphyromonas gingivalis were assessed in vitro. We observed that Ca-P coatings loaded with both SIM and MNZ display favorable release kinetics without affecting cell proliferation or attachment. In the inhibition zone test, we found that the bi-functional coating showed lasting antibacterial effects when incubated with Porphyromonas gingivalis for 2 and 4 days. Moreover, the osteodifferentiation of hBMMSCs and hASCs were increased when cultured on this bi-functional coating for 7 and 14 days. Both drugs were loaded onto the Ca-P coating at specific concentrations (10−5 M SIM; 10−2 M MNZ) to achieve optimal release kinetics. Considering the safety, stability and low cost of SIM and MNZ, this novel bi-functional Ca-P coating technique represents a promising method to improve the performance of metal implants or other bone substitute materials, and can theoretically be easily translated to clinical applications.
Collapse
Affiliation(s)
- Yunsong Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Yang Liu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Xiaoxiao Jin
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Cong Fan
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Hongqiang Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Meng’en Ou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentristry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Yongsheng Zhou
- Department of Prosthodontics, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
- Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Boekhoven J, Stupp SI. 25th anniversary article: supramolecular materials for regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1642-59. [PMID: 24496667 PMCID: PMC4015801 DOI: 10.1002/adma.201304606] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/22/2013] [Indexed: 05/17/2023]
Abstract
In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine.
Collapse
Affiliation(s)
- Job Boekhoven
- Institute for Bio Nanotechnology in Medicine, Northwestern University, Chicago, Illinois, USA
| | - Samuel I. Stupp
- Departments of Materials Science and Engineering, Chemistry, and Medicine, Institute for Bio Nanotechnology in Medicine, Northwestern University, Chicago, Illinois, USA, , Homepage: http://stupp.northwestern.edu
| |
Collapse
|
21
|
Zhou J, Han Y, Lu S. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings. Int J Nanomedicine 2014; 9:1243-60. [PMID: 24634585 PMCID: PMC3952902 DOI: 10.2147/ijn.s58236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The process in which nanostructured surfaces mediate cell adhesion is not well understood, and may be indirect (via protein adsorption) or direct. We prepared Sr-doped hydroxyapatite (Sr1-HA) 3D nanorods (with interrod spacing of 67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and 2D nanogranulate patterned coatings on titanium. Employing the coatings under the same surface chemistry and roughness, we investigated the indirect/direct role of Sr1-HA nanotopographies in the regulation of osteoblast adhesion in both serum-free and serum-containing Dulbecco's Modified Eagle/Ham's Medium. The results reveal that the number of adherent cells, cell-secreted anchoring proteins (fibronectin, vitronectin, and collagen), vinculin and focal adhesion kinase (FAK) denoted focal adhesion (FA) contact, and gene expression of vinculin, FAK, and integrin subunits (α2, α5, αv, β1, and β3), undergo significant changes in the inter-nanorod spacing and dimensionality of Sr1-HA nanotopographies in the absence of serum; they are significantly enhanced on the <96 nm spaced nanorods and more pronounced with decreasing interrod spacing. However, they are inhibited on the >96 nm spaced nanorods compared to nanogranulated 2D topography. Although the adsorption of fibronectin and vitronectin from serum are higher on 136.8 ± 8.7 nm spaced nanorod patterned topography than nanogranulated topography, cell adhesion is inhibited on the former compared to the latter in the presence of serum, further suggesting that reduced cell adhesion is independent of protein adsorption. It is clearly indicated that 3D nanotopography can directly modulate cell adhesion by regulating integrins, which subsequently mediate anchoring proteins' secretion and FA formation rather than via protein adsorption.
Collapse
Affiliation(s)
- Jianhong Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shemin Lu
- Department of Genetics and Molecular Biology, College of Medicine, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|