1
|
Wang Z, Song W, Sheng R, Guo X, Hao L, Zhang X. Controlled preparation of cholesterol-bearing polycations with pendent l-lysine for efficient gene delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Wenli Song
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| |
Collapse
|
2
|
A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater 2021; 134:605-620. [PMID: 34329781 DOI: 10.1016/j.actbio.2021.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023]
Abstract
Retinal diseases, including age-related macular degeneration (AMD), are a major cause of blindness. Efficient delivery of therapeutic genes to retinal cells to treat retinal disease is a formidable challenge. In this study, we developed a core-shell nanoplatform composed of a core and two external layers for targeted delivery of the gene to the retina. The inner core was composed of amino acid-functionalized dendrimers and a nuclear localization signal (NLS) for DNA complexation, nuclear transport and efficient transfection. The inner core was coated in a lipid bilayer that comprised pH-sensitive lipids as the inner shell layer. Hyaluronic acid (HA)-1,2-dioleoylphosphatidylethanolamine (DOPE) as the outermost shell layer was used for retinal cell targeting. This core-shell nanoplatform was developed so that the mobility in the vitreous body of these negatively charged carriers would not be affected by their surface charge, allowing diffusion into the retina, uptake into the retinal cells via CD44-mediated internalization, and finally transport into the nucleus by the NLS. The designed nanoparticles showed safety both in vitro and in vivo and inhibited the expression of VEGF under hypoxia-mimicking conditions. In vitro angiogenesis assays exhibited significant inhibitory effects on cell migration and tube formation. The in vivo assays indicated that this nanoplatform could be delivered to the retina. Taken together, this nanoplatform has the potential to transfer gene material into the retina for the treatment of retinal diseases, including AMD. STATEMENT OF SIGNIFICANCE: It remains a challenge to develop an efficient nonviral vector for gene therapy, especially retinal gene therapy. Various barriers exist in gene delivery and the unique ocular environment, making gene delivery to the retina difficult. In this study, we designed a negatively charged core-shell nanoplatform (HD-NPPND) for the targeted delivery of gene to the retina. The developed nanoplatform possessed excellent transfection efficiency and safety both in vitro and in vivo. It efficiently delivered a gene to the retina. The results of this study suggested that this core-shell nanoplatform has the potential to deliver genes to the retina to treat retinal diseases, including age-related macular degeneration (AMD).
Collapse
|
3
|
Olim F, Neves AR, Vieira M, Tomás H, Sheng R. Self‐Assembly of Cholesterol‐Doxorubicin and TPGS into Prodrug‐Based Nanoparticles with Enhanced Cellular Uptake and Lysosome‐Dependent Pathway in Breast Cancer Cells. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Filipe Olim
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Ana Rute Neves
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Mariana Vieira
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Ruilong Sheng
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| |
Collapse
|
4
|
Qiu C, Han HH, Sun J, Zhang HT, Wei W, Cui SH, Chen X, Wang JC, Zhang Q. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes. Nat Commun 2019; 10:2702. [PMID: 31221991 PMCID: PMC6586638 DOI: 10.1038/s41467-019-10562-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Most cationic vectors are difficult to avoid the fate of small interfering RNA (siRNA) degradation following the endosome-lysosome pathway during siRNA transfection. In this study, the endoplasmic reticulum (ER) membrane isolated from cancer cells was used to fabricate an integrative hybrid nanoplexes (EhCv/siRNA NPs) for improving siRNA transfection. Compared to the undecorated Cv/siEGFR NPs, the ER membrane-decorated EhCv/siRNA NPs exhibits a significantly higher gene silencing effect of siRNA in vitro and a better antitumor activity in nude mice bearing MCF-7 human breast tumor in vivo. Further mechanistic studies demonstrate that functional proteins on the ER membrane plays important roles on improving cellular uptake and altering intracellular trafficking pathway of siRNA. It is worth to believe that the ER membrane decoration on nanoplexes can effectively transport siRNA through the endosome-Golgi-ER pathway to evade lysosomal degradation and enhance the silencing effects of siRNA.
Collapse
Affiliation(s)
- Chong Qiu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hu-Hu Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jing Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hai-Tao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, 410013, Changsha, China
| | - Wei Wei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Shi-He Cui
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xin Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| |
Collapse
|
5
|
Munsell EV, Kurpad DS, Freeman TA, Sullivan MO. Histone-targeted gene transfer of bone morphogenetic protein-2 enhances mesenchymal stem cell chondrogenic differentiation. Acta Biomater 2018; 71:156-167. [PMID: 29481871 PMCID: PMC5899933 DOI: 10.1016/j.actbio.2018.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/27/2023]
Abstract
Skeletal tissue regeneration following traumatic injury involves a complex cascade of growth factor signals that direct the differentiation of mesenchymal stem cells (MSCs) within the fracture. The necessity for controlled and localized expression of these factors has highlighted the role gene therapy may play as a promising treatment option for bone repair. However, the design of nanocarrier systems that negotiate efficient intracellular trafficking and nuclear delivery represents a significant challenge. Recent investigations have highlighted the roles histone tail sequences play in directing nuclear delivery and activating DNA transcription. We previously established the ability to recapitulate these natural histone tail activities within non-viral nanocarriers, improving gene transfer and expression by enabling effective navigation to the nucleus via retrograde vesicular trafficking. Herein, we demonstrate that histone-targeting leads to ∼4-fold enhancements in osteogenic bone morphogenetic protein-2 (BMP-2) expression by MSCs over 6 days, as compared with standard polymeric transfection reagents. This improved expression augmented chondrogenesis, an essential first step in fracture healing. Importantly, significant enhancements of cartilage-specific protein expression were triggered by histone-targeted gene transfer, as compared with the response to treatment with equivalent amounts of recombinant BMP-2 protein. In fact, an ∼100-fold increase in recombinant BMP-2 was required to achieve similar levels of chondrogenic gene and protein expression. The enhancements in differentiation achieved using histone-targeting were in part enabled by an increase in transcription factor expression, which functioned to drive MSC chondrogenesis. These novel findings demonstrate the utility of histone-targeted gene transfer strategies to enable substantial reductions in BMP-2 dosing for bone regenerative applications. STATEMENT OF SIGNIFICANCE This contribution addresses significant limitations in non-viral gene transfer for bone regenerative applications by exploiting a novel histone-targeting approach for cell-triggered delivery that induces osteogenic BMP-2 expression coincident with the initiation of bone repair. During repair, proliferating MSCs respond to a complex series of growth factor signals that direct their differentiation along cellular lineages essential to mature bone formation. Although these MSCs are ideal targets for enhanced transfection during cellular mitosis, few non-viral delivery approaches exist to enable maximization of this effect. Accordingly, this contribution seeks to utilize our histone-targeted nanocarrier design strategy to stimulate BMP-2 gene transfer in dividing MSCs. This gene-based approach leads to significantly augmented MSC chondrogenesis, an essential first step in bone tissue repair.
Collapse
Affiliation(s)
- Erik V Munsell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| | - Deepa S Kurpad
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Theresa A Freeman
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| |
Collapse
|
6
|
Sheng R, Wang Z, Luo T, Cao A, Sun J, Kinsella JM. Skeleton-Controlled pDNA Delivery of Renewable Steroid-Based Cationic Lipids, the Endocytosis Pathway Analysis and Intracellular Localization. Int J Mol Sci 2018; 19:ijms19020369. [PMID: 29373505 PMCID: PMC5855591 DOI: 10.3390/ijms19020369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Using renewable and biocompatible natural-based resources to construct functional biomaterials has attracted great attention in recent years. In this work, we successfully prepared a series of steroid-based cationic lipids by integrating various steroid skeletons/hydrophobes with (l-)-arginine headgroups via facile and efficient synthetic approach. The plasmid DNA (pDNA) binding affinity of the steroid-based cationic lipids, average particle sizes, surface potentials, morphologies and stability of the steroid-based cationic lipids/pDNA lipoplexes were disclosed to depend largely on the steroid skeletons. Cellular evaluation results revealed that cytotoxicity and gene transfection efficiency of the steroid-based cationic lipids in H1299 and HeLa cells strongly relied on the steroid hydrophobes. Interestingly, the steroid lipids/pDNA lipoplexes inclined to enter H1299 cells mainly through caveolae and lipid-raft mediated endocytosis pathways, and an intracellular trafficking route of “lipid-raft-mediated endocytosis→lysosome→cell nucleic localization” was accordingly proposed. The study provided possible approach for developing high-performance steroid-based lipid gene carriers, in which the cytotoxicity, gene transfection capability, endocytosis pathways, and intracellular trafficking/localization manners could be tuned/controlled by introducing proper steroid skeletons/hydrophobes. Noteworthy, among the lipids, Cho-Arg showed remarkably high gene transfection efficacy, even under high serum concentration (50% fetal bovine serum), making it an efficient gene transfection agent for practical application.
Collapse
Affiliation(s)
- Ruilong Sheng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China.
- Department of Bioengineering, McGill University, 817 Sherbrook Street, Montréal, QC H3A0C3, Canada.
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Zhao Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China.
| | - Ting Luo
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China.
| | - Amin Cao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China.
| | - Jingjing Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China.
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, 817 Sherbrook Street, Montréal, QC H3A0C3, Canada.
| |
Collapse
|
7
|
Sun J, Liu Y, Chen Y, Zhao W, Zhai Q, Rathod S, Huang Y, Tang S, Kwon YT, Fernandez C, Venkataramanan R, Li S. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J Control Release 2017; 258:43-55. [PMID: 28501705 PMCID: PMC5525542 DOI: 10.1016/j.jconrel.2017.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Two novel prodrug polymers POEG-b-PSSDas (redox-sensitive) and POEG-b-PCCDas (redox-insensitive), which consist of poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic blocks and dasatinib (DAS, an oncogenic tyrosine kinases inhibitor) conjugated hydrophobic blocks, were designed as dual-functional carriers for codelivery with doxorubicin (DOX). Both carriers retained antitumor activity of DAS and could form mixed micelles with DOX. Compared to POEG-b-PCCDas micelles, incorporation of disulfide linkage into POEG-b-PSSDas micelles facilitated efficient cleavage of DAS from prodrug micelles in tumor cells/tissues, leading to a higher level of anti-tumor activity in vitro and in vivo. In addition, DOX-loaded POEG-b-PSSDas micelles exhibited triggered DOX release under a redox environment (10mM glutathione, GSH), and demonstrated enhanced cytotoxicity against 4T1.2 and PC3 cell lines compared to DOX and DOX-loaded POEG-b-PCCDas micelles. More importantly, DOX-loaded POEG-b-PSSDas micelles were more effective in inhibiting the tumor growth and prolonging the survival rate in an aggressive murine breast cancer model (4T1.2) compared to DOX-loaded POEG-b-PCCDas micelles and a micellar formulation co-loaded with DOX and DAS. This redox-responsive prodrug micellar system provides an attractive strategy for effective combination of tumor targeted therapy and traditional chemotherapy, which warrants further investigation.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Wenchen Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Qianyu Zhai
- Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Suoqin Tang
- Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yong Tae Kwon
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States; Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Christian Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Raman Venkataramanan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
8
|
Wang Z, Sheng R, Luo T, Sun J, Cao A. Synthesis and self-assembly of diblock glycopolypeptide analogues PMAgala-b-PBLG as multifunctional biomaterials for protein recognition, drug delivery and hepatoma cell targeting. Polym Chem 2017. [DOI: 10.1039/c6py01526c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PMAgala-b-PBLG glycopolypeptide analogues might serve as redox-responsive, highly biocompatible multifunctional biomaterial platforms for practical applications.
Collapse
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
9
|
Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers. Colloids Surf B Biointerfaces 2016; 148:73-84. [DOI: 10.1016/j.colsurfb.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 11/20/2022]
|
10
|
Sun J, Sheng R, Luo T, Wang Z, Li H, Cao A. Synthesis of diblock/statistical cationic glycopolymers with pendant galactose and lysine moieties: gene delivery application and intracellular behaviors. J Mater Chem B 2016; 4:4696-4706. [PMID: 32263242 DOI: 10.1039/c6tb00969g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new series of cationic block copolymers PHML-b-PMAGal and statistical copolymers P(HML-st-MAGal) with pendant natural galactose and (l-)-lysine moieties were prepared via RAFT (reversible addition-fragmentation chain-transfer) polymerization. The block/statistical copolymers showed a high plasmid DNA binding affinity (N/P < 2) and the as-formed polyplexes were spherical nanoparticles with the average size of 100-300 nm and surface zeta potentials of +30.2 to +46.3 mV. The cytotoxicity and gene transfection efficacy of the PHML-b-PMAGal and P(HML-st-MAGal) vectors strongly depend on the polymer architectures (block/statistical) and the galactose content. Notably, the statistical copolymer P(HML40-st-MAGal4) with 4.8% galactose content showed the highest gene transfection efficiency among the synthesized cationic polymers, 6.8-fold higher than that of the "gold standard" bPEI-25k in the presence of 10% FBS (fetal bovine serum) in various cell lines. An intracellular uptake mechanism (with 10% FBS) study demonstrated that the P(HML40-st-MAGal4)/pDNA polyplexes entered H1299 cells mainly through caveolae-mediated endocytosis and microtubule-dependent endocytosis pathways. Moreover, the fluorescence imaging study showed that the P(HML40-st-MAGal4)/pDNA polyplexes possessed an obvious "lysosomal escaping" effect that led to efficient pDNA release, which might interpret the fact of the significant increase of the related gene transfection efficiency. Moreover, it could be anticipated that the P(HML40-st-MAGal4) cationic glycopolymer might be employed as a low toxic, highly efficient and serum-compatible gene carrier for practical applications.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS. Lingling Road 345, Shanghai, 200032, China.
| | | | | | | | | | | |
Collapse
|
11
|
Sheng R, Zhuang X, Wang Z, Cao A, Lin K, Zhu JXX. Cationic Nanoparticles Assembled from Natural-Based Steroid Lipid for Improved Intracellular Transport of siRNA and pDNA. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E69. [PMID: 28335197 PMCID: PMC5302561 DOI: 10.3390/nano6040069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
Developing new functional biomaterials from biocompatible natural-based resources for gene/drug delivery has attracted increasing attention in recent years. In this work, we prepared a series of cationic nanoparticles (Diosarg-DOPE NPs) by assembly of a natural steroid diosgenin-based cationic lipid (Diosarg) with commercially-available helper lipid 1,2-dioleoyl-sn-glycero-3-phosphorethanolamine (DOPE). These cationic Diosarg-DOPE NPs were able to efficiently bind siRNA and plasmid DNA (pDNA) via electrostatic interactions to form stable, nano-sized cationic lipid nanoparticles instead of lamellar vesicles in aqueous solution. The average particle size, zeta potentials and morphologies of the siRNA and pDNA complexes of the Diosarg-DOPE NPs were examined. The in vitro cytotoxicity of NPs depends on the dose and assembly ratio of the Diosarg and DOPE. Notably, the intracellular transportation efficacy of the exogenesis siRNA and pDNA could be greatly improved by using the Diosarg-DOPE NPs as the cargoes in H1299 cell line. The results demonstrated that the self-assembled Diosarg-DOPE NPs could achieve much higher intracellular transport efficiency for siRNA or pDNA than the cationic lipid Diosarg, indicating that the synergetic effect of different functional lipid components may benefit the development of high efficiency nano-scaled gene carriers. Moreover, it could be noted that the traditional "lysosome localization" involved in the intracellular trafficking of the Diosarg and Diosarg-DOPE NPs, indicating the co-assembly of helper lipid DOPE, might not significantly affect the intracellular localization features of the cationic lipids.
Collapse
Affiliation(s)
- Ruilong Sheng
- CAS Key Laboratory for Organic Functional Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Department of Chemistry, Université de Montréal, C.P.6128, Succursale Centre-ville, Montréal, QC H3C3J7, Canada.
| | - Xiaoqing Zhuang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Zhao Wang
- CAS Key Laboratory for Organic Functional Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Amin Cao
- CAS Key Laboratory for Organic Functional Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Kaili Lin
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Middle Yanchang Road, Shanghai 200072, China.
| | - Julian X X Zhu
- Department of Chemistry, Université de Montréal, C.P.6128, Succursale Centre-ville, Montréal, QC H3C3J7, Canada.
| |
Collapse
|
12
|
Sun J, Luo T, Sheng R, Li H, Wang Z, Cao A. Intracellular plasmid DNA delivery by self-assembled nanoparticles of amphiphilic PHML-b-PLLA-b-PHML copolymers and the endocytosis pathway analysis. J Biomater Appl 2016; 31:606-621. [PMID: 27059498 DOI: 10.1177/0885328216642665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work presents a new series of polycationic nanoparticles of (l-)-lysine conjugated amphiphilic triblock copolymer poly(hydroxyletheyl methacrylate-L-lysine)-b-poly(L-lactide)-b-poly(hydroxyletheyl methacrylate-L-lysine)s (PHML-b-PLLA-b-PHML) as potent low cytotoxic vectors for intracellular plasmid DNA delivery. First, the triblock PHML-b-PLLA-b-PHML copolymers were prepared via a combination of metal-free controlled ring opening polymerization and successive atom transfer radical polymerization. Then the cationic PHML-b-PLLA-b-PHML nanoparticles were further prepared by solution self-assembly. The particle size, zeta potential and morphology of as-prepared PHML-b-PLLA-b-PHML nanoparticles were characterized by dynamic light scattering and atomic force microscopy, respectively. The plasmid DNA binding affinities and polyplex stabilities were separately explored by agarose gel retardation and DNase I degradation assays. Then in vitro cytotoxicity and gene transfection efficiency of the PHML-b-PLLA-b-PHML nanoparticles vectors as well as relevant polyplex endocytosis pathway were investigated with H1299 cells. It was revealed that the PHML-b-PLLA-b-PHML nanoparticles exhibited low cytotoxicity, strong plasmid DNA binding affinity, high polyplex stability and efficient plasmid DNA transfection even under serum conditions (10% FBS). Moreover, the endocytosis analysis results disclosed that the PHML30-b-PLLA-b-PHML30 nanoparticle/plasmid DNA polyplexes were predominantly involved in lipid-raft-mediated endocytosis pathway, similar to that of SV40 virus-based vectors.
Collapse
Affiliation(s)
- Jingjing Sun
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ting Luo
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ruilong Sheng
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China Department of Chemistry, Université de Montréal, Succursale Centre-ville, Montréal, Quebéc, Canada
| | - Hui Li
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Wang
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Amin Cao
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Peng Q, Zhu J, Yu Y, Hoffman L, Yang X. Hyperbranched lysine−arginine copolymer for gene delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1163-77. [DOI: 10.1080/09205063.2015.1080482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Pandit V, Watson A, Ren L, Mixon A, Kotha SP. Multilayered Nanoparticles for Gene Delivery Used to Reprogram Human Foreskin Fibroblasts to Neurospheres. Tissue Eng Part C Methods 2015; 21:786-94. [PMID: 25687130 DOI: 10.1089/ten.tec.2014.0482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polycationic nanocomplexes are a robust means for achieving nucleic acid condensation and efficient intracellular gene deliveries. To enhance delivery, a multilayered nanoparticle consisting of a core of electrostatically bound elements was used. These included a histone-mimetic peptides, poly-l-arginine and poly-d-glutamic acid was coated with silicate before surface functionalization with poly-l-arginine. Transfection efficiencies and duration of expression were similar when using green fluorescent protein (GFP) plasmid DNA (pDNA) or GFP mRNA. These nanoparticles demonstrated significantly higher (>100%) and significantly longer (15 vs. 4 days) transfection efficiencies in comparison to a commercial transfection agent (Lipofectamine 2000). Reprogramming of human foreskin fibroblasts using mRNA to the Sox2 transcription factor resulted in three-fold higher neurosphere formation in comparison to the commercial reagent. These results demonstrate the potential of these nanoparticles as ideal vectors for gene delivery.
Collapse
Affiliation(s)
- Vaibhav Pandit
- 1 Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | | | - Liyun Ren
- 3 Department of Material Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | - Amanda Mixon
- 1 Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Shiva P Kotha
- 1 Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
15
|
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190:485-99. [PMID: 24984011 PMCID: PMC4153400 DOI: 10.1016/j.jconrel.2014.06.038] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/27/2022]
Abstract
Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.
Collapse
Affiliation(s)
- Basit Yameen
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Won Il Choi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Cristian Vilos
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; Universidad Andres Bello, Facultad de Medicina, Center for Integrative Medicine and Innovative Science (CIMIS), Echaurren 183, Santiago, Chile
| | - Archana Swami
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA; King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|