1
|
Bhattacharyya S, Mote RD, Freimer JW, Tiwari M, Singh SB, Arumugam S, Narayana YV, Rajan R, Subramanyam D. Cell-cell adhesions in embryonic stem cells regulate the stability and transcriptional activity of β-catenin. FEBS Lett 2022; 596:1647-1660. [PMID: 35344589 PMCID: PMC10156795 DOI: 10.1002/1873-3468.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
E-cadherin (CDH1) is involved in maintaining cell-cell adhesions in embryonic stem cells (ESCs). However, its function in the context of cell fate decisions is largely unknown. Using mouse ESCs (mESCs), we demonstrate that E-cadherin and β-catenin interact at the membrane and continue to do so upon internalization within the cell. Cdh1-/- mESCs failed to form tight colonies, with altered differentiation marker expression, and retention of pluripotency factors during differentiation. Interestingly, Cdh1-/- mESCs showed dramatically reduced β-catenin levels. Transcriptional profiling of Cdh1-/- mESCs displayed a significant alteration in the expression of a subset of β-catenin targets in a cell state- and GSK3β-dependent manner. Our findings hint at hitherto unknown roles played by E-cadherin in regulating the activity of β-catenin in ESCs.
Collapse
Affiliation(s)
- Sinjini Bhattacharyya
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | - Ridim D Mote
- National Centre for Cell Science, Ganeshkhind Road
| | - Jacob W Freimer
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,UCSF Institute of Genomic Immunology, San Francisco, CA, 94158, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mahak Tiwari
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | - Surya Bansi Singh
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | | | - Yadavalli V Narayana
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | - Raghav Rajan
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, 411008
| | | |
Collapse
|
2
|
Yang S, Cao Z, Zhu J, Zhang Z, Zhao H, Zhao L, Sun X, Wang X. In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. ACS OMEGA 2019; 4:18136-18146. [PMID: 31720516 PMCID: PMC6843705 DOI: 10.1021/acsomega.9b02053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Neural stem cells (NSCs) play an important role in neural tissue engineering because of their capacity of self-renewal and differentiation to multiple cell lineages. The in vitro conventional neurosphere culture protocol has some limitations such as limited nutrition and oxygen penetration and distribution causing the heterogeneity of cells inside, inaccessibility of internal cells, and inhomogeneous cellular morphology and properties. As a result, cultivation as a monolayer is a better way to study NSCs and obtain a homogeneous cell population. The cadherins are a classical family of homophilic cell adhesion molecules mediating cell-cell adhesion. Here, we used a recombinant human E-cadherin mouse IgG Fc chimera protein that self-assembles on a hydrophobic polystyrene surface via hydrophobic interaction to obtain an E-cadherin-coated culture plate (ECP). The rat fetal NSCs were cultured on the ECP and routine tissue culture plate (TCP) from passage 2 to passage 5. NSCs on TCP formed uniform floating neurospheres and grew up over time, while cells on the ECP adhered on the bottom of the plate and exhibited individual cells with scattering morphology, forming intercellular connections between cells. The cell proliferation and differentiation behaviors that were evaluated by Cell Counting Kit-8 assay (CCK-8), immunofluorescence staining, and real-time quantitative polymerase chain reaction showed NSCs could maintain the capacity for self-renewal and ability to differentiate into neurons, oligodendrocytes, and astrocytes after the long-term in vitro cell culture and passaging. Therefore, our study indicated that hE-cad-Fc could provide a homogeneous environment for individual cells in monolayer conditions to maintain the capacity of self-renewal and differentiation by mimicking the cell-cell interaction.
Collapse
Affiliation(s)
- Shuhui Yang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Cao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jinjin Zhu
- Department
of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College
of Zhejiang University, Sir Run Run Shaw
Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Zhe Zhang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - He Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Li J, Di Russo J, Hua X, Chu Z, Spatz JP, Wei Q. Surface Immobilized E-Cadherin Mimetic Peptide Regulates the Adhesion and Clustering of Epithelial Cells. Adv Healthc Mater 2019; 8:e1801384. [PMID: 30908895 DOI: 10.1002/adhm.201801384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Cadherin mimetic peptides are widely used in synthetic biomaterials to mimic cell-cell adhesion in cell microniches. This mimicry regulates various cell behaviors. Although the interaction between immobilized cadherin and cells is investigated in numerous studies, the exact manner of functioning of cadherin mimetic peptides is yet to be fully understood. Cadherin mimetic peptides mimic only the critical amino acid sequence of cadherin and are not equal to these proteins in function. Compared to the cadherin proteins, mimetic peptides are more stable, easier to fabricate, and exhibit a precise chemical composition. In this study the E-cadherin mimetic peptide His-Ala-Val (HAV) on material surfaces is immobilized and epithelial cell adhesion and clustering are studied. The results suggest that immobilized HAV peptides specifically interact with E-cadherin on the cell membrane, resulting in an increased expression of E-cadherin and its downstream signaling protein β-catenin. This interaction relocates E-cadherin-based adhesion from the cell-cell interface to the cell-materials interface, which promotes cell adhesion via mechanosensing and initiates a transition in the cell cluster from a solid-like to a fluid-like state. The study presents an overview of the interactions between E-cadherin mimetic peptide and epithelial cells to aid in the design of novel biomaterials.
Collapse
Affiliation(s)
- Jie Li
- Department of Cellular BiophysicsMax Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Biophysical ChemistryInstitute of Physical ChemistryUniversity of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Jacopo Di Russo
- Department of Cellular BiophysicsMax Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Biophysical ChemistryInstitute of Physical ChemistryUniversity of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Ximeng Hua
- Department of Cellular BiophysicsMax Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Biophysical ChemistryInstitute of Physical ChemistryUniversity of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Zhiqin Chu
- Department of Electrical and Electronic EngineeringJoint Appointment with School of Biomedical SciencesThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Joachim P. Spatz
- Department of Cellular BiophysicsMax Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Biophysical ChemistryInstitute of Physical ChemistryUniversity of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Qiang Wei
- Department of Cellular BiophysicsMax Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Department of Biophysical ChemistryInstitute of Physical ChemistryUniversity of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan University 610065 Chengdu China
| |
Collapse
|
4
|
Leino M, Astrand C, Hughes-Brittain N, Robb B, McKean R, Chotteau V. Human embryonic stem cell dispersion in electrospun PCL fiber scaffolds by coating with laminin-521 and E-cadherin-Fc. J Biomed Mater Res B Appl Biomater 2017; 106:1226-1236. [PMID: 28577328 DOI: 10.1002/jbm.b.33928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
Advances in human pluripotent cell cultivation and differentiation protocols have led to production of stem cell-derived progenitors as a promising cell source for replacement therapy. Three-dimensional (3-D) culture is a better mimic of the natural niche for stem cells and is widely used for disease modeling. Here, we describe a nonaggregate culture system of human embryonic stem cells inside electrospun polycaprolactone (PCL) fiber scaffolds combined with defined extracellular proteins naturally occurring in the stem cell niche. PCL fiber scaffolds coated with recombinant human laminin-521 readily supported initial stem cell attachment and growth from a single-cell suspension. The combination of recombinant E-cadherin-Fc and laminin-521 further improved cell dispersion rendering a uniform cell population. Finally, we showed that the cells cultured in E-cadherin-Fc- and laminin-521-coated PCL scaffolds could differentiate into all three germ layers. Importantly, we provided a chemically defined 3-D system in which pluripotent stem cells grown and differentiated avoiding the formation of cell aggregates. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1226-1236, 2018.
Collapse
Affiliation(s)
- Mattias Leino
- School of Biotechnology, Cell Technology Group (CETEG), KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Astrand
- School of Biotechnology, Cell Technology Group (CETEG), KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nanayaa Hughes-Brittain
- The Electrospinning Company Ltd, R70 Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Brendan Robb
- The Electrospinning Company Ltd, R70 Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Robert McKean
- The Electrospinning Company Ltd, R70 Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
| | - Véronique Chotteau
- School of Biotechnology, Cell Technology Group (CETEG), KTH - Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, Competence Centre for Advanced Bioproduction by Continuous Bioprocessing, KTH, Stockholm, Sweden
| |
Collapse
|
5
|
Zhang Y, Mao H, Gao C, Li S, Shuai Q, Xu J, Xu K, Cao L, Lang R, Gu Z, Akaike T, Yang J. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles. Adv Healthc Mater 2016; 5:1949-1959. [PMID: 27245478 DOI: 10.1002/adhm.201600114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications.
Collapse
Affiliation(s)
- Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Hongli Mao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Suhua Li
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jianbin Xu
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ke Xu
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16, kasuga, 3-chome, Tsukuba, 305-0821, Japan
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Zhang Y, Mao H, Qian M, Hu F, Cao L, Xu K, Shuai Q, Gao C, Lang R, Akaike T, Yang J. Surface modification with E-cadherin fusion protein for mesenchymal stem cell culture. J Mater Chem B 2016; 4:4267-4277. [PMID: 32263408 DOI: 10.1039/c6tb00765a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To effectively expand human mesenchymal stem cells (hMSCs) in vitro without affecting their innate biological properties, a fusion protein (hE-cad-Fc) consisting of a human E-cadherin extracellular domain and an immunoglobulin G Fc region was fabricated and used as a biomimetic matrix for MSC culture surface modification. The results showed that cells cultured on hE-cad-Fc-modified polystyrene surfaces exhibited improved proliferation and paracrine functions compared with cells cultured on unmodified and collagen-modified polystyrene surfaces. Meanwhile, surfaces modified with hE-cad-Fc effectively inhibited cell apoptosis even under the serum deprivation conditions. Additionally, the hE-cad-Fc not only up-regulated the expression of β-catenin in MSCs and stimulated the cellular membrane complex of E-cadherin/β-catenin, but also effectively activated the intracellular signals such as EGFR, AKT and ERK phosphorylation. Therefore, hE-cad-Fc appeared to be a promising candidate for biological surface modification and stem cell culture.
Collapse
Affiliation(s)
- Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Adnan N, Mie M, Haque A, Hossain S, Mashimo Y, Akaike T, Kobatake E. Construction of a Defined Biomimetic Matrix for Long-Term Maintenance of Mouse Induced Pluripotent Stem Cells. Bioconjug Chem 2016; 27:1599-605. [PMID: 27269811 DOI: 10.1021/acs.bioconjchem.6b00141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The existing in vitro culture systems often use undefined and animal-derived components for the culture of pluripotent stem cells. Artificial bioengineered peptides have the potential to become alternatives to these components of extracellular matrix (ECM). Integrins and cadherins are two cell adhesion proteins important for stem cell self-renewal, differentiation, and phenotype stability. In the present study, we sought to mimic the physico-biochemical properties of natural ECMs that allow self-renewal of mouse induced pluripotent stem cells (iPSCs). We develop a genetically engineered ECM protein (ERE-CBP) that contains (i) an integrin binding peptide sequence (RGD/R), (ii) an E-/N-cadherin binding peptide sequence (SWELYYPLRANL/CBP), and (iii) 12 repeats of APGVGV elastin-like polypeptides (ELPs/E).While ELPs allow efficient coating by binding to nontreated hydrophobic tissue culture plates, RGD/R and CBP support integrin- and cadherin-dependent cell attachment, respectively. Mouse iPSCs on this composite matrix exhibit a more compact phenotype compared to cells on control gelatin substrate. We also demonstrated that the ERE-CBP supports proliferation and long-term self-renewal of mouse iPSCs for up to 17 passages without GSK3β (CHIR99021) and Erk (PD0325901) inhibitors. Overall, our engineered ECM protein, which is cost-effective to produce in prokaryotic origin and flexible to modify with other cell adhesion peptides or growth factors, provides a novel approach for expansion of mouse iPSCs in vitro.
Collapse
Affiliation(s)
- Nihad Adnan
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology , Yokohama, 226-8502, Japan
| | - Masayasu Mie
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology , Yokohama, 226-8502, Japan
| | - Amranul Haque
- Department of Biomedical Engineering, University of California Davis , Davis, California 95616, United States
| | - Sharif Hossain
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science , Tsukuba, 305-0821, Japan
| | - Yasumasa Mashimo
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology , Yokohama, 226-8502, Japan
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science , Tsukuba, 305-0821, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology , Yokohama, 226-8502, Japan
| |
Collapse
|
8
|
Tsuneki M, Madri JA. CD44 Influences Fibroblast Behaviors Via Modulation of Cell-Cell and Cell-Matrix Interactions, Affecting Survivin and Hippo Pathways. J Cell Physiol 2016; 231:731-43. [PMID: 26248063 DOI: 10.1002/jcp.25123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
CD44 has been studied in a wide variety of cell types, in a diverse array of cell behaviors and in a diverse range of signaling pathways. We now document a role for CD44 in mediating fibroblast behaviors via regulation of N-cadherin, extracellular matrix expression, Survivin and the Hippo pathway. Here, we report our findings on the roles of CD44 in modulating proliferation, apoptosis, migration and invasion of murine wild-type (WT-FB) and CD44 knockout dermal fibroblasts (CD44KO-FB). As we have documented in microvascular endothelial cells lacking CD44, we found persistent increased proliferation, reduced activation of cleaved caspase 3, increased initial attachment, but decreased strength of cell attachment in high cell density, post confluent CD44KO-FB cultures. Additionally, we found that siRNA knock-down of CD44 mimicked the behaviors of CD44KO-FB, restoring the decreases in N-cadherin, collagen type I, fibronectin, Survivin, nuclear fractions of YAP and phospho-YAP and decreased levels of cleaved caspase 3 to the levels observed in CD44KO-FB. Interestingly, plating CD44KO-FB on collagen type I or fibronectin resulted in significant decreases in secondary proliferation rates compared to plating cells on non-coated dishes, consistent with increased cell adhesion compared to their effects on WT-FB. Lastly, siRNA knockdown of CD44 in WT-FB resulted in increased fibroblast migration compared to WT-FB, albeit at reduced rates compared to CD44KO-FB. These results are consistent with CD44's pivotal role in modulating several diverse behaviors important for adhesion, proliferation, apoptosis, migration and invasion during development, growth, repair, maintenance and regression of a wide variety of mesenchymal tissues.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
LIANG XI, XU XUEQING, WANG FENGCHAO, CHEN XUEDAN, LI NI, WANG CANCAN, HE JIANMING. E-cadherin knockdown increases β-catenin reducing colorectal cancer chemosensitivity only in three-dimensional cultures. Int J Oncol 2015; 47:1517-27. [DOI: 10.3892/ijo.2015.3137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/11/2015] [Indexed: 11/05/2022] Open
|
10
|
Haque A, Adnan N, Motazedian A, Akter F, Hossain S, Kutsuzawa K, Nag K, Kobatake E, Akaike T. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors. PLoS One 2015; 10:e0135170. [PMID: 26244942 PMCID: PMC4526632 DOI: 10.1371/journal.pone.0135170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
For stem cell-based treatment of neurodegenerative diseases a better understanding of key developmental signaling pathways and robust techniques for producing neurons with highest homogeneity are required. In this study, we demonstrate a method using N-cadherin-based biomimetic substrate to promote the differentiation of mouse embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) without exogenous neuro-inductive signals. We showed that substrate-dependent activation of N-cadherin reduces Rho/ROCK activation and β-catenin expression, leading to the stimulation of neurite outgrowth and conversion into cells expressing neural/glial markers. Besides, plating dissociated cells on N-cadherin substrate can significantly increase the differentiation yield via suppression of dissociation-induced Rho/ROCK-mediated apoptosis. Because undifferentiated ESCs and iPSCs have low affinity to N-cadherin, plating dissociated cells on N-cadherin-coated substrate increase the homogeneity of differentiation by purging ESCs and iPSCs (~30%) from a mixture of undifferentiated cells with NPCs. Using this label-free cell selection approach we enriched differentiated NPCs plated as monolayer without ROCK inhibitor. Therefore, N-cadherin biomimetic substrate provide a powerful tool for basic study of cell—material interaction in a spatially defined and substrate-dependent manner. Collectively, our approach is efficient, robust and cost effective to produce large quantities of differentiated cells with highest homogeneity and applicable to use with other types of cells.
Collapse
Affiliation(s)
- Amranul Haque
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Nihad Adnan
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ali Motazedian
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Farhima Akter
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Sharif Hossain
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Kutsuzawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Kakon Nag
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Eiry Kobatake
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
- * E-mail:
| |
Collapse
|
11
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
12
|
Pattabiraman PP, Inoue T, Rao PV. Elevated intraocular pressure induces Rho GTPase mediated contractile signaling in the trabecular meshwork. Exp Eye Res 2015; 136:29-33. [PMID: 25956210 DOI: 10.1016/j.exer.2015.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 10/24/2022]
Abstract
Rho GTPase regulated contractile signaling in the trabecular meshwork (TM) has been shown to modulate aqueous humor (AH) outflow and intraocular pressure (IOP). To explore whether elevated IOP, a major risk factor for primary open angle glaucoma (POAG) influences Rho GTPase signaling in the TM, we recorded AH outflow in enucleated contralateral porcine eyes perfused for 4-5 h at either 15 mm or 50 mm Hg pressure. After perfusion, TM tissue extracted from perfused eyes was evaluated for the activation status of Rho GTPase, myosin light chain (MLC), myosin phosphatase target substrate 1 (MYPT1), myristoylated alanine-rich C-kinase substrate (MARCKS) and paxillin. Eyes perfused at 50 mm Hg exhibited a significant decrease in AH outflow facility compared with those perfused at 15 mm Hg. Additionally, TM tissue from eyes perfused at 50 mm Hg revealed significantly increased levels of activated RhoA and phosphorylated MLC, MYPT1, MARCKS and paxillin compared to TM tissue derived from eyes perfused at 15 mm Hg. Taken together, these observations indicate that elevated IOP-induced activation of Rho GTPase-dependent contractile signaling in the TM is associated with increased resistance to AH outflow through the trabecular pathway, and demonstrate the sensitivity of Rho GTPase signaling to mechanical force in the AH outflow pathway.
Collapse
Affiliation(s)
| | - Toshihiro Inoue
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - P Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|